
Empirical Validation of Wireless Models in
Simulations of Ad Hoc Routing Protocols
Jason Liu
Department of Mathematical and Computer Sciences
Colorado School of Mines
Golden, CO 80401
xliu@mines.edu

Yougu Yuan
David M. Nicol
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1308 West Main Street, Urbana, IL 61801

Robert S. Gray
Calvin C. Newport
David Kotz
Department of Computer Science
Dartmouth College
6211 Sudikoff Laboratory, Hanover, NH 03755

Luiz Felipe Perrone
Department of Computer Science
Bucknell University
Lewisburg, PA 17837

Computer simulation has been used extensively as an effective tool in the design and evaluation
of systems. One should not, however, underestimate the importance of validation—the process of
ensuring whether a simulation model is an appropriate representation of the real-world system. Val-
idation of wireless network simulations is difficult due to strong interdependencies among protocols
at different layers and uncertainty in the wireless environment. The authors present an approach of
coupling direct-execution simulation and traces from real outdoor experiments to validating simple
wireless models that are used commonly in simulations of wireless ad hoc networks. This article
documents a common testbed that supports direct execution of a set of ad hoc routing protocol
implementations in a wireless network simulator. By comparing routing behavior measured in the
real experiment with behavior computed by the simulation, the authors validate the models of radio
behavior upon which protocol behavior depends.

Keywords: Wireless network simulation, direct-execution simulation, trace-driven simulation, simu-
lation verification and validation

1. Introduction

Computer simulation has become the primary tool for eval-
uating the performance of routing protocols in mobile ad
hoc networks (MANET), as manifested by the increasing
number of research papers published in conferences (such
as MobiCom and MobiHoc) that use simulation to conduct
performance evaluations. In contrast to real field experi-

|
|
|
|
|

SIMULATION, Vol. 81, Issue 4, April 2005 307-323
©2005 The Society for Modeling and Simulation International

DOI: 10.1177/0037549705055017

ments, which generate unrepeatable results and are difficult
to realize, simulation provides a controlled environment
for testing the design of routing protocols in a network
that can be easily scaled up to thousands or even millions
of mobile stations. Simulation enables fast exploration of
the design space of the routing protocols under different
network conditions—the geographic environment, the user
mobility pattern, the application traffic load, and so on.

Using simulation, one must remember that the model
may not reflect reality. Validation is a process that
determines whether a simulation accurately represents
the target system (see Law and Kelton [1] for a de-
tailed discussion on this subject). Validation of MANET

Liu, Yuan, Nicol, Gray, Newport, Kotz, and Perrone

simulations is particularly difficult because not only must
the implementation of a simulated protocol be verified
against its design specifications, but the model must also
be able to capture lower-level characteristics of the wire-
less environment with a proper level of abstraction [2]. It is
known that the performance of the ad hoc network proto-
cols heavily depends on the performance of lower layers of
the protocol stack (i.e., the MAC and PHY layers) as well
as the wireless channel [3, 4]. Complex models that capture
high-level details of the lower protocol layers and the RF
propagation and interference can certainly provide more
confidence in the validity of the simulation results. How-
ever, these models incur expensive computation, which is
unlikely to be accommodated by using parallel simulations
alone. As a consequence, we find the MANET community
diverges in the use of wireless models in the simulation [5].
Questions remain on what would be an appropriate level
of abstraction (for a particular objective of a simulation
study) and whether one can use simple models as a viable
approach to obtain fairly accurate results, particularly in
simulations of large-scale mobile ad hoc networks.

We set out to address these problems, using direct-
execution simulation and real field measurements to val-
idate wireless models, particularly simple stochastic RF
models. Direct-execution simulation alleviates the need to
maintain separate code bases for the routing protocol by
executing the same code designed for real systems directly
inside a wireless network simulator. We compile the rout-
ing protocol’s source code with the simulator’s source code
with only moderate changes. The protocol’s logic is exe-
cuted inside the simulator and is driven by the simulator’s
time-advancing mechanism. Particularly in an event-driven
simulation paradigm, the routing protocol code is invoked
as a result of the simulator processing events stored in the
event queue. Since each protocol instance communicates
with other simulated mobile stations by sending and re-
ceiving packets through well-defined system calls, we sub-
stitute these system calls with calls to the simulator. The
packets are redirected to go through the simulated wire-
less network—all transparent to the protocol implementa-
tion. Using direct-execution simulation is also desirable for
prototyping a protocol implementation, which, after initial
simulation evaluation, can be deployed directly in a real
network.

