Architecture and Implementation of SAFE

Bryan C. Ward

Bucknell University
Department of Computer Science

November 5, 2010
1 Architecture
 • Experiment Execution Manager
 • Simulation Client

2 Progress
 • Implementation
 • Polling Queues Simulator
 • ns-3 integration

3 Future Work
 • Goals

4 RFC
Design Point Generation

- Build design points based on the XML input.
- From the XML parser we expect:
 - Map with factors as keys, available levels as values.
 - List of restrictions each in the form of a map.
- Design points are constructed **Just In Time**.
 - Server initialization time reduced.
 - Allows clients to get started faster.
MRIP - as seen in Akaroa:

- Run independent simulations on separate processors.
- Must run the **same design point** using different seeds.
- Report results to a central server in **real time**.
- Server determines when all simulator instances should terminate.
MRIP - SWAN-Tools

MRIP - as seen in SWAN-Tools:

- Run independent simulations on separate processors.
- Different instances of the same design point run using different PRNG seeds.
- Can run multiple design points concurrently.
- Results are sent to the server upon completion of simulation execution.
MRIP - as seen in SAFE:

- Run independent simulations on separate processors.
- Central server maintains state for **multiple design points**.
- **One or more processors can work on a design point at a time.**
- Design points dispatched using a **round robin** like algorithm.
Run Length Detection

- EEM responsible for run length detection.
- User must specify metrics of interest which are used for run length detection.
- Terminate when all confidence intervals are appropriately bounded.
- Notify all clients of that design point to terminate.
IPC Overview
EEM - Client IPC

- Communicates with the EEM via a TCP socket.
- Notify the EEM at startup of system information.
- Notify the EEM when ready for new design point.
- Listen for design point and for later instructions.
- Listen to simulator for samples and relay to EEM.
Listen for samples on a pipe.
- Don’t want to listen on STDOUT, or STDERR.
- Create new pipe with fork, dup, exec.
- Simulator can now fdopen(3, ‘w’) and write to the pipe.
- Send signal to simulator upon notification of termination.
- This gives a flexible architecture:
 - Output of simulator can change as long as reflected in simulation client.
Architecture Review
Implementation

- Built using event driven python framework Twisted.
- Documentation: http://www.eg.bucknell.edu/safe
- Project page: http://redmine.eg.bucknell.edu/perrone/projects/framework
Polling Queues Simulator

- Configured through XML straight from the EEM.
- Samples written to client pipe.
- Avoids some of the complexities of ns-3 while still testing basic functionality.
- Basic features of SAFE are working!
ns-3 integration

- Static model.
- Configured using ConfigStore and XML from EEM.
- Data written on pipe opened in main().
- Basic proof of concept of this workflow working.
Wouldn’t it be nice...

- ConfigStore is great for experiments which change attributes.
- How do we configure simulations with different topologies?
- Compare with SSF, simulation model specified through DML, which is far easier to generate.
- Can BRITE help with this?
ns-3 integration

- Properly terminate simulations.
 - Can’t send signal to child process, that’s waf.
- Proper handing of results depends upon the Data Collection Framework which is still in development.
Transient Detection

- Transient Detection similar to Akaroa.
- Client side or Server side?
 - Client side doesn’t store transient samples
 - Server side incurs more traffic and more server side processing.
Results Access API

- Provide programmatic way of accessing results.
- Do not require users to write SQL.
- Architecture of this API still under development.
Plotting Utility

- Web Based.
- Builds upon work from the Results API.
- Confidence intervals are included by default.
- Export to pdf and other formats for inclusion in documents.
- Build from experience with SWAN-Tools.
Request for Comments (Suggestions or Otherwise)

- Auxiliary results (routing tables, structs, blobs)
- Time stamp data type (double?)
- Transient detection client side or server side?
- How do we configure simulations with different topologies?
- Can we integrate with BRITE? If so, how?