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Abstract

By compatibly grading the p-part of the Hecke algebra associated to Spn(Z) and

the subring of Q[x±1
0 , . . . , x±1

n ] invariant under the associated Weyl group, we produce a

matrix representation of the Satake isomorphism restricted to the corresponding finite

dimensional components. In particular, using the elementary divisor theory of integral

matrices, we show how to determine the entries of this matrix representation restricted

to double cosets of a fixed similitude. The matrix representation is upper-triangular,

and can be explicitly inverted.

To address the specific question of characterizing families of Hecke operators whose

generating series have “Euler” products, we define (n+1) families of polynomial Hecke

operators tnk(p`) (in Q[x±1
0 , . . . , x±1

n ]) for Spn whose generating series
∑

tnk(p`)v` are

rational functions of the form qk(v)−1, where qk is a polynomial in Q[x±1
0 , . . . , x±1

n ][v]

of degree 2k
(n
k

)
(2n if k = 0). For k = 0 and k = 1 the form of the polynomial is

essentially that of the local factors in the spinor and standard zeta functions. For

k > 1, these appear to be new expressions. Taking advantage of the generating series
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and our ability to explicitly invert the Satake isomorphism, we explicitly compute the

classical operators with the analogous properties in the case of genus 2. It is of interest

to note that these operators lie in the full, but not generally the integral, Hecke algebra.

1 Introduction

Hecke theory for modular forms on the symplectic group is still very much in its infancy.

There are no doubt many reasons for this, but a comment [7] made to one of the authors

struck a chord: The Hecke algebra for Siegel modular forms is a solution looking for a prob-

lem. What is meant by this is that the classical Hecke operators were invented to provide

a solution to a specific problem: characterizing those modular forms whose Fourier coeffi-

cients had multiplicative properties analogous to the divisor and tau functions; in particular

characterizing those modular forms whose associated L-series had an Euler product of a

prescribed type. These Hecke operators did the job admirably leading to a robust theory

connecting Fourier coefficients and Hecke eigenvalues, enabling multiplicity-one results and

in some sense laying a partial foundation for the Shimura-Taniyama correspondence.

The solution to the above problem (the Hecke operators) was generalized in many ways

and to many settings. In the Siegel modular form setting, there are partial generalizations

of the Hecke theory. Associated to a simultaneous Hecke eigenform are Satake parameters,

which in some sense generalize Hecke eigenvalues, and by which one can associate various

L-functions to the eigenform. But the information currently gleaned from the Hecke algebra

seems woefully inadequate to produce anything resembling the robust Hecke theory in the

elliptic case; that is, our generalized solution does not solve the generalized problem. So we

have a solution seeking a problem to solve.

This is not at all to say that some progress has not been made, e.g., using a partial

knowledge of Satake parameters to infer complete knowledge [10], or finding correlations

between Fourier coefficients and Hecke eigenvalues in degree 2 [4]. Still, we are very far
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away from a satisfactory general theory, especially one robust enough to produce a theory

of newforms for forms associated to congruence subgroups.

This paper takes the step of posing a (Hecke-like) problem and looking for specific Hecke

operators which provide a solution to that problem. In particular, we focus on the p-part of

the Hecke algebra, and look for families of Hecke operators whose generating series have nice

“Euler” product expansions. For Spn, we define (n+ 1) such families, and we find that the

solutions are operators which live in the full, but not generally the integral, Hecke algebra.

We give recursion relations to define all such operators, and relate them to the standard

generators.

The mechanism we employ is to consider the well-known (see e.g., Cartier [3]) Satake

isomorphism between the p-part of the Hecke algebra associated to the symplectic group

and a polynomial ring invariant under a certain Weyl group. In [1], Andrianov refers to this

isomorphism as the spherical map, and give a description of it in terms of right cosets of the

double cosets which generate the Hecke algebra.

By first working in the (isomorphic) representation space, we define families of (poly-

nomial) Hecke operators tnk(p`), k = 0, . . . , n whose generating series have the form (see

Theorem 3.3):

∑
`≥0

tn0 (p`)v` =

(1− x0v)
n∏

m=1

∏
1≤i1<···<im≤n

(1− x0xi1 · · ·ximv)

−1

, (1.1)

and for 1 ≤ k ≤ n,

∑
`≥0

tnk(p`)v` =

 ∏
1≤i1<···<ik≤n, δij

=±1

(1− x
δi1
i1 · · ·x

δik
ik
v)


−1

. (1.2)

To see the significance of these operators, recall that associated to a simultaneous

Hecke eigenfunction F of weight k for Spn(Z), are the Satake p-parameters (α0, . . . , αn) =
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(α0(p), . . . , αn(p)) ∈ Cn+1/Wn for each prime p (Wn the associated Weyl group), which

generalize the Hecke eigenvalues. The Satake parameters satisfy α0(p)
2α1(p) · · ·αn(p) =

pnk−n(n+1)/2 and are used to define the spinor and standard zeta functions.

The standard zeta function is defined by DF (s) =
∏

pDF,p(p
−s)−1 (<(s) > 1), where

DF,p(v) = (1− v)
n∏

m=1

(1− αmv)(1− α−1
m v),

while the spinor zeta function is defined by ZF (s) =
∏

p ZF,p(p
−s)−1 (<(s) > nk/2 − n(n +

1)/4 + 1), where

ZF,p(v) = (1− α0v)
n∏

m=1

∏
1≤i1<···<im≤n

(1− α0αi1 · · ·αimv).

For k = 0, the expression (1.1) clearly corresponds to the local factor of the

spinor zeta function. When k = 1, the expression (1.2) is simply
∑
`≥0

tn1 (p`)v` =[
n∏

m=1

(1− xmv)(1− x−1
m v)

]−1

which (up to an initial “zeta” factor) corresponds to the

local factor of the standard zeta function. Except for k = 0 and k = 1, the Hecke operators,

tnk(p`), give rise to new “zeta” functions which may also be of interest in the context of

Siegel modular forms.

After defining operators of interest in the representation space, we put a natural and

compatible grading on both the local Hecke algebra and on the ring of symmetric poly-

nomials, and show that the Satake isomorphism restricts to one between corresponding

finite-dimensional components. Using the elementary divisor theory of integral matrices, we

show how to determine the entries of this matrix representation restricted to double cosets

of a fixed similitude. The matrix representation is upper-triangular, and can be explicitly

inverted.

By using an explicit inverse in the case of genus 2, we pull back the Hecke operators
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in the polynomial ring to define classical Hecke operators in terms of double cosets whose

generating series have the same product representation. We indicate the recursion relations

required to define all the operators.

An interesting feature is that unlike the elliptic case, not all these operators actually lie

in the integral Hecke algebra. That is, these results suggest that the operators which may

eventually lead to a robust Hecke theory in the Siegel setting may not be direct analogs of

those in the elliptic case, and we may need to recast the elliptic case in a new light to see a

natural generalization.

2 The Satake Isomorphism

The Satake isomorphism is a map between a local Hecke algebra and a ring of symmetric

polynomials. In this section we define the appropriate Hecke algebra, describe the symmetry

group corresponding to Spn, and give a few properties of the Satake map.

2.1 Hecke Algebras and Polynomial Rings

To set the notation, we begin with the global Hecke algebra over Q; most of this is standard

(see e.g., Chapter 3 of [1]). Let I denote the n × n identity matrix and J the 2n × 2n

matrix
(

0 I
−I 0

)
. Let S = GSp+

n (Q) ⊂ GL2n(Q) be the group of of symplectic similitudes with

scalar factor r(α) ∈ Q×
+: defined by GSp+

n (Q) = {α ∈ M2n(Q) | tαJα = r(α)J}, where tα

denotes the transpose of α. The number r(α) will be called the similitude of α. Denote by

Γ = Γn = Spn(Z) ⊂ SL2n(Z) those elements of GSp+
n (Q) having similitude 1.