In this article, we are interested in the ability of direct-
execution simulation to help us bypass the verification
stage of the routing protocols in simulation—the process
determining whether the computer model accurately repre-
sents the conceptual description and the actual implemen-
tation of the protocols. This paves the way for us to validate
the wireless models in the network simulator using mea-
surements from real field experiments. We run the same
routing protocol and application traffic generator code both
in simulation and in the real experiment. We also include in
the simulation a detailed model of the IEEE 802.11 MAC
layer protocol—the same protocol is used in the real exper-
iments. The model was originally ported from GloMoSim

[6], which has been used widely in the research commu-
nity and we assume to be accurate. In a real experiment,
packets are transmitted via the wireless channel and are
subject to delays and potential losses due to signal fading
and collision. In simulation, these packets are translated
into simulation events scheduled with delays calculated
by the radio channel model. Depending on the modeling
details, the simulation result may or may not reflect what
would happen in reality. Such comparison provides us a
valuable opportunity to investigate the effect of details of
wireless models on the fidelity of a simulation study.

More specifically, this article documents our effort in
supporting direct execution of a set of wireless ad hoc
routing protocol implementations and using the direct-
execution simulation to validate the underlying wireless
models by comparing the results from the simulations and
the real-world experiments.We ported five routing protocol
implementations for direct execution: APRL [7], AODV
[8], GPSR [9], ODMRP [10], and STARA [11]. Versions
of all five protocols were implemented as part of the Act-
Comm project, the goal of which is to provide information
access through a wireless network to soldiers in the battle-
field (http://actcomm.thayer.dartmouth.edu/). We created
a common testbed for direct execution of these protocols
in simulation, and we instrumented the testbed to include
various logging functions in the routing protocol code. We
did two large outdoor experiments over the course of 2
years. In the first experiment, we ran four routing proto-
cols on 40 laptop computers. In the second experiment,
we had 22 laptop computers. The laptops were carried by
people walking randomly in an outdoor athletic field. Each
laptop computer had a Global Positioning System (GPS)
device and periodically recorded its location information
and average receiving signal quality from other laptops.
We later transformed these logs into traces of node mobil-
ity and radio connectivity. We adapted the simulator to read
the traces and combined them with different stochastic ra-
dio propagation models to mimic the test scenario inside
the simulator. We compared the results from running these
routing protocols in simulation with the measurements col-
lected from the real experiments to reveal the effect of dif-
ferent wireless models on the behavior of ad hoc routing
algorithms.

The contributions of this article are threefold. The first is
the development of the testbed that facilitates the validation
of wireless models in mobile ad hoc network simulations.
The testbed supports direct execution of a set of ad hoc
routing protocol implementations in a wireless network
simulator. In particular, the testbed can read traces gener-
ated from real experiments and use them to drive direct-
execution implementations of the routing protocols. Doing
so, we reproduce the same network conditions as in real
experiments for our validation study. Our second contribu-
tion is the use of extensive measurements from two care-
fully designed outdoor experiments to validate the simple
wireless models popular in the MANET community. By
comparing routing behavior measured in real experiments

308 SIMULATION Volume 81, Number 4

WIRELESS MODELS IN SIMULATIONS OF AD HOC ROUTING PROTOCOLS

with behavior computed by the simulation, we are able to
isolate and therefore validate the models of radio behavior
upon which protocol behavior depends. We are the first in
doing so. Our third contribution is the recommendations
made from the validation study for the use of simple wire-
less models. We conclude that it is possible to have fairly
accurate results using a simple stochastic RF model, but the
routing behavior is quite sensitive to one of this model’s
parameters. The implication is that one should (1) use a
more complex (and more computationally expensive) ra-
dio model that explicitly models point-to-point path loss,
(2) carefully parameterize the model using measurements
from an environment typical of the one of interest, or (3)
study behavior over a range of environments to identify
sensitivities.

The article is organized as follows. Section 2 provides
an overview of the implementations of the routing proto-
cols and outlines the architecture of our wireless network
simulator on which we directly executed these protocol
implementations. In section 3, we briefly describe issues
related to direct-execution simulation. Section 4 presents
the augmented simulation testbed designed for validation
purposes. We focus on the experiments and results in sec-
tion 5. Section 6 offers a discussion on the benefits and,
more important, limitations of our approach. We provide
a brief summary of related work in section 7 before we
conclude the article in section 8.

2. Background

In this section, we provide an overview of the rout-
ing protocol implementations and the wireless network
simulator that we adapted to directly execute protocol
implementations.

