Quiz 3	
Answer the following three problems. Justify your work where appropriate $\mathbf{Problem}$ 1, 4 points: The graphs represent the position s of	moving par-
ticles as a function of time t Math each graph with one of t statements: (1) Speeding up	he following
(2) Speeding up and then slowing down(3) Slowing down	1 L
(4) Slowing down and then speeding up Slope (decreesing) (3) According to the speeding up (a) (b) (c) (c) (c)	Slope increases for a while
(4) > (1)	slape only sels bisses
dope skyts big,	
gets snell and Nen lag cycin	

Check one:

(1pm): ... (2pm): ...

NAME (Print!):

Problem 2, 2 points: Which graph has the following property: for all x the average ROC over [0, x] is greater than the instantaneous velocity at x? Explain.

(B) The average vete of change from 0 tox is less than the relaity: Since the graph bends downward The slope at a point is less than the occurt slope.

Problem 3, 4 Points: The population of a city (in millions) at time t (years) is $P(t) = 2.4e^{0.06t}$, where t = 0 is the year 2000. When will the population double from its size at t = 0?

$$t=0$$
: $P(0) = 2.4$
when vill $P(t) = 4.8$

$$4.8 = 2.40$$
 and $2 = e^{0.06t}$ $2 = e^{0.06t}$ $10^2 = 0.06t$ $10^2 = t$ 10.06 $10^2 = t$