For computational purposes it is often convenient to realize

GSp+
n (Q) = {α = ( A B

C D ) ∈M2n(Q) | AtC = CtA,BtD = DtB,AtD − CtB = r(α)I2n}

= {α = ( A B
C D ) ∈M2n(Q) | ABt = BtA,CDt = DCt, ADt −BCt = r(α)I2n}.
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Let H = H(Γ, S) denote the rational Hecke algebra associated to the pair Γ and S. As a

vector space H is generated by all double cosets ΓξΓ (ξ ∈ S), and we turn H into an algebra

by defining the multiplication law as follows: Given ξ1, ξ2 ∈ S, define

Γξ1Γ · Γξ2Γ =
∑
ξ

c(ξ)ΓξΓ, (2.1)

where the sum is over all double cosets ΓξΓ ⊆ Γξ1Γξ2Γ, and the c(ξ) are nonnegative integers

(see [9]). There is an alternate characterization of the Hecke algebra which will be convenient

as well. Let L(Γ, S) be the rational vector space with basis consisting of right cosets Γξ for

ξ ∈ S. The Hecke algebra can be thought of as those elements of L(Γ, S) which are right

invariant under the action of Γ. Thus we can and will think of a double coset as the disjoint

union of right cosets ΓξΓ = ∪Γξν and as the sum of the same cosets
∑

Γξν ∈ L(Γ, S).

The global Hecke algebra, H, is generated by local Hecke algebras, Hp, one for each prime

p, obtained as above by replacing S by Sp = S ∩ GL2n(Z[p−1]) in the above construction.

Hp is generated by double cosets ΓξΓ with ξ of the form diag(pa1 , . . . , pan ; pb1 , . . . , pbn) where

a1 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b1 are integers with pai+bi = r(ξ) for all i. It is often

useful to consider the “integral” Hecke algebra Hp generated by all ξ as above with ξ =

diag(pa1 , . . . , pan ; pb1 , . . . , pbn) ∈M2n(Z).

The integral Hecke algebra Hp is generated by the (n+ 1) Hecke operators

T (p) = Γ

In 0

0 pIn

Γ
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and for k = 1, . . . , n,

T n
k (p2) = Tk(p

2) = Γ



In−k 0 0 0

0 pIk 0 0

0 0 p2In−k 0

0 0 0 pIk


Γ,

while the Hecke algebra Hp is generated by the (n + 1) elements above together with the

element Tn(p2)−1 = (pI2n)−1. We also identify T n
0 (p2) = Γ diag(1, . . . , 1; p2, . . . , p2)Γ.

Let Sn denote the symmetric group on n letters, and Wn be the group of Q-

automorphisms of the rational function field Q(x0, . . . , xn) generated by all permutations of

the variables x1, . . . , xn and by the automorphisms τ1, . . . , τn which are given by:

τi(x0) = x0xi, τi(xi) = x−1
i , τi(xj) = xj (0 < j 6= i).

Wn is a signed permutation group, in particular, Wn = 〈τi〉 o Sn
∼= (Z/2Z)n o Sn

∼=

Cn where Cn is Coxeter group associated to the spherical building for Spn(Qp). Finally

let Q[x±1
0 , . . . , x±1

n ]Wn (and analogous polynomial rings), be the set of polynomials in the

variables x±1
i invariant under the action of the group Wn. It is worth noting for our future

use (see [1]) that Q[x±1
0 , . . . , x±1

n ]Wn ∼= Q[x0, . . . , xn]Wn [(x2
0x1 · · ·xn)−1].

The Satake isomorphism (see [1]) establishes the isomorphism Hp
∼= Q[x±1

0 , . . . , x±1
n ]Wn in

such a way that the integral (local) Hecke algebraHp is isomorphic to the integral polynomial

ring Q[x0, . . . , xn]Wn .

2.2 Tools for analyzing the Satake Isomorphism

In [1], Andrianov refers to the Satake isomorphism as the spherical map Ω : Hp →

Q[x0, . . . , xn]Wn and give the following characterization. Let ΓξΓ ∈ Hp. Decompose ΓξΓ
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into right cosets ∪ν
i=1Γαi and define the image of the double coset to be the sum of the

images on right cosets:

Ω (ΓξΓ) = Ω (∪ν
i=1Γαi) =

ν∑
i=1

Ω (Γαi) .

By Lemma 3.2.7 of [1], any right coset in such a decomposition has as unique represen-

tative in the form

Γα = Γ

pr( tM)−1 N

0 M

 where M =

 pa1 ∗ ··· ∗
0 pa2 ··· ∗
...

...
... ∗

0 0 ··· pan

 ,

and they define

Ω(Γα) = xr
0

n∏
i=1

(xip
−i)ai = p−

∑
iaixr

0x
a1
1 · · ·xan

n .

Deriving a matrix representation of the Satake map is achieved through a series of steps.

To understand the image of Ω, we must relate the symplectic elementary divisors of the

double coset ΓξΓ to the GLn elementary divisors of the lower right blocks (M) which make

up its right coset representatives. Even more precisely than stated above, we characterize the

structure of the right coset representatives appearing in the decomposition of a given double

coset. We then introduce a natural and compatible grading on the infinite dimensional Hecke

and polynomial algebras, and derive a matrix representation on corresponding components

which is upper triangular. We conclude by computing some examples.

2.3 Canonical Forms and Matrix Equivalence

Let G = Gn = GLn(Z) and K = Kn = GLn(Q). For A,B ∈ K we write A ∼G B to mean

there are U, V ∈ G so that UAV = B. For rational numbers r, s, write r | s if s = rm for

some m ∈ Z. It is well known from standard elementary divisor theory that we have the

following Smith normal form for matrices in K.
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Proposition 2.1 (Lemma 3.2.2 in [1]). Let A ∈ K. Then there exists a unique matrix

diag(e1, . . . , en) so that ei ∈ Q+, ei+1 | ei and

A ∼G diag(e1, . . . , en).

The matrix described in Proposition 2.1 is called the elementary divisor form of A and

will be denoted ed(A). The proof of this result can be found in [1] among other places; note,

however, that the order we give the ei is opposite to that in [1].

Recall that S = GSp+
n (Q) and Γ = Spn(Z). For α, β ∈ S we write α ∼Γ β to mean there

are matrices γ, δ ∈ Γ so that γαδ = β. Analogous to the elementary divisor form of a matrix

in K, we have the symplectic divisor form sd(α) of a matrix in S (see [1]):

Proposition 2.2 (Lemma 3.3.6 in [1]). Let α ∈ S ∩ M2n(Z) have similitude r(α).

Then there exists a unique matrix diag(d1, . . . , dn; e1, . . . , en) with di, ei ∈ Z+, satisfying

di | di+1, dn | en, ei+1 | ei, diei = r(α), and

α ∼Γ sd(α) = diag(d1, . . . , dn; e1, . . . , en).

Let Tk,n be the set of all k-tuples i = (i1, . . . , ik) with 1 ≤ i1 < i2 < · · · < ik ≤ n. For

t, s ∈ Tk,n let A(t, s) be the minor of the matrix whose rows are determined by the entries

of t and whose columns by s. The following computational tool introduced in [6] is central

to what follows.

Definition 2.3. Let A ∈ K and 1 ≤ k ≤ n. The kth determinantal divisor of A, denoted

dk(A), is the greatest common divisor of the
(

n
k

)2
numbers A(t, s) for t, s ∈ Tk,n. If A(t, s) =

0 for all t, s ∈ Tk,n, then dk(A) = 0.

Proposition 2.4. Let α, β ∈ S. Then the following are equivalent:

i) α ∼Γ β,
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ii) dk(α) = dk(β) for all 1 ≤ k ≤ 2n,

iii) ed(α) = ed(β),

iv) sd(α) = sd(β).

Proof. The implications (i) =⇒ (ii) =⇒ (iii) are established in [6].

(iii) implies (iv): We show that sd(α) (respectively sd(β)) is the same matrix as ed(α)

(respectively ed(β)) up to the same permutation of the entries. Suppose ed(α) = ed(β) =

diag(f1, . . . , fn, fn+1, . . . , f2n) where fi+1 | fi. Also, with the notation of Proposition 2.2, let

sd(α) = diag(d1, . . . , dn; e1, . . . , en) (respectively, sd(β) = diag(d′1, . . . , d
′
n; e′1, . . . , e

′
n)) where

ei+1 | ei, dn | en and di | di+1 (respectively, e′i+1 | e′i, d′n | e′n and d′i | d′i+1). By rearranging and

renaming the entries of sd(α) and sd(β) we get

s̃d(α) = diag(e1, . . . , en, dn, . . . , d1) = (c1, . . . , c2n)

and

s̃d(β) = diag(e′1, . . . , e
′
n, d

′
n, . . . , d

′
1) = (c′1, . . . , c

′
2n).

Note that both ci+1 | ci and c′i+1 | c′i.