2.1 The Routing Protocols

We ported five protocols for direct execution. Any-Path
Routing without Loops (APRL) is a proactive distance-
vector routing protocol [7]. Rather than using sequence
numbers, APRL uses ping messages before establish-
ing new routes to guarantee loop-free operation. Ad hoc
On-Demand Vector (AODV) is an on-demand routing
algorithm: routes are created as needed at connection estab-
lishment and maintained thereafter to deal with link break-
age [8]. Greedy Perimeter Stateless Routing (GPSR) uses
GPS positions of the mobile stations to forward packets
greedily along a path toward the target’s physical location
[9]. GPSR uses a perimeter-following algorithm to for-
ward packets around the boundaries of empty regions that
contain no mobile stations (and hence cause greedy for-
warding to fail). On-Demand Multicast Routing Protocol
(ODMRP) maintains a mesh, instead of a tree, for alter-
nate and redundant routes for each multicast group [10]. It
does not depend on another unicast routing protocol and, in
fact, can be used for unicast routing. The System and Traf-
fic Dependent Adaptive Routing Algorithm (STARA) uses

shortest-path routing [11]. The distance measure is calcu-
lated by the mean transmission delay instead of the hop
count. An empirical comparison of four of these protocols
can be found in Gray et al. [12].

Although APRL and STARA are not typical choices
of ad hoc routing protocols, we believe our selection pro-
vides a representative subsection of the algorithmic design
space. Both APRL and STARA are proactive routing pro-
tocols. Despite their differences in complexity, both proto-
cols actively maintain routes to all other mobile stations.
In contrast, both AODV and ODMRP are reactive routing
protocols: routes are established on demand, subject to the
traffic requirement. AODV and ODMRP differ primarily
in ODMRP’s ability to support multicast. GPSR, differ-
ent from the approaches above, makes use of geographical
information. Because of the diversity in the protocol selec-
tion, it is important that we build the direct-execution sim-
ulation testbed able to accommodate routing algorithms
belonging to different algorithmic classes.

We (and others) implemented these protocols for the
ActComm project in C++ on Linux. All five implemen-
tations performed their routing as user-level applications
using IP tunneling and UDP sockets, as shown in Figure 1.
An IP tunnel is a virtual network device with two end-
points: one as a regular network interface and the other as
a Unix device file (in the /dev directory). Packets sent to
the network interface, via a standard UDP socket, can be
read from the file by any (authorized) user process, while
packets written to the file are delivered by the kernel as if
they had arrived over the network interface. Each mobile
station had a virtual IP address associated with the network
interface of the tunnel, as well as a physical IP address as-
sociated with the network interface of the physical wireless
device. The application communicated using virtual IP ad-
dresses. We configured the standard kernel routing tables
so that all packets destined to virtual IP addresses were
forwarded to the IP tunnel device. At the source, a packet
sent from the application was forwarded first through the
IP tunnel to the routing algorithm reading the device file
(tun0 in Fig. 1). The routing algorithm then converted the
virtual addresses to physical addresses and then selected
the next hop to which to forward the packet in accordance
with its current routing table. All packets were forwarded
to their neighbors using UDP sockets through the physical
(wireless) network device (eth0 in Fig. 1). At an interme-
diate node, the UDP packet was received from the physical
network device (eth0) and given to the routing algorithm
through the UDP socket interface. The routing algorithm
again selected the next hop (using the packet’s physical
IP address) and forwarded the packet to it using the UDP
socket interface, which sent out the packet from the phys-
ical network device (eth0). Once a packet reached its
destination, the physical addresses were translated back
into virtual addresses, and the routing algorithm wrote the
packets to the device file of the IP tunnel (tun0), which
then delivered the packet to the application via the virtual
network interface.

Volume 81, Number 4 SIMULATION 309

Liu, Yuan, Nicol, Gray, Newport, Kotz, and Perrone

IP Routing Table

physical addresses

virtual addresses tun0

eth0

Routing
Algorithm

Kernel Space

User Space

UDP Socket

traffic generator
Application

UDP Socket

read/write

tun0
(ip tunnel)

sendto/recvfrom
(virtual addresses) (physical addresses)

sendto/recvfrom

Kernel IP Forwarding

eth0
(wireless device)

Figure 1. Implementation of routing protocols at user space using IP tunneling

Using IP tunneling and UDP sockets not only simplifies
the development and testing of ad hoc routing protocols in
real networks but also makes a straightforward transition
from real-world implementations to direct-execution sim-
ulation, as we discuss in section 3. The drawback of this
approach is the overhead associated with moving pack-
ets between the kernel and the user space. Although this
performance penalty has no significant impact on the Act-
Comm applications, designed to run on laptop comput-
ers with significant computing resources, it could become
unwieldy for performance-critical applications running on
less powerful hardware platforms. In this case, we should
consider implementing the routing protocols in the ker-
nel space to take advantage of optimizations unavailable at
the user level. For the purpose of this validation study, we
chose implementation simplicity over efficiency.

