Math 201 21 October 2008 Second Midterm

NAME (Print!): _____

Check one: (1pm): _____ (2pm): _____

Problem	Points	Score
1	20	
2	20	
3	10	
4	30	
5	20	
Total	100	

- **Problem 1 (20 points):** The heat capacity C(T) of a substance is the amount of energy (in joules) required to raise the temperature of 1 gram by 1 degree Celsius above temperature T.
 - (a) Explain why the energy required to raise the temperature from T_1 to T_2 is the area under the graph of C(T) over $[T_1, T_2]$.
 - (b) How much energy is required to raise the temperature from 50 to 100 degrees Celsius if $C(T) = 6 + 0.2\sqrt{T}$.

Problem 2 (20 points): Prove that $0.277 \le \int_{\pi/8}^{\pi/4} \cos x \, dx \le 0.363$.

(THIS PAGE INTENTIONALLY BLANK)

4

NAME (Print!):

Check one:	(1pm):
	(2pm):

Problem 4 (30 points): Compute the following: (a) $\frac{d}{dx} \int_x^0 \sin^2 t \ dt$

(b) $\int_0^{\pi/4} \sec^2 \theta \ d\theta$

(c) $\int \frac{dx}{x\sqrt{\ln x}}$

- **Problem 5 (20 points):** Let $f(x) = x^2 5x 6$ and $F(x) = \int_0^x f(t) dt$. (a) Find the critical points of F(x) and determine whether they are local minima or maxima.
 - (b) Find the points of inflection of F(x) and determine whether the concavity changes from up to down or vice versa.

(THIS PAGE INTENTIONALLY BLANK)