Since Γ = Spn(Z) ⊂ G2n = GL2n(Z) we know that ΓαΓ ⊂ G2nαG2n. Since sd(α) ∈ ΓαΓ

and s̃d(α) is merely the product of sd(α) with permutation matrices in G2n we see that

s̃d(α) ∈ G2nαG2n. On the other hand, because ed(α) = ed(β) we know that ed(β) ∈

G2nαG2n and in particular, β ∈ G2nαG2n. This last statement implies sd(β) ∈ G2nαG2n

and by a similar argument as above, s̃d(β) ∈ G2nαG2n.

Since ed(α) is the only matrix of the form prescribed by Proposition 2.1 and both s̃d(α)

and s̃d(β) have the same form, we conclude

ed(α) = s̃d(α) = s̃d(β).
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By the way s̃d(α) and s̃d(β) were constructed, we conclude sd(α) = sd(β).

(iv) implies (i): By Proposition 2.2 we know α ∼Γ sd(α) and β ∼Γ sd(β). Since sd(α) = sd(β)

we have α ∼Γ β.

2.4 Grading the Hecke and Polynomial Algebras

We first establish a natural grading of the local integral Hecke algebra. Recall Sp =

GSp+
n (Q) ∩ GL2n(Z[p−1]), and let Sp(`) = {α ∈ Sp | r(α) = p`, ` ≥ 0}. We call an ele-

ment α ∈ Sp(`) an integral similitude of degree `.

Definition 2.5. Denote by Hp(Γ, Sp(`)) the vector subspace of Hp = Hp(Γ, Sp) generated by

{ΓαΓ : α ∈ Sp(`)}.

It is obvious that Hp(Γ, Sp(`)) is finite dimensional since it is spanned by matrices of

similitude p` in symplectic-divisor form (Proposition 2.2); an explicit basis is given in Propo-

sition 2.20. It is immediate from the definition that the structure of the local Hecke algebra

is given by the following proposition.

Proposition 2.6. Hp =
⊕
`≥0

Hp(Γ, Sp(`)), where the sum is over all non-negative integers `.

Recall that Sn denotes the symmetric group on n letters and viewing this group as a set of

automorphisms of the polynomial ring Q[x1, . . . , xn], we let Q[x1, . . . , xn]Sn denote the stan-

dard ring of symmetric (i.e. Sn-invariant) polynomials. Analogously, we let Q[x0, . . . , xn]Wn

denote the ring of polynomials in (n+1) variables invariant under the action of the group of

automorphisms in Wn (see Section 2.1). We wish to introduce a grading on the polynomial

ring Q[x0, . . . , xn]Wn . We call a polynomial f ∈ Q[x0, . . . , xn]Wn a Wn-invariant polynomial

of similitude r if it can be written as f = xr
0 g for some g ∈ Q[x1, . . . , xn]Sn

Definition 2.7. Let r ≥ 0 be an integer, and let Qr[x0, . . . , xn]Wn denote the subspace of

Q[x0, . . . , xn]Wn spanned by all Wn-invariant polynomials of similitude r.
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Analogous to what we have done with the Hecke algebra, our goal is to show that

Q[x0, . . . , xn]Wn is the direct sum of the Qr[x0, . . . , xn]Wn . We introduce some notation here

which will be used below and in subsequent sections.

Denote elements of Zn by b = (b1, . . . , bn); in particular, put 1 = (1, . . . , 1), and let

≤ denote the lexicographic order on Zn. For b ∈ Zn we write pb to mean the matrix

diag(pb1 , . . . , pbn) and xb the monomial xb1
1 · · ·xbn

n . Define the set

Cn(r) = {b = (b1, . . . , bn) ∈ Zn : r ≥ b1 ≥ · · · ≥ bn ≥ 0} .

We begin generally by characterizing the action of Wn on Q[x±1
0 , . . . , x±1

n ]:

Proposition 2.8. Let a ∈ Cn(r) for r ≥ 0. Under the action of Wn we obtain the following

orbit:

OrbitWn(xr
0x

a) =
{
xr

0x
εσ(1)

σ(1) · · ·x
εσ(n)

σ(n) : σ ∈ Sn, εi = ai or r − ai

}
.

In particular, Wn sends a polynomial with factor xr
0 to another with factor xr

0.

Proof. We see the equality directly: The elements of Sn leave x0 unchanged, and applying

τi to xr
0x

a we get

τi(x
r
0x

a) = xr
0x

r
ix

a1
1 · · ·x−ai

i · · ·xan
n

= xr
0x

a1
1 · · ·xr−ai

i · · ·xan
n .

Since Wn is generated by the τi and σ ∈ Sn we deduce the desired equality.

Now we can state:
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Proposition 2.9. The algebra of Wn-invariant polynomials is the direct sum over nonneg-

ative r of the Wn-invariant polynomials of similitude r; i.e.,

Q[x0, . . . , xn]Wn = ⊕r≥0Qr[x0, . . . , xn]Wn .

Proof. Suppose that f ∈ Q[x0, . . . , xn]Wn . We parse the set of monomials of f according to

the highest power of xr
0 that appears in each monomial. If 0 ≤ i1 < i2 < · · · < ik are the

various powers of x0 that appear in the monomials of f then

f =
k∑

j=1

x
ij
0 fj, fj ∈ Q[x1, . . . , xn].

Let σ be a permutation of the subscripts of x1, . . . , xn and fσ denote the action on f by

σ. Then, since, fσ = f we see that (x
ij
0 fj)

σ = x
ij
0 fj on the one hand and on the other we

see that (x
ij
0 fj)

σ = x
ij
0 f

σ
j . Thus fσ

j = fj and fj ∈ Q[x1, . . . , xn]Sn . From this we conclude

f ∈ ∑r≥0 Qr[x0, . . . , xn]Wn .

By standard linear algebra, we know that monomials in Q[x0, . . . , xn]Wn with different

powers of x0 are linearly independent. Since we are grading Q[x0, . . . , xn]Wn according to

these powers, the theorem is proved.

2.5 Double Cosets of Similitude r

We say a matrix M = (mij) ∈ GLn(Q) is reduced if it is upper triangular and 0 ≤ mij <

mjj for 1 ≤ i < j ≤ n; denote ( tM)−1 by M∗.

The goal of this section is to give a refinement of Lemma 3.3.11 in [1], characterizing a

set of right coset representatives for a given double coset:

Proposition 2.10. For r ≥ 0, let ξ ∈ Sp(r) ∩M2n(Z); then there exists a b ∈ Cn(r) for
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which

ΓξΓ = Γ
(

pr1−b 0

0 pb

)
Γ.

Furthermore, ΓξΓ has a decomposition into right cosets of the form

Γ

prM∗ N

0 M



where

1. M ∈Mn(Z) is of the form  pa1 ∗ ··· ∗
0 pa2 ··· ∗
...

...
... ∗

0 0 ··· pan


and is reduced,

2. prM∗ ∈Mn(Z) is of the form


pr−a1 0 ··· 0
∗ pr−a2 ··· 0

...
...

... 0
∗ ∗ ··· pr−an



3. the possible matrices N in each right coset are completely determined by the matrices

M in the decomposition,

4. for some σ ∈ Sn, a = (aσ(1), . . . , aσ(n)) ∈ Cn(r) is such that a ≤ b in the lexicographic

order on Cn(r).

Proof. Let ∆ = Sp(r) ∩M2n(Z). By Proposition 2.2 we know that each matrix ξ ∈ ∆ has a

symplectic divisor form sd(ξ). Moreover, since ξ ∈ ∆, evidently sd(ξ) ∈ ∆ and, in particular,

is integral and has similitude pr. Suppose sd(ξ) = diag(pd1 , . . . , pdn ; pb1 , . . . , pbn). Then, since

sd(ξ) is integral bi, di ≥ 0. Furthermore, since sd(ξ) has similitude pr, we know di = r − bi.

Finally, by the definition of sd(ξ) we know that b1 ≥ · · · ≥ bn ≥ r − bn ≥ · · · ≥ r − b1 ≥ 0

and hence b = (b1, . . . , bn) ∈ Cn(r).
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Suppose Γα is a right coset that appears in the decomposition of the double coset Γsd(ξ)Γ.

By Lemma 3.3.11 in [1], we know that there exists γ ∈ Γ so that γα =
(

prM∗ N
0 M

)
for M and

prM∗ as described in the statement of the theorem. This proves the first two assertions of

the theorem. The third statement follows from Lemma 3.3.33 in [1].

Before we prove the final statement, note that by the way we constructed b above, we

have b1 ≥ · · · ≥ bn ≥ r − bn ≥ · · · ≥ r − b1 ≥ 0 and that d = (r − bn, . . . , r − b1) ∈ Cn(r).