Another common feature in the ActComm implemen-
tations of the routing protocols is that they are all event
driven. At the center of each routing protocol implemen-
tation is an event loop that dispatches callback functions
in response to timeouts or packet arrivals. As we show
later, these implementation features tremendously eased
the transition of the routing protocols from real systems to
the simulated environment.

2.2 The Wireless Network Simulator

We developed a high-performance simulator, called
SWAN, as an integrated, flexible, and configurable
simulation environment for evaluating different wire-
less ad hoc routing protocols, especially in large net-
work scenarios. SWAN is based on DaSSF, a par-
allel discrete event simulator that has been proven

successful in simulating large-scale wired networks
(http://alamode.mines.edu/∼xliu/projects/dassf/). SWAN
uses novel synchronization algorithms to achieve better
performance on parallel platforms for large-scale wireless
network simulations [13]. The detail of these synchroniza-
tion algorithms is beyond the scope of this article.

Conceptually, the architecture of SWAN can be divided
into two submodels: the environment model and the node
model. The environment model consists of radio channel
models, user mobility models, and geographical terrain in-
formation. The node model describes the software structure
within a mobile station, which consists of a stack of pro-
tocol layers interacting through a standard interface. We
ported and implemented models of several protocols that
are used frequently in wireless ad hoc networks, such as
the IEEE 802.11 wireless local-area network (LAN) pro-
tocol and AODV. These protocol models can be readily
assembled as a protocol stack within each simulated mo-
bile station. One can configure and change the properties
of these protocols at runtime using a specially designed
configuration language.

In this article, we study the effect of several radio signal
propagation models on the behavior of the ad hoc rout-
ing algorithms in simulation. In particular, we examine
three simple but frequently used stochastic radio propaga-
tion models: a Friis free-space model, a two-ray ground
reflection model, and a generic propagation model. The
Friis free-space model assumes an ideal radio propagation
condition: radio signals travel in a vacuum space with-
out obstacles. The power loss is proportional to the square
of the distance between the transmitter and the receiver.
The two-ray ground reflection model adds a ground reflec-
tion path from the transmitter to the receiver. This model

310 SIMULATION Volume 81, Number 4

WIRELESS MODELS IN SIMULATIONS OF AD HOC ROUTING PROTOCOLS

is more accurate than the free-space model when the dis-
tance is large and there is no significant difference in eleva-
tion between the mobile stations. The generic propagation
model describes the radio signal attenuation as a combina-
tion of two effects: small-scale fading and large-scale fad-
ing. Small-scale fading captures the characteristic of rapid
fluctuation in signal power over a short period of time or
a small change in the node’s position—a result primarily
due to the existence of multiple paths on which the sig-
nals travel. The classic models that predict the small-scale
fading effect include Rayleigh and Ricean distributions.
Large-scale fading is mostly caused by the environmental
scattering of the signals and can be further divided into
two components: the distance path loss is the average sig-
nal power loss as a function of distance and is proportional
to the distance raised to a specified exponent; the shadow
fading effect describes the variations in signal-receiving
power measured in decibels and can be modeled as a log-
normal distribution. Readers can refer to a textbook on
wireless communications (such as Rappaport’s book [14])
for a detailed discussion on the stochastic radio propaga-
tion models.

One must understand that these simple models only pro-
vide “correct” radio propagation behavior in a statistical
sense for particular wireless environments within their de-
sign perimeters. Specifically, they do not provide enough
modeling details to represent signal propagation in a real
environment and therefore cannot offer an exact match to
the real experiment results. We elaborate this point in a
later section.

3. Direct Execution

In this section, we describe the methods we used to di-
rectly execute the routing protocol implementations in the
wireless simulation environment. In simulation, multiple
instances of a routing protocol must run simultaneously,
driven by the same event queue. Conceivably, each rout-
ing protocol can run as a separate process and interact with
the simulation kernel through interprocess communication
mechanisms. We only need to substitute the system calls
related to either communications (such as sending or re-
ceiving packets) or time (such as querying for the current
wall-clock time or blocking the user process) with calls to
the simulator. The replacement can be done either at link
time (using linker wrapper functions) or at runtime (by
preloading dynamic linking libraries or using the packet-
capturing facilities in the kernel). The major attraction of
this approach is its generality and that no source code mod-
ification is necessary. The drawback, however, lies in its
complexity related to and the potential overhead introduced
by interprocess communications.

