Architecture and Implementation of SAFE

Bryan C. Ward

Bucknell University Department of Computer Science

November 5, 2010

1 Architecture

- Experiment Execution Manager
- Simulation Client

2 Progress

- Implementation
- Polling Queues Simulator
- ns-3 integration

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Architecture	Progress 0000	Future Work 0000	RFC
SAFE Overview			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Architecture	Progress	Future Work	RFC
●000000000	0000	0000	
Design Point Gene	ration		

- Build design points based on the XML input.
- From the XML parser we expect:
 - Map with factors as keys, available levels as values.

- List of restrictions each in the form of a map.
- Design points are constructed **Just In Time**.
 - Server initialization time reduced.
 - Allows clients to get started faster.

Architecture	Progress	Future Work	RFC
000000000	0000	0000	
MRIP - Akaroa			

MRIP - as seen in Akaroa:

- Run independent simulations on separate processors.
- Must run the same design point using different seeds.
- Report results to a central server in real time.
- Server determines when all simulator instances should terminate.

Architecture 000000000	Progress 0000	Future Work	RFC
MDID	SWAN Tools		

MRIP - as seen in SWAN-Tools:

- Run independent simulations on separate processors.
- Different instances of the same design point run using different PRNG seeds.
- Can run multiple design points concurrently.
- Results are sent to the server **upon completion** of simulation execution.

MRIP - as seen in SAFE:

- Run independent simulations on separate processors.
- Central server maintains state for multiple design points.
- One or more processors can work on a design point at a time.
- Design points dispatched using a round robin like algorithm.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Architecture	Progress	Future Work	RFC
000000000	0000	0000	
Database Schema			

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Architecture	Progress	Future Work	RFC
0000000000	0000	0000	
Run Length Dete	ction		

- EEM responsible for run length detection.
- User must specify metrics of interest which are used for run length detection.
- Terminate when all confidence intervals are appropriately bounded.

• Notify all clients of that design point to terminate.

Architecture	Progress 0000	Future Work 0000	RFC
IPC Overview			

Architecture	Progress	Future Work	RFC
○○○○○○○○○○	0000	0000	
EEM - Client IPC			

- Communicates with the EEM via a TCP socket.
- Notify the EEM at startup of system information.
- Notify the EEM when ready for new design point.
- Listen for design point and for later instructions.
- Listen to simulator for samples and relay to EEM.

Architecture	Progress	Future Work	RFC
00000000000000	0000	0000	
Client	Simulator IDC		

- Listen for samples on a pipe.
- Don't want to listen on STDOUT, or STDERR.
- Create new pipe with fork, dup, exec.
- Simulator can now fdopen(3, 'w') and write to the pipe.
- Send signal to simulator upon notification of termination.
- This gives a flexible architecture:
 - Output of simulator can change as long as reflected in simulation client.

Architecture	Progress	Future Work	RFC
○○○○○○○○●	0000	0000	
Architecture Revie	W		

Implementatio	n		
	0000		
Architecture	Progress	Future Work	RFC

- Built using event driven python framework Twisted.
- Documentation: http://www.eg.bucknell.edu/safe

 Project page: http://redmine.eg.bucknell.edu/ perrone/projects/framework

Architecture	Progress	Future Work	RFC
000000000	○●○○	0000	
Polling Queu	es Simulator		

- Configured through XML straight from the EEM.
- Samples written to client pipe.
- Avoids some of the complexities of ns-3 while still testing basic functionality.

• Basic features of SAFE are working!

Architecture	Progress	Future Work	RFC	
000000000	○○●○	0000		
ns-3 integration				

- Static model.
- Configured using ConfigStore and XML from EEM.

- Data written on pipe opened in main().
- Basic proof of concept of this workflow working.

Mouldn't it k	no nico		
000000000	0000	0000	
Architecture	Progress	Future Work	RFC

- ConfigStore is great for experiments which change attributes.
- How do we configure simulations with different topologies?

- Compare with SSF, simulation model specified through DML, which is far easier to generate.
- Can BRITE help with this?

Architecture	Progress	Future Work	RFC
000000000	0000	●000	
ns-3 integration			

- Properly terminate simulations.
 - Can't send signal to child process, that's waf.
- Proper handing of results depends upon the **Data Collection Framework** which is still in development.

Architecture	Progress	Future Work	RFC
		0000	
Transient De	tection		

- Transient Detection similar to Akaroa.
- Client side or Server side?
 - Client side doesn't store transient samples
 - Server side incurs more traffic and more server side processing.

Architecture	Progress	Future Work	RFC
000000000	0000	00●0	
Poculto Acco			

- Provide programmatic way of accessing results.
- Do not require users to write SQL.
- Architecture of this API still under development.

Architecture	Progress	Future Work	RFC
000000000	0000	000●	
Plotting Utility			

- Web Based.
- Builds upon work from the Results API.
- Confidence intervals are included by default.
- Export to pdf and other formats for inclusion in documents.

• Build from experience with SWAN-Tools.

- Auxiliary results (routing tables, structs, blobs)
- Time stamp data type (double?)
- Transient detection client side or server side?
- How do we configure simulations with different topologies?

• Can we integrate with BRITE? If so, how?