Thus d is minimal in the following sense: if c = (c1, . . . , cn) ∈ Cn(r) so that for each i, ci = bj

or ci = r − bj for some j, then d ≤ c.

Note that since ξ is integral, ΓξΓ = Γsd(ξ)Γ = ∪ν
i=1Γαi where all the αi are integral

matrices as well. Let Γα be a right coset in the decomposition of ΓξΓ; then we may assume

α =
(

prM∗ N
0 M

)
where M =

 pa1 ∗ ··· ∗
0 pa2 ··· ∗
...

...
... ∗

0 0 ··· pan

 is reduced. Since α is integral, so are M and

prM∗ (in particular pai and pr−ai are integers). Thus 0 ≤ ai ≤ r. Choose σ ∈ Sn so that

aσ(1) ≥ · · · ≥ aσ(n) ≥ 0. Thus a := (aσ(1), . . . , aσ(n)) ∈ Cn(r). All that remains to be shown

is that a ≤ b.

We know that

α =
(

prM∗ N
0 M

)
∼Γ

(
pr1−b 0

0 pb

)
= sd(ξ)

and, in particular, by Theorem 2.4 they have the same determinantal divisors.

For each 1 ≤ k ≤ n, the kth determinantal divisor of sd(ξ) is given by

dk(sd(ξ)) = p
∑k

1
r−bi

since d = (r − bn, . . . , r − b1) is minimal in the sense described above. We also know

dk(α) = dk(sd(ξ)) which divides p
∑k

1
r−aσ(i)

since p
∑k

1
r−aσ(i) is the determinant of a particular k × k submatrix of α. From this we
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conclude that for each 1 ≤ k ≤ n,
k∑

i=1

r − bi ≤
k∑

i=1

r − aσ(i), or equivalently,
k∑

i=1

aσ(i) ≤
k∑

i=1

bi.

In particular, aσ(1) ≤ b1. If aσ(1) < b1 we immediately conclude a ≤ b; otherwise

aσ(1) = b1. By equation (2.5) we know aσ(1) + aσ(2) ≤ b1 + b2 = aσ(1) + b2 and thus aσ(2) ≤ b2.

Continuing in this way we see that a ≤ b.

The following corollary explicitly connects the elementary divisor theory of GLn(Z) as

used in [8] with the symplectic divisor theory we are developing here:

Corollary 2.11. Suppose for b ∈ Cn(r) and for

M =

 pa1 ∗ ··· ∗
0 pa2 ··· ∗
...

...
... ∗

0 0 ··· pan

 ∈Mn(Z),

the coset Γ
(

prM∗ N
0 M

)
appears in the decomposition of the double coset Γ

(
pr1−b 0

0 pb

)
Γ. If we

write pe = diag(pe1 , . . . , pen) to denote the elementary divisor form of M , then e ∈ Cn(r)

and there exists a σ ∈ Sn for which (aσ(1), . . . , aσ(n)) := a ≤ e ≤ b.

Proof. The proof of the corollary follows the proof of Proposition 2.10.

2.6 The Matrix Representation of the Satake map, Ω

In this section, we give natural bases for Hp(Γ, Sp(r)) and Qr[x0, . . . , xn]Wn and explicitly

compute the matrix of Ω with respect to these bases. We begin by showing how to write the

image of a double coset under Ω as a power of x0 times the sum of Sn-invariant polynomials

Recall that the Satake map Ω : Hp → Q[x0, . . . , xn]Wn is defined on right cosets [1]: if

Γα = Γ

prM∗ N

0 M

 where M =

 pa1 ∗ ··· ∗
0 pa2 ··· ∗
...

...
... ∗

0 0 ··· pan

 ,
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then

Ω(Γα) = xr
0

n∏
i=1

(xip
−i)ai = p−

∑
iaixr

0x
a1
1 · · ·xan

n .

To find the image of a given double coset ΓξΓ, we decompose ΓξΓ into right cosets Γαi

and define the image of the union to be the sum of the images: Ω (ΓξΓ) = Ω (∪ν
i=1Γαi) =∑ν

i=1 Ω (Γαi) .

Notation 2.12. To make the bookkeeping a bit easier, we introduce the following notation.

For r ∈ Z, r ≥ 0, and a,b, e ∈ Cn(r),

• Let M(a, e, r) be the set of matrices M ∈Mn(Z) where M is reduced, prM∗ ∈Mn(Z),

ed(M) = pe and the diagonal entries of M are pa1 , . . . , pan.

Also let, M = Mb(a, e, r) be the subset of M(a, e, r) for which there exists an

N ∈ Mn(Z) so that the right coset Γ
(

prM∗ N
0 M

)
appears in the decomposition of

Γ
(

pr1−b 0

0 pb

)
Γ. We denote the cardinality of M by #M = #Mb(a, e, r).

• For M ∈M we denote by N (M) the set of N ∈Mn(Z) for which tNM is symmetric.

Also, by N = Nb(M) we denote the set of N ∈ N (M) for which Γ
(

prM∗ N
0 M

)
appears

in the decomposition of the double coset Γ
(

pr1−b 0

0 pb

)
Γ. We denote the cardinality of

Nb(M) by #Nb(M).

We now prove the following technical lemma:

Lemma 2.13. Let M ∈Mb(a, e, r). The cardinality #Nb(M) is completely determined by

the elementary divisor form pe of M , and the n-tuples b and a. Hence we call this number

#Nb(a, e, r).

Proof. Let M ∈M = Mb(a, e, r). We show that #Nb(M) = #Nb(pe).

Note that for U ∈ G = GLn(Z), ( U∗ 0
0 U ) ∈ Γ = Spn(Z). Let M = UpeV for some



18 Nathan C. Ryan and Thomas R. Shemanske

U, V ∈ G. Then since

( U∗ 0
0 U )

(
prM∗ N

0 M

)
( V ∗ 0

0 V ) =
(

pr1−e U∗NV
0 pe

)

we have that (
prM∗ N

0 M

)
∼Γ

(
pr1−e U∗NV

0 pe

)
.

We define φ : N (M) → N (pe) by the rule φ(N) = tUNV −1 and show that φ is a bijection.

First, we show that φ(N) ∈ N (pe). To show this we show t( tUNV −1)pe = pe( tUNV −1):

Since N ∈ N (M), we have tNM = tMN . So, multiplying both sides of the equation by

the same matrices we get V ∗( tNM)V −1 = V ∗( tMN)V −1. Noting that U∗ tU = In and

UU−1 = In we get V ∗ tN(UU−1)MV −1 = V ∗ tM(U∗ tU)NV −1. Because U−1MV −1 = pe we

have (V ∗ tNU)pe = tpe( tUNV −1) whence t( tUNV −1)pe = pe( tUNV −1).

Second, φ is an injection for if φ(N) = φ(N ′) then tUNV −1 = tUN ′V −1 which obviously

implies that N = N ′ since U and V are invertible.

Third, we show that φ is a surjection. Let R ∈ N (pe). then we show U∗RV ∈ N (M):

Since R ∈ N (pe), tRpe = tpeR. Multiplying both sides of the equations by the same matrices

gives us tV tRpeV = tV peRV . As U−1U = In and tUU∗ = In we have tV tR(U−1U)peV =

tV pe( tUU∗)RV . Since M = UpeV we get tV tRU−1M = tMU∗RV . By properties of

the transpose we rewrite the last equation as t(U∗RV )M = tM(U∗RV ) and deduce that

U∗RV ∈ N (M). Since φ (U∗RV ) = R we conclude that φ is a surjection and hence, because

of what was shown above, φ is a bijection.

Since (
prM∗ N

0 M

)
∼Γ

(
pr1−e U∗NV

0 pe

)
they have the same symplectic divisor form by Proposition 2.4. Hence the number of(

prM∗ N
0 M

)
and of

(
pr1−e U∗NV

0 pe

)
that have a particular symplectic divisor form, say

(
pr1−b 0

0 pb

)
,
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are the same. Note that {(
pr1−e U∗NV

0 pe

)}
N∈N (M)

and {(
pr1−e N ′

0 pe

)}
N ′∈N (pe)

are equal as sets; in particular by Lemma 3.3.33 of [1], the upper right hand block of the

matrices in these sets belong to:

{
(bij) ∈Mn(Z) : bij < ej(for 1 ≤ i ≤ j ≤ n) and bji = ee−1

j (for 1 ≤ i < j ≤ n)
}

(2.2)

where e1, . . . , en are the elementary divisors of M .

