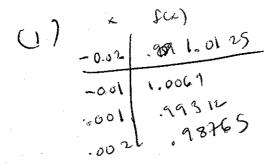
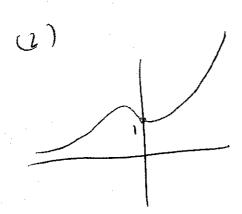
Math 201 23 September 2008 First Midterm

NAME (Print!): Kty		
•	Check one:	(1pm):
		(2pm):

Problem	Points	Score
1	20	
2	20	
3	30	
4	20	
5	10	
Total	100	


- **Problem 1 (20 points):** According to the Gutenberg-Richter law, the number N of earthquakes worldwide of Richter magnitude M approximately satisfies the relation $\ln N = 16.17 bM$ for some constant b.
 - (1) Assuming there are 800 earthquakes of magnitude 5 each year, find b.
 - (2) Using your b from the first part, how many earthquakes of magnitude 7 occur each year? (use b=2 if you couldn't find an answer to the first part).

(1)
$$\ln 800 = 16.17 - 61$$


$$\ln 800 - 16.17 = 1.89$$

Problem 2 (20 points): Let $f(x) = |x|^x$.

- (1) Investigate the left-hand and right-hand limits of f(x) as $x \to 0$.
- (2) Sketch a graph of f(x) and describe the behavior near 0.
- (3) Conclude what the limit is, if it exists, or conclude that the limit as $x \to 0$ doesn't exist.

Morsh

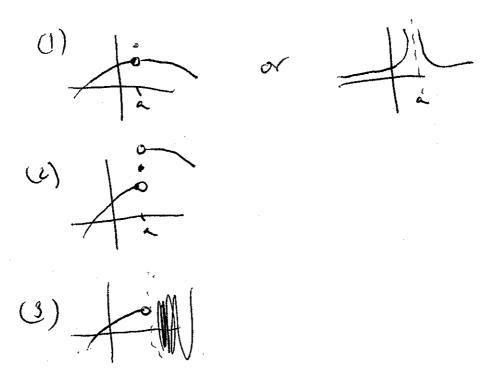
0 fix (X1x=1.

(THIS PAGE INTENTIONALLY BLANK)

Problem 3 (30 points): Find the following limits. For each part, name the laws, theorems and/or rules that you use. If the limit doesn't exist justify your conclusion in some way.

(1) $\lim_{x\to\pi/2}\tan(x)$

(2) $\lim_{x\to 0} \frac{x+3}{x^2-9}$


continuous at 0:
$$\frac{3}{100} = \frac{3}{3}$$

(3)
$$\lim_{x\to 0} \frac{\frac{1}{x}-\frac{1}{2}}{x-2}$$
 relaterminate from $\frac{0}{5}$

(4)
$$\lim_{x\to 4} \frac{3-\sqrt{x+5}}{x-4}$$

Problem 4 (20 points): Each of the following statements is false. For each statement sketch the graph of a function that provides a counterexample (assume that the function f(x) is defined on an open interval containing a):

- (1) If $\lim_{x\to a} f(x)$ exists then f(x) is continuous at a.
- (2) If f(x) has a jump discontinuity at x = a, then f(a) equals either $\lim_{x\to a^+} f(x)$ or $\lim_{x\to a^-} f(x)$.
- (3) The one sided limits $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ always exist, even if $\lim_{x\to a} f(x)$ doesn't exist.

(4) For (1) above write down a specific f(x) that is a counterexample.

Problem 5 (10 points): Show that the function

$$f(x) = \begin{cases} x^2 \cos(2/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is continuous at 0. Justify your answer by stating what rules/laws/theorems you used.

Inceed to show

(1) f(0) is defined $\leftarrow f(0)=0$ (2) $\lim_{x\to 0} f(x) = \text{exist}$;

and

(3) $\lim_{x\to 0} f(0) = \lim_{x\to 0} f(x)$.

Since cos \$ 2-1.

V

Li -x² \(\) \(

L +x2=0 sie +x2 iscontinuos. So

05 h x (cos(2)) 50

By the Squee hoven in x (cos 2) =0

Therefore Life) Exots and fleavels fee) so

for continuous ex

(THIS PAGE INTENTIONALLY BLANK)