We chose a faster yet slightly more complex approach
that allows multiple instances of the same routing protocol
to execute in the same address space. The method involved
only moderate modifications to the source code. It must be
understood that our approach does not intend to be general

but rather effective in enabling direct-execution simulation
for a range of routing protocols implemented in a com-
mon framework for the ActComm project. The goal is to
use direct-execution simulation to bypass the verification
problem in cases where different programs are developed
separately for real systems and for simulation. We ported
all five ActComm routing protocols together with related
programs, such as the application traffic generator used in
the real experiments. The number of lines changed in the
source code accounted for only 3.8% of the total. Most
changes were repetitive and related to creating and config-
uring the routing protocols individually in each simulated
mobile station and therefore were separate from the proto-
cols’ primary control flow.

3.1 Encapsulations

We modified the protocol code only slightly to allow mul-
tiple instances of a routing protocol to run simultaneously
inside the simulator. Since multiple instances are expected
to execute in the same address space, we need to provide
wrappers so that these instances can be identified and sep-
arated in the same execution environment.

We created a protocol session object to represent each
routing protocol instance in the simulator. The protocol’s
interaction with the operating system, such as the system
calls for sending and receiving packets, was replaced by
method invocations of the protocol session. These methods
redirect the calls to simulator. We also replaced global vari-
ables in the routing protocol implementations with member
data of the corresponding protocol session. We replaced the
original main function in the routing protocol implemen-
tations with a method of the protocol session that config-
ures and initializes the instance.

3.2 Communications

The routing protocol implementations use system calls for
communications, such as sendto for sending messages
through a UDP socket. As mentioned earlier, we replaced
these system routines with those supplied by the simula-
tor. Rather than replacing them manually at all places in
the source code, we provided a base class that contained
methods with the same names as the system routines and
with the same prototype. In this way, all classes in the pro-
tocol implementations default to call the methods in the
base class. The base class contains a reference to the pro-
tocol session that represents the routing protocol instance.
The methods in the base class forward control through the
reference to the protocol session, which then passes on
the messages through the simulated protocol stack. This
method is guaranteed to work as long as we make sure
that all system routines we intend to replace are redefined
properly in the base class and that they are called within
the methods of the classes deriving from the base class in
the protocol implementations.

We added support in the simulator for UDP sockets. A
UDP protocol session master manages the UDP sockets on

Volume 81, Number 4 SIMULATION 311

Liu, Yuan, Nicol, Gray, Newport, Kotz, and Perrone

top of the IP layer, whose primary function is to multiplex
and demultiplex UDP datagrams. Using the class inheri-
tance technique, we replaced system calls related to UDP
sockets, such as socket, bind, sendto, recvfrom,
and setsockopt, with methods that interact with the
UDP protocol session. We also implemented the IP tunnel
device in the simulator. The device is treated as a network
interface below the IP layer in the protocol stack. Packets
sent by the application with virtual destination addresses
(via UDP sockets) are diverted to the tunnel device by the IP
layer. The routing algorithm accesses the IP tunnel through
a regular file descriptor. We replaced the file access func-
tions, specifically open, read, write, and close, to
distinguish the file descriptor for the tunnel device from
other regular files. We did not replace operations to regular
files since they are used by the directly executed code for
logging purposes.

3.3 Timings

The routing protocols executed inside the simulator must
be driven by simulation time rather than real time, which
means that we must deal with all time-sensitive system
calls carefully. We replaced gettimeofday, which re-
turns the wall-clock time of the mobile station, with a call
to the simulator querying for the current simulation time.
We also replaced select, whose function is to block
the running process until any one of the specified set of
file descriptors is ready for reading or writing or a given
timeout interval has been elapsed. The ActComm proto-
col implementations all center on an event loop that con-
tains only one call to the select function. When the con-
trol returns from this function—upon timeouts or incom-
ing messages—the algorithm invokes the corresponding
event handlers to process the event. To provide the same
function in an event-oriented simulation worldview, we by-
passed the event loop and directly invoked the event han-
dlers whenever a timeout occurred or a message arrived at
the protocol session.