Because the map φ is a bijection, we have

Nb(M) = φ−1 ({U∗NV : U∗NV ∈ Nb(pe)})

and hence #Nb(M) = #Nb(pe).

We have previously described the actions of Sn andWn on polynomials. For a polynomial

f , denote by StabSn(f) or StabWn(f) the appropriate stabilizer subgroup. We make the

following definition:

Definition 2.14. The symmetrized polynomial of f ∈ Q[x1, . . . , xn] with respect to Sn,

SymSn
(f), is defined to be

SymSn
(f) =

∑
σ∈Sn/ StabSn (f)

σ(f).

By convention, if f is constant, we let SymSn
(f) = f .

The symmetrized polynomial of g ∈ Q[x0, . . . , xn] with respect to Wn, SymWn
(g), is defined
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to be

SymWn
(g) =

∑
σ∈Wn/ StabWn (g)

σ(g).

By convention, if g is constant, we let SymWn
(g) = g.

Recall that for a = (a1, . . . , an) ∈ Zn we denote xa1
1 · · ·xan

n by xa. Using Lemma 2.13 and

the preceding definition, we compute the image of the Satake map on a double coset.

Proposition 2.15. Let r ≥ 0 and b ∈ Cn(r). Then the image of the double coset

Γ
(

pr1−b 0

0 pb

)
Γ under the Satake map Ω has the form

Ω
(
Γ
(

pr1−b 0

0 pb

)
Γ
)

= xr
0

∑
a≤b

c(a) SymSn
(xa)

for explicitly computable constants c(a) where a ∈ Cn(r).

Proof. We know that the image of Γ
(

pr1−b 0

0 pb

)
Γ under Ω is invariant under the action of Wn,

and in particular, by Proposition 2.10 we know that every right coset in the decomposition

has similitude pr. Thus, by Definition 2.7 and Lemma 2.9,

Ω
(
Γ
(

pr1−b 0

0 pb

)
Γ
)

= xr
0g(x1, . . . , xn) (2.3)

where g ∈ Q[x1, . . . , xn]Sn , the ring of polynomials invariant under the action of Sn. So, if

c((a1, . . . , an))xa1
1 · · ·xan

n := c(a)xa is a summand of g, then for every σ ∈ Sn the monomial

c(a)x
aσ(1)

1 · · ·xaσ(n)
n is also a summand of g. By Proposition 2.10, it follows that to understand

the image of Ω, we can limit our attention to those representatives Γα = Γ
(

prM∗ N
0 M

)
as

described above for which the diagonal entries are pa (1 ≤ i ≤ n) for a = (a1, . . . , an) ∈ Cn(r).

Thus for each a ∈ Cn(r), a ≤ b, we find the coefficient c(a) of xa, symmetrize the polynomial

and multiply the new Sn-invariant polynomial by the coefficient c(a) and the factor xr
0 to

arrive at the image.
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In (2.3), a summand xa in g, comes from the right cosets of the form Γα = Γ
(

prM∗ N
0 M

)
where M =

 pa1 ∗ ··· ∗
0 pa2 ··· ∗
...

...
... ∗

0 0 ··· pan

. We parse this collection of right cosets according to the

elementary divisor form of M . The number of representatives with elementary divisor form

pe is given by #Mb(a, e, r). By Lemma 2.13, we see that for each M ∈ M there are

#Nb(a, e, r) corresponding N . So by Corollary 2.11, the total number of representatives for

each a ≤ b is ∑
a≤e≤b

#Mb(a, e, r) ·#Nb(a, e, r).

So, c(a), the coefficient of xa in g and hence in the Ω-image of Γ
(

pr1−b 0

0 pb

)
Γ is

c(a) = p−
∑

iai

 ∑
a≤e≤b

#Mb(a, e, r) ·#Nb(a, e, r)

 . (2.4)

As mentioned above, the coefficient of xa must be the same as the coefficient of xaσ where

aσ = (aσ(1), . . . , aσ(n)) for σ−1 ∈ Sn/ StabSn(xa). Then, since by Proposition 2.10 all such a

satisfy a ≤ b, we get

Ω
(
Γ
(

pr1−b 0

0 pb

)
Γ
)

= xr
0

∑
a≤b

c(a)
∑

σ−1∈Sn/ StabSn (xa)

xaσ

= xr
0

∑
a≤b

c(a) SymSn
(xa).

Remark 2.16. We also comment that for r = 2 and any genus, [5] tells how to compute the

coefficients in (2.4) explicitly; our computations agree with those in [5] modulo the weighting

factor of the |k operator.

By Ωr we denote the restriction of Ω to Hp(Γ, Sp(r)). We have just established that the

codomain of Ωr is the set Qr[x0, . . . , xn]Wn . Our goal is to show that the matrix representation

of Ωr (r ∈ Z, r ≥ 0) is upper-triangular and square.
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A natural basis for Hp(Γ, Sp(r)) consists of the distinct symplectic divisor forms (Propo-

sition 2.2) of integral matrices of similitude pr. That is, the basis consist of double cosets

Γ
(

pr1−b 0

0 pb

)
Γ for b running over the set

D = {(b1, . . . , bn) ∈ Zn | r ≥ b1 ≥ · · · ≥ bn ≥ r − bn ≥ · · · ≥ r − b1 ≥ 0} .

More succinctly,

D = {(b1, . . . , bn) ∈ Cn(r) | bn ≥ r − bn} .

We shall show that there is a basis for Qr[x0, . . . , xn]Wn naturally indexed by the same set

D, which in particular will show that the matrix [Ωr] is square.

Definition 2.17. We put an equivalence relation on Cn(r) as follows. Let a,b ∈ Cn(r).

Write a ∼= b if xr
0x

a ∈ OrbitWn

(
xr

0x
b
)
. Denote by P the set of equivalence classes in Cn(r).

Lemma 2.18. P and D have the same cardinality.

Proof. Let b denote the class of b in P . We define the map ψ : P → D so that ψ
(
b
)

is

the maximal element in b with respect to the lexicographic order ≤. We show that ψ is an

injection. We also define the map φ : D → P given by the rule that φ(b) = b and show that

it is an injection. As the two sets are finite, the result will follow.

First, we note that the set Cn(r) is totally ordered by ≤ and thus each b has a unique

maximal element denoted b0, so ψ is well-defined. Second, we show that ψ takes values in

D. If ψ
(
b
)

= b0, where b0 = (b1, . . . , bn) is the maximal element of b, then by definition,

b0 ∈ Cn(r) and we need only show that bn ≥ r − bn. Suppose bn < r − bn. Then b′ =

(b1, . . . , bn−1, r − bn) > b0 = (b1, . . . , bn−1, bn). But b0
∼= b′ by Proposition 2.8, which

contradicts the choice of b0 as the maximal element of b.

Third, we show that ψ is injective. Suppose that ψ(b) = ψ (c). Then both b and c have

the same maximal element. Since ∼= is an equivalence relation and b and c have an element

in common, we conclude b = c.
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Now, we treat the map φ. Note that b = (b1, . . . , bn) ∈ D implies b1 ≥ · · · ≥ bn ≥ r/2.

As the proof of the injectivity of φ is slightly more subtle when there is an r
2

among the bi, we

assume, without loss of generality, that b has the form (b1, . . . , bk,
r
2
, . . . , r

2
) where 1 ≤ k ≤ n

and bk > r/2; so if k = n there are no r
2

entries in b. Suppose that φ(b) = φ(c); then b and

c are in the same equivalence class, so c = (c1, . . . , ck,
r
2
, . . . , r

2
) since the action of Wn leaves

the r
2

entries unchanged. There are three cases: b = c, c < b or b < c. Suppose c < b.

Then, since c and b are in the same Wn-equivalence class, we know by Proposition 2.8 that

for some 1 ≤ j ≤ k, cj = r− bi for some 1 ≤ i ≤ k. But, since, cj = r− bi < r
2

we get c 6∈ D.

By symmetry, b < c leads to a contradiction. Thus, b = c.

Since φ and ψ are both injections and the sets P and D are finite, they have the same

cardinality.

Using the map ψ from Lemma 2.18, we can in fact sharpen the relationship between D

and P .

Proposition 2.19. Let P ′ denote the set of maximum representatives of the equivalence

classes in P. With notation as above, D = P ′.