One also has to be aware of the ramifications from the
lack of a CPU work model in the wireless simulator. The
simulator uses function invocations for packets to travel up
and down the protocol stack without advancing the simula-
tion time. This bears no side effect for a carefully designed
protocol model, where the packet-processing time is simu-
lated with proper delays but may create problems for a di-
rectly executed protocol implementation that pays no spe-
cial attention to the packet processing. The ActComm im-
plementations do not explicitly specify delays for packets
that pass through system facilities (such as the IP tunnel).
If in simulation we assume zero packet processing time,
the behavior of all instances of a routing protocol could
be synchronized in simulation time. This synchrony could
then lead to an unnaturally high probability of packet loss
caused by collisions at the wireless channel. To deal with
this problem, we introduced random packet jitters at the
interface between the simulator and the directly executed

code. Each time a message goes through a UDP socket,
we added a random delay to model the time needed by the
operating system for processing the packet. We also en-
countered a case in the STARA implementation where the
lack of a work model caused an underflow in a floating-
point calculation and threw the simulation into an infinite
loop. At each iteration, the algorithm consistently chose to
schedule an event with a zero delay. The problem would be
corrected automatically in a real network since the wall-
clock time advances independently. To solve the problem
in simulation, we added a small jitter delay whenever the
directly executed code scheduled a zero-delay event.

Note that using jitter delays does not provide an accu-
rate representation of the use of computational resources
needed by the real system to process the packets traversing
through the protocol stack. These delays are especially im-
portant when the system is operating in a resource-limited
environment, where an accurate CPU model is needed
to simulate the packet-forwarding delays, which become
significant in determining the performance of the entire
system. In our real experiments, the ad hoc routing proto-
cols are running on laptops with ample processing power.
Therefore, an accurate modeling of the CPU consumption
(which is costly to simulate) was never called for; the jitter
delays were used in this case simply to model the ran-
domness and asynchrony in the packet processing in the
system.

4. Support for Simulation Validation

In this section, we discuss our support for validating a wire-
less simulation by comparing results from the real experi-
ments and the direct-execution simulation. We developed
the testbed to facilitate the validation of the stochastic radio
propagation and interference models that are widely used
in simulation studies in the MANET research community.
It must be understood that there is no definitive approach
to validating the models because (1) the RF environment
in a real experiment cannot be reproduced exactly, and
(2) the wireless models are stochastic and, if valid, can
only produce statistically “correct” results that match the
real experiment. Here, by validation we mean to find out
how these wireless models affect the results used in per-
formance evaluations of ad hoc routing algorithms.

Our approach used real experiments as the base for com-
parison. In particular, we ran the routing protocol imple-
mentations together with other applications directly in the
simulator. We derived both node mobility and radio con-
nectivity traces from the real experiment and combined
them with a stochastic RF model in an attempt to re-create
the real network conditions in simulation. We compared
the results against those from the real experiment to assess
the validity of the underlying wireless models. Since the
application layer and the ad hoc routing protocols were the
same in the real experiments and in simulation, and we
assumed that the detailed model of the IEEE 802.11 at the

312 SIMULATION Volume 81, Number 4

WIRELESS MODELS IN SIMULATIONS OF AD HOC ROUTING PROTOCOLS

Protocol

Trace
Mobility

Routing

Trace
Connectivity

Generator

Traffic
GeneratorProtocol

Routing

Event Log Log
ApplicationRouting

Module

Quality Log

Service

Mobile Node #1

Module
Service

Signal

SIMULATION

EXPERIMENT
REAL

Mobile Node #1

Position Log Beacon Log

Traffic

Figure 2. Logs are generated and compared for validating
simulation results

MAC layer was accurate, our focus was on the fidelity of
the radio propagation and interference models.

In all five ActComm routing protocol implementa-
tions, we embedded a sophisticated logging mechanism,
as shown in Figure 2. When we ran the routing protocol,
it generated an event log including all types of events re-
lated to the routing algorithm, such as sending or receiving
a packet. We used the event log both for analyzing the
performance of the routing algorithm and for debugging.
The application traffic generator is a simple program run-
ning simultaneously with the routing protocols. The traffic
generator models an on-off process: it waits for an expo-
nentially distributed off period and, during the on period,
randomly selects a target mobile station, to which it sends
a number of data packets separated by exponentially dis-
tributed random intervals. We instrumented the traffic gen-
erator with logging functions to record every packet sent
and received.We later used this log to calculate application-
level statistics, such as packet delivery rate and end-to-end
delay. Furthermore, when we directly executed the traffic
generator in the simulation experiment, the traffic genera-
tor used this log to re-create the same traffic behavior as in
the real experiment.