Proof. Let b0 ∈ P ′. With ψ as defined in the proof of Lemma 2.18 we note that ψ
(
b0

)
∈ D.

But, by the definition of P ′, we see that ψ
(
b0

)
= b0 ∈ D. Thus P ′ ⊆ D. By Lemma 2.18

P and D have the same finite cardinality; in particular, P ′ and D have the same finite

cardinality. Thus P ′ = D.

It is now clear from the above discussion that there are bases of Hp(Γ, Sp(r)) and

Qr[x0, . . . , xn]Wn which can be naturally indexed by the same set, and hence the spaces

they span have the same dimension. More precisely:

Proposition 2.20. Let r ≥ 0 be an integer. The sets

B1 =
{
Γ
(

pr1−b 0

0 pb

)
Γ : b ∈ D

}
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and

B2 =
{
SymWn

(
xr

0x
b
)

: b ∈ D
}

are bases for Hp(Γ, Sp(r)) and Qr[x0, . . . , xn]Wn respectively.

Now we can assemble the previous results to prove our main theorem concerning the

Satake map.

Theorem 2.21. The matrix representing the linear transformation Ωr : Hp(Γ, Sp(r)) →

Qr[x0, . . . , xn]Wn is square and upper triangular with respect to the bases B1 and B2, each

ordered in ascending order with respect to the lexicographic order ≤. In particular, for b ∈ D,

Ω
(
Γ
(

pr1−b 0

0 pb

)
Γ
)

=
∑

a∈D,a≤b

c(a) SymWn
(xr

0x
a)

where the constants c(a) are determined by equation (2.4) in the proof of Proposition 2.15.

Moreover, the diagonal entries are nonzero.

Proof. By Proposition 2.20, Hp(Γ, Sp(r)) and Qr[x0, . . . , xn]Wn have the same dimension and

thus the matrix representation of Ωr is square. Since the bases of both the domain and co-

domain can be indexed by the same set D, the sum is over D and by Proposition 2.15 we know

that we need only look at a ≤ b. The fact that a ≤ b forces [Ωr] to be upper triangular.

The diagonal entries are nonzero since the right coset Γ
(

pr1−b 0

0 pb

)
always appears in the

decomposition of Γ
(

pr1−b 0

0 pb

)
Γ.

2.7 Examples

In this section we compute the matrix representation of Ω1 for any genus and the matrix

representation of Ω2 for genus 2. Once again, we note that while this particular computation

could be done via [5], the computation here gives a good indications of our methods which

generalize in a straightforward manner to higher genera/similitudes. After computing the
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associated matrices, we invert them which will be put to use in defining arithmetically

distinguished Hecke operators in the last section of the paper.

2.7.1 [Genus n, Similitude p]:

By definition, Hp(Γ, Sp(1)) is the span of all Γ
(

p1−b 0

0 pb

)
Γ. There is only one such double

coset and it is the generator T (p). Thus the matrix representation of Ω1 is a 1 × 1 matrix.

We note that

Cn(1) = {(1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0)︸ ︷︷ ︸
n−i

: 0 ≤ i ≤ n}

and that all these are equivalent mod ∼= (see Definition 2.17). Let 0 := (0, . . . , 0︸ ︷︷ ︸
n

). We

compute c(0) as 0 is the easiest member of 1 with which to compute. It is easiest because

according to Proposition 2.10 the right coset decomposition Γ
(

pM∗ N
0 M

)
is such that M is

reduced. When we limit our attention to 0, the diagonal entries of M are all 1. Thus, the

only M we need consider is M = In. By equation (2.2) the only N that corresponds to

M = In is the zero matrix. The right coset in the decomposition of

Γ
(

p1−b 0

0 pb

)
Γ

whose lower right hand block has ones along the diagonal is Γ
(

pIn 0
0 In

)
:= Γα and thus

dk(α) = 1 for all 1 ≤ k ≤ n. By Proposition 2.4, then, α ∈ Γ
(

p1−b 0

0 pb

)
Γ. The weighting

factor p−
∑

iai in the definition of Ω in this case is 1. So, by Theorem 2.21

Ω
(
Γ
(

p1−b 0

0 pb

)
Γ
)

= x1
0 SymWn

(x1 · · ·xn)

and thus [Ω1] = (1).
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2.7.2 [Genus 2, Similitude p2]

Now we look at Ω2 for n = 2, but note that the methods below can be used for arbitrary n

and r.

We start by finding C2(2) = {(2, 2), (2, 1), (2, 0), (1, 1), (1, 0), (0, 0)}. Next, we partition

C2(2) according to the equivalence relation ∼= as described in the previous section (Definition

2.17). According to Proposition 2.8 the equivalence classes are

(2, 2) = {(0, 0), (2, 0), (2, 2)}

(2, 1) = {(1, 0), (2, 1)}

(1, 1) = {(1, 1)} .

In other words, with notation from Proposition 2.19, P ′ = {(1, 1), (2, 1), (2, 2)}.

For r = 2 and n = 2 there are three double cosets that span Hp(Γ, Sp(2)):

Γ

( p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

)
Γ, Γ

( 1 0 0 0
0 p 0 0
0 0 p2 0
0 0 0 p

)
Γ and Γ

( 1 0 0 0
0 1 0 0
0 0 p2 0
0 0 0 p2

)
Γ.

Now, for each a ∈ D = P ′, we compute how many associated right coset representatives

appear in each double coset. By Proposition 2.10 the right cosets are of the form

(
p2M∗ N

0 M

)
where M =

(
pa1 m12

0 pa2

)

and a = (a1, a2) ≤ b where pb is the lower right hand block of the double coset to which

the matrix in question belongs.

Case 1: Let a = (2, 2). Since the image of Ω2 is a W2-invariant polynomial, we know

that c((0, 0)) = c((2, 2)). Computing c((0, 0)) is easier. By Proposition 2.10 we know the
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right coset representative associated to (0, 0) is

(
p2M∗ N

0 M

)
where M = ( 1 0

0 1 ) .

By equation (2.2) we know N = ( 0 0
0 0 ). Since the first and second determinantal divisors of

this representative are both 1, we know this belongs to the double coset Γ

( 1 0 0 0
0 1 0 0
0 0 p2 0
0 0 0 p2

)
Γ.

Case 2: Let a = (2, 1). Here it is easier to compute c((1, 0)) instead of c((2, 1)). By

Proposition 2.10, the right coset representatives associated to (1, 0) are

(
p2M∗ N

0 M

)
where M =

(
p 0
0 1

)
.

By equation (2.2) we know N = ( a 0
0 0 ) where 0 ≤ a < p. Note that the first determinantal

divisor of this representative is d1 = 1 and the second is the d2 = gcd(a, p). There are two

cases:

• a = 0: in this case the representative belongs to the double coset Γ

( 1 0 0 0
0 p 0 0
0 0 p2 0
0 0 0 p

)
Γ. This

happens once.

• a 6= 0: in this case d1 = 1 and d2 = 1 so the representative belongs to the double coset

Γ

( 1 0 0 0
0 1 0 0
0 0 p2 0
0 0 0 p2

)
Γ. This happens p− 1 times.

Case 3: Finally suppose a = (1, 1). By Proposition 2.10, the right coset representative

associated to (1, 1) is (
p2M∗ N

0 M

)
where M =

(
p a
0 p

)
for 0 ≤ a < p. There are two cases: a = 0 or otherwise.

• a = 0: in this case, by equation (2.2), we have N = ( b c
c d ) where 0 ≤ b, c, d < p. In this

case the first determinantal divisor d1 = gcd(b, c, d, p) and the second determinantal
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divisor d2 = gcd(pb, pc, pd, bd− c2, p2). When b, c, d = 0 the right coset representative

belongs to Γ

( p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

)
Γ. This happens once.

When either b 6= 0, c, d = 0; b, c = 0, d 6= 0; or b, c, d 6= 0, bd− c2 ≡ 0 mod p the right

coset belongs to Γ

( 1 0 0 0
0 p 0 0
0 0 p2 0
0 0 0 p

)
Γ. This happens p2 − 1 times.

Otherwise the right coset belongs to Γ

( 1 0 0 0
0 1 0 0
0 0 p2 0
0 0 0 p2

)
Γ and this happens p3 − p2 times.

• a 6= 0: by equation (2.2) we know that N is independent of the elementary divisor

form of M and by Lemma 2.13 we know that the number of right cosets that belong

to each double coset is determined by ed(M). When a 6= 0 we have ed(M) =
(

p2 0
0 1

)
and that N = ( b 0

0 0 ) where 0 ≤ b < p2. For all such b we have that d1 and d2 are both

1. Hence we conclude that all these representatives are in Γ

( 1 0 0 0
0 1 0 0
0 0 p2 0
0 0 0 p2

)
Γ. Since a is

nonzero p− 1 times, there are p2(p− 1) such representatives.

Thus by Theorem 2.21

Ω2(T
2
2 (p2)) = Ω2

(
Γ

( p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

)
Γ

)
=

∑
a∈D,a≤(1,1)

c(a) SymW2
(x2

0x
a)

=
1

p3
x2

0x1x2.

Similarly by Theorem 2.21,

Ω2(T
2
1 (p2)) = Ω2

(
Γ

( 1 0 0 0
0 p 0 0
0 0 p2 0
0 0 0 p

)
Γ

)
=

∑
a∈D,a≤(2,1)

c(a) SymW2
(x2

0x
a)

=
p2 − 1

p3
x2

0x1x2 +
1

p
SymW2

(x2
0x

(2,1)).
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Finally, also by Theorem 2.21,

Ω2(T
2
0 (p2)) = Ω2

(
Γ

( 1 0 0 0
0 1 0 0
0 0 p2 0
0 0 0 p2

)
Γ

)

=
∑

a∈D,a≤(2,2)

c(a) SymW2
(x2

0x
a)

=
2p− 2

p
x2

0x1x2 +
p− 1

p
SymW2

(x2
0x

(2,1)) + SymW2
(x2

0x
(2,2)).

From these equations we deduce that for n = 2 the matrix representation for Ω2 is

[Ω2] =


1
p3

p2−1
p3

2p−2
p

0 1
p

p−1
p

0 0 1

 ,

and for later use we point out that

[Ω2]
−1 =


p3 −p(p2 − 1) −(p− 1)(p2 + 1)

0 p 1− p

0 0 1

 .

3 Symmetric polynomials and Hecke Operators

Our goal in this section is to define (n+ 1) families of Hecke operators, tnk(p`), (analogous to

the T n
k (p2), T (p)) which are arithmetically interesting.

A large part of the arithmetic interest arises by examining the generating functions∑
` t

n
k(p`)v`. The series have sums which are highly structured rational functions. In particu-

lar, in two of the (n+1) cases, tn0 (p`) and tn1 (p`), the associated rational functions correspond

to the spinor and standard zeta functions. In the other cases, they are new expressions.

As we have suggested, we shall make the definitions of the new operators, not in the
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Hecke algebra (defined by double cosets), but in its (isomorphic) representation space, the

ring of Wn-invariant polynomials. Doing so will produce zeta functions in which the variables

x0, . . . , xn correspond (via the Satake correspondence) to the Satake p-parameters associated

to a generic Hecke eigenform.

To define our Hecke operators in the context of this polynomial ring we need a definition

and simple proposition: For a nonnegative integer `, define hr(`) =
∑∑
jk=`

jk≥0

zj1
1 z

j2
2 · · · zjr

r . Note

that hr(`) is a symmetric polynomial in the r variables z1, . . . , zr, and in particular, hr(0) = 1

and hr(1) = z1 + · · ·+ zr.

Proposition 3.1. The generating series associated to the hr(`) satisfies

∑
`≥0

hr(`)u` = [(1− uz1) · · · (1− uzr)]
−1

Proof. This is essentially obvious:

[(1− uz1) · · · (1− uzr)]
−1 =

∑
a1≥0

(uz1)
a1

 · · ·
∑

ar≥0

(uzr)
ar


=
∑
`≥0

u` ·
[ ∑∑

ai=`
ai≥0

za1
1 · · · zar

r

]

It is clear from the definitions above that the coefficient of u` in the given expression is

hr(`).

Next we need to use the above polynomial to create a Wn-invariant polynomial. The

simplest examples are simply to fix a monomial and to sum its images under the action of

Wn. The following is a special case of Proposition 2.8.

Lemma 3.2. Under the action of Wn, we obtain the following orbits:
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1. OrbitWn(x0) = {x0x
ε1
1 · · ·xεn

n | εi = 0, 1}.

2. OrbitWn(x1 · · ·xk) = {xδi1
i1 · · ·x

δik
ik
| 1 ≤ i1 ≤ · · · ≤ ik ≤ n, δij = ±1}.

In particular, the orbits have size 2n and 2k
(

n
k

)
respectively.

Having determined these orbits, the following definitions become less mysterious. We

start with hr(`) where r is the size of one of the above orbits and substitute for the variables

zi the elements in the orbit. Thus we define the families of Hecke operators:

tn0 (p`) = h2n

(`)
∣∣∣∣ zi 7→σi(x0)
σi∈Wn/ Stab(x0)

.

and for 1 ≤ k ≤ n,

tnk(p`) = h2k(n
k)(`)

∣∣∣∣ zi 7→σi(x1···xk)
σi∈Wn/ Stab(x1···xk)

.

In particular,

tn0 (p) =
∑

εi=0,1

x0x
ε1
1 · · ·xεn

n . (2n summands)

and

tnk(p) =
∑

1≤i1<···<ik≤n
δij

=±1

x
δi1
i1 · · ·x

δik
ik
. (2k

(
n

k

)
summands)

We now examine their generating series.

Theorem 3.3. The operators tk(p
`) have generating series which are rational functions of

the form:

∑
`≥0

tn0 (p`)v` =

(1− x0v)
n∏

m=1

∏
1≤i1<···<im≤n

(1− x0xi1 · · ·ximv)

−1

,
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and for 1 ≤ k ≤ n,

∑
`≥0

tnk(p`)v` =

 ∏
1≤i1<···<ik≤n, δij

=±1

(1− x
δi1
i1 · · ·x

δik
ik
v)


−1

.

Proof. The proof is immediate from Proposition 3.1 and the computation of orbits in

Lemma 3.2.

Remark 3.4. 1. For k = 0, the expression clearly corresponds to the local factor of the

spinor zeta function: ZF,p(v) = (1− α0v)
n∏

m=1

∏
1≤i1<···<im≤n

(1− α0αi1 · · ·αimv). When

k = 1, the expression is simply
∑
`≥0

tn1 (p`)v` =

[
n∏

m=1

(1− xmv)(1− x−1
m v)

]−1

which (up

to an initial “zeta” factor) corresponds to the local factor of the standard zeta function:

DF,p(v) = (1− v)
n∏

m=1

(1− αmv)(1− α−1
m v).

2. Except for k = 0 and k = 1, the Hecke operators, tnk(p`), give rise to new “zeta”

functions which may be of interest in the context of Siegel modular forms.

3. Finally, we note that for the case of n = 2, Andrianov [1] defines a family of Hecke

operators T 2(p`) whose images under the Satake map Ω (from Hp to Q[x±1
0 , x±1

1 , x±1
2 ]W2)

satisfy

∑
`≥0

Ω(T 2(p`))v` =
(1− p−1x2

0x1x2v
2)

(1− x0v)(1− x0x1v)(1− x0x2v)(1− x0x1x2v)
,

The operators t20(p
`) have a generating function whose sum has the same denominator

as Ω(T 2(p`)), but with numerator 1.

4 New Hecke Operators in Genus 2

Since the generating series
∑

`≥0 t
n
k(p`)v` has the form qn

k (v)−1 for a polynomial qn
k (v), the

relation qn
k (v) ·∑`≥0 t

n
k(p`)v` = 1 prescribes recursion relations to the operators tnk(p`). Given
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these relations and the requisite base cases, one can define classical Hecke operators in terms

of double cosets which will have exactly the same generating series by inverting the Satake

isomorphism. We do this below. For analogous operators on GLn, this has been done in [8].

4.1 Recursion Relations

Since we are restricting to the case n = 2, we lighten the notational load a bit by writing tk

instead of t2k and writing qk instead of q2
k. We also note that in the case of n = 2 we have

the happy coincidence that the degree (in v) of qk(v) is 4, independent of the value of k, so

we write

qk(v) =
4∑

j=0

(−1)jϕ
(k)
j vj; ϕ

(k)
0 = 1 for all k.