We also ran a third program, called the service module,
in the real experiment together with the routing protocol
and the application traffic generator. The program periodi-
cally queried the attached GPS device at the mobile station
to log its current geographical location. The program also
used iwspy to periodically record link quality informa-
tion. iwspy allows the user to specify a list of network
addresses.1 The wireless device driver updated link qual-

1. We made a minor modification to the standard Linux Card Man-
ager services to increase the maximum number of tracked sources to
accommodate the 40 laptops we used in the real experiment.

ity information (i.e., the signal strength) whenever a packet
was received from one of the listed addresses. The service
module periodically collected the most recent values in the
last sampling interval and recorded them in the signal qual-
ity log. Moreover, the service module periodically broad-
casted beacon messages that contained position informa-
tion of all known mobile stations. The original ActComm
applications used them to keep every soldier in the field up-
dated with the positions of other soldiers. We recorded the
beacon messages and used them to refresh the link quality
information. Since the beacon messages were sent period-
ically at low frequency, we expected that the perturbation
was insignificant.

In the simulation experiment, the routing protocols were
running directly as part of the simulator together with the
application traffic generator and the service module. One
might think it unnecessary to run the service module in
simulation—the location of any mobile station is, after
all, always available from the simulator’s mobility model.
We chose to directly execute the service module since we
needed to reproduce the beacon messages and their effect
on the state of the wireless network (particularly at the
MAC and PHY layers). In this way, the simulation pro-
duced the same set of logs as in a real experiment.

Before simulation, we processed the position log from
the real experiment to produce a mobility trace, which
showed how each mobile station moved over time during
the experiment. In addition, we generated a radio connec-
tivity trace from the beacon logs recorded by the mobile
stations during the real experiment. The connectivity trace
states whether a mobile station can receive a packet from
another mobile station over the wireless channel at any
given time. We derived radio connectivity using the fol-
lowing method. The beacon log contains the times at which
the beacon messages from other mobile stations were re-
ceived. Receiving a beacon successfully indicates a link
from the sender to the receiver, while missing several con-
secutive beacons indicates that the receiver may be beyond
the transmission range of the sender. If node A could hear
a beacon message from node B, we assume there was a di-
rect link from node B to node A during the next sampling
interval. After that, however, if node A did not receive the
next beacon message, it only means that either node A
moved out of the transmission range of node B or simply
the beacon from B was dropped as a result of corruption or
collision with another transmission. To deal with the latter
case, we did not immediately remove the link from B to A
but instead only did so when three beacon messages from
B were missing in succession.

The signal quality log recorded a series of averaged
signal-to-noise ratios for packets received at each mobile
station. The signal quality log is not included in this study.
However, as an alternative to the beacon log, this informa-
tion could be used to reconstruct radio connectivity of the
wireless network. The recorded link quality information
is presumably better at capturing the signal propagation
and interference scenario than the beacon logs since the

Volume 81, Number 4 SIMULATION 313

Liu, Yuan, Nicol, Gray, Newport, Kotz, and Perrone

link quality information is collected at the wireless de-
vice driver (presumably at the signal level) regardless of
whether an entire packet is successfully received.

Note that, even with the radio connectivity traces, repro-
ducing the state of the wireless environment is difficult. An
inappropriate radio channel model can produce mislead-
ing simulation results. To have a detailed trace that records
every bit of change in the state of the wireless network
would require an extremely large amount of storage space
even for a short duration. And even if we successfully cre-
ated a detailed trace, we would still face the problem if we
wanted to introduce a slight modification to the application
traffic behavior. We used the radio connectivity trace as a
baseline to determine whether two mobile stations could
directly communicate with each other. It should be noted
that the connectivity information does not capture the state
of interference—collisions could happen due to the pres-
ence of “hidden terminals.” For example, if node B can
hear both node A and node C situated on either side, but
node A cannot talk to C and vice versa because they are out
of each other’s radio propagation range, it is possible that
node B cannot faithfully receive a packet from A if node
C is transmitting another packet to node B simultaneously.
Although the 802.11 MAC layer protocol, which arbitrates
packet transmissions over the wireless medium, allocates
the radio channel before each transmission, it cannot to-
tally prevent collisions. In this case, the simulator must
use an interference model to simulate what would happen
when two packets arrive at the receiver. It is possible that
one of the packets can be accepted if its receiving power is
significantly higher than the other, or both packets are lost
due to the presence of interference.

Since the interference model relies on the receiving sig-
nal power to determine packet receptions, we need a radio
propagation model to simulate the signal power attenu-
ation. In the next section, we provide some preliminary
results on the effect of three simple stochastic radio propa-
gation models, with and without the connectivity trace, and
study their effect on the behavior of the routing protocols.