If we take tk(p
m) = 0 for m < 0 (note tk(1) = 1), then the relation qk(v) ·

∑
`≥0 tk(p

`)v` = 1

yields for all ` ≥ 1:

tk(p
`) = ϕ

(k)
1 tk(p

`−1)− ϕ
(k)
2 tk(p

`−2) + ϕ
(k)
3 tk(p

`−3)− ϕ
(k)
4 tk(p

`−4),

where

ϕ
(k)
1 = tk(p)

ϕ
(k)
2 = ϕ

(k)
1 tk(p)− tk(p

2)

ϕ
(k)
3 = ϕ

(k)
2 tk(p)− ϕ

(k)
1 tk(p

2) + t(p3)

ϕ
(k)
4 = ϕ

(k)
3 tk(p)− ϕ

(k)
2 tk(p

2) + ϕ
(k)
1 t(p3)− tk(p

4)
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From Theorem 3.3, we deduce:

q0(v) = (1− x0v)(1− x0x1v)(1− x0x2v)(1− x0x1x2v)

q1(v) = (1− x1v)(1− x−1
1 v)(1− x2v)(1− x−1

2 v)

q2(v) = (1− x1x2v)(1− x1x
−1
2 v)(1− x−1

1 x2v)(1− x−1
1 x−1

2 v)

from which we can compute the ϕ
(k)
j ’s explicitly. Writing Sym for SymW2

we have:

ϕ
(0)
1 = x0(x1 + 1)(x2 + 1) = Sym(x0x1x2)

ϕ
(0)
2 = x2

0(x1x2 + 1)(x1 + x2) + 2x2
0x1x2 = Sym(x2

0x
2
1x2) + 2 Sym(x2

0x1x2)

ϕ
(0)
3 = x2

0x1x2(x0(x1 + 1)(x2 + 1)) = Sym(x2
0x1x2) Sym(x0x1x2)

ϕ
(0)
4 = (x2

0x1x2)
2 = Sym(x2

0x1x2)
2

ϕ
(1)
1 = x1 + x−1

1 + x2 + x−1
2 = Sym(x2

0x1x2)
−1 Sym(x2

0x
2
1x2)

ϕ
(1)
2 = 2 + x1x2 + x1x

−1
2 + x−1

x x2 + x−1
1 x−1

2 = Sym(x2
0x1x2)

−1(2 Sym(x2
0x1x2) + Sym(x2

0x
2
1x2))

ϕ
(1)
3 = ϕ

(1)
1

ϕ
(1)
4 = 1

ϕ
(2)
1 = x1 + x−1

1 + x2 + x−1
2 = Sym(x2

0x1x2)
−1 Sym(x2

0x
2
1x2)

ϕ
(2)
2 = 2 + x2

1 + x2
2 + x−2

1 + x−2
2

= −2 + Sym(x2
0x1x2)

−2(Sym(x2
0x

2
1x2)

2 − 2 Sym(x2
0x1x2) Sym(x2

0x
2
1x

2
2))

ϕ
(2)
3 = ϕ

(2)
1

ϕ
(2)
4 = 1

Remark 4.1. Note that not all the expressions ϕ
(k)
j belong to the integral polyno-
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mial ring Q[x0, . . . , xn]Wn, but rather to the Satake image of the full Hecke algebra:

Q[x±1
0 , . . . , x±1

n ]Wn ∼= Q[x0, . . . , xn]Wn [(x2
0x1 · · ·xn)−1]. While our method of inverting

the Satake map is restricted to Q[x0, . . . , xn]Wn, we see that this identification of algebras

allows us to invert any polynomial in Q[x±1
0 , . . . , x±1

n ]Wn. In particular, we will see that

when we invert our operators tk(p
`) some lie outside the ring of integral Hecke operators,

suggesting perhaps a need to think more broadly about Hecke operators in trying to construct

a Hecke theory as robust as in the elliptic modular case.

Definition 4.2. For k = 0, 1, 2, define

T̃k(p
`) = T̃ 2

k (p`) = Ω−1(t2k(p
`)).

Note that the T̃k(p
`) are elements of the full Hecke algebra Hp for genus 2.

¿From the recursion relations deduced above:

tk(p
`) = ϕ

(k)
1 tk(p

`−1)− ϕ
(k)
2 tk(p

`−2) + ϕ
(k)
3 tk(p

`−3)− ϕ
(k)
4 tk(p

`−4),

and using that Ω is a ring homomorphism, we see that

T̃k(p
`) = Ω−1(ϕ

(k)
1 )T̃k(p

`−1)− Ω−1(ϕ
(k)
2 )T̃k(p

`−2) + Ω−1(ϕ
(k)
3 )T̃k(p

`−3)− Ω−1(ϕ
(k)
4 )T̃k(p

`−4).

Noting that t0(p) = ϕ
(0)
1 , it is immediate from Example 2.7.1 that T̃0(p) = T (p), one of

the standard generators of the Hecke algebra. With the exception of ϕ
(0)
1 , all the other ϕ

(k)
j

correspond to elements of Q[x0, . . . , xn]Wn of similitude 2, for which we can use Example 2.7.2

to help with the inversion.

In Example 2.7.2, the ordered basis for Hp(Γ, Sp(2)) is B = {T2(p
2), T1(p

2), T0(p
2)}, while

the ordered basis for Q2[x0, x1, x2]
W2 is B′ = {Sym(x2

0x1x2), Sym(x2
0x

2
1x2), Sym(x2

0x
2
1x

2
2)}.
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4.1.1 k=0

We have already shown that Ω−1(ϕ
(0)
1 ) = T̃0(p) = T (p). Using the inverse com-

puted in Example 2.7.2, we note that Ω−1(ϕ
(0)
2 ) corresponds to [Ω−1

2 ] t(2, 1, 0)B′ =

t(2p3 − p(p2 − 1), p, 0)B where (2, 1, 0) is the coordinate vector of ϕ
(0)
2 relative to the basis

B′. Thus Ω−1(ϕ
(0)
2 ) = (p3 + p)T2(p

2) + pT1(p
2). For more complicated expressions, we first

use that Ω is a ring homomorphism so that Ω−1(ϕ
(0)
3 ) = Ω−1(Sym(x2

0x1x2) Sym(x0x1x2)) =

Ω−1(Sym(x2
0x1x2))Ω

−1(Sym(x0x1x2)) = p3T2(p
2)T (p). For completeness, Ω−1(ϕ

(0)
4 ) =

p6T2(p
2)2. Summarizing,

Ω−1(ϕ
(0)
1 ) = T (p) Ω−1(ϕ

(0)
2 ) = (p3 + p)T2(p

2) + pT1(p
2)

Ω−1(ϕ
(0)
3 ) = p3T2(p

2)T (p) Ω−1(ϕ
(0)
4 ) = p6T2(p

2)2

and using

T̃k(p
`) = Ω−1(ϕ

(k)
1 )T̃k(p

`−1)− Ω−1(ϕ
(k)
2 )T̃k(p

`−2) + Ω−1(ϕ
(k)
3 )T̃k(p

`−3)− Ω−1(ϕ
(k)
4 )T̃k(p

`−4),

we can compute all T̃0(p
`). In terms of the standard generators, the first few T̃0(p

`) are given

by:

T̃0(p) = T (p)

T̃0(p
2) = T (p)2 − [(p3 + p)T2(p

2) + pT1(p
2)]

T̃0(p
3) = T (p)3 − (p3 + 2p)T (p)T2(p

2)− 2pT (p)T1(p
2)
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4.1.2 k=1,2

Note that in the computation of ϕ
(k)
j (when k ≥ 1), we frequently need to contend with

leaving the integral polynomial ring. As indicated before, this is not really an issue since

Q[x±1
0 , . . . , x±1

n ]Wn ∼= Q[x0, . . . , xn]Wn [(x2
0x1 · · ·xn)−1]. So in particular, to find Ω−1(ϕ

(1)
1 ), we

find

T̃1(p
2) = Ω−1(ϕ

(1)
1 ) = Ω−1(Sym(x2

0x1x2)
−1 Sym(x2

0x
2
1x2))

= [Ω−1(Sym(x2
0x1x2))]

−1Ω−1(Sym(x2
0x

2
1x2))

= p−3T2(p
2)−1(−p(p2 − 1)T2(p

2) + pT1(p
2))

=
−p(p2 − 1)

p3
+ p−2T1(p

2)T2(p
2)−1

is no longer in the integral Hecke algebra, Hp, emphasizing the fact that not all Hecke

operators with interesting arithmetic properties need to come from the integral Hecke ring.

Remark 4.3. With some patience one can explore the action of these new operators on

the Fourier coefficients of Siegel modular forms looking for recurrence relations among the

Fourier coefficients as was done for the standard generators of the integral Hecke algebra (see

[2]).
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