5. Performance and Validation Studies

We conducted two sets of experiments.The first experiment
compared the direct-execution simulation of theActComm
AODV protocol implementation with an AODV protocol
model implemented natively in the SWAN simulator. This
experiment was used to verify two independent protocol
implementations against each other and to assess the cost
of using direct-execution simulation in support of future
studies using this method. The second experiment com-
pared the results from two outdoor experiments and the
simulation of a mobile network running multiple ad hoc
routing algorithms. The goal of this experiment is to val-
idate the wireless models and, more important, to reveal
the sensitivity of the performance of the routing protocols
to the wireless models used in simulations.

5.1 AODV vs. AODV

In this experiment, we compared the direct execution of
the ActComm AODV protocol implementation with an
AODV protocol model implemented natively in SWAN.
We ran both protocol implementations in simulation un-
der the same simulated network conditions, with the same
application traffic pattern, and using the same radio prop-
agation model. Our goal is to verify both protocol imple-
mentations against each other and determine how much
overhead direct-execution simulation requires.

We tested a network of 50, 100, and 200 mobile sta-
tions, out of which we chose 20 mobile stations as traf-
fic sources. Each traffic source randomly selected a target
among other mobile stations and sent to it a packet of 1 KB
in size before switching to another randomly selected target
after an exponentially distributed random interval. We de-
ployed these mobile stations in a square area, sized so that
each mobile station had seven neighbors on average (796,
1126, and 1592 meters for each dimension, respectively).
We used the random way-point node mobility model: each
node moves to a randomly selected point in the area with
a speed chosen uniformly between 1 and 10 m/sec; when
reaching the point, it pauses for 60 seconds before select-
ing another point to which to move. We chose the IEEE
802.11 protocol for the MAC and PHY layer with stan-
dard parameters according to the IEEE specification (with
an 11-Mb/sec bandwidth), and we used the generic radio
propagation model (with an exponent of 2.5 and shadow-
fading lognormal standard deviation of 6 dB) to compute
the signal path loss.

The behaviors of the two implementations differed
slightly owing to variations in treatment of the AODV
specifications. In addition, the ActComm AODV ran in
user space using IP tunneling and UDP sockets, while the
SWAN AODV ran directly on top of IP. The messages
from the application traffic generator, when delivered to
the ActComm AODV protocol through the IP tunnel, were
wrapped with UDP and IP headers. Both the data and con-
trol messages used by the ActComm AODV were also aug-
mented with UDP headers by UDP sockets. Nonetheless,
we found that, with varying traffic load (by changing the
mean packet interarrival time), the overall packet delivery
ratio—the total number of packets received by the appli-
cation layer divided by the total number of packets sent—
differed only slightly between these two implementations,
as shown in Figure 3. Both implementations achieved sim-
ilar output (less than 3% difference). The similarity in the
behavior of the two implementations ensures that using the
two implementations to assess the cost of direct execution
is meaningful.

Figure 4 shows the difference in total execution time and
peak memory usage between the two implementations of
the AODV protocol. Clearly, the ActComm AODV (direct-
execution) implementation required more computational
resources, but marginally so. The greatest increase in the
execution time (about 18%) was at larger network sizes

314 SIMULATION Volume 81, Number 4

WIRELESS MODELS IN SIMULATIONS OF AD HOC ROUTING PROTOCOLS

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 0.1 1 10

P
ac

ke
t D

el
iv

er
y

R
at

io
 (

w
ith

 9
5%

 c
on

fid
en

ce
)

Traffic Intensity (in packets/second)

50 nodes, SWAN AODV
50 nodes, ActComm AODV
100 nodes, SWAN AODV
100 nodes, ActComm AODV
200 nodes, SWAN AODV
200 nodes, ActComm AODV

Figure 3. Packet delivery ratio with varying traffic load (in log scale)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1 1 10

E
xe

cu
tio

n
T

im
e

(in
 1

,0
00

 s
ec

on
ds

)

Traffic Intensity (in packets/second)

200 nodes, ActComm AODV
200 nodes, SWAN AODV
100 nodes, ActComm AODV
100 nodes, SWAN AODV
50 nodes, ActComm AODV
50 nodes, SWAN AODV

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1 1 10

P
ea

k
M

em
or

y
U

sa
ge

 (
in

 M
B

)

Traffic Intensity (in packets/second)

200 nodes, ActComm AODV
200 nodes, SWAN AODV
100 nodes, ActComm AODV
100 nodes, SWAN AODV
50 nodes, ActComm AODV
50 nodes, SWAN AODV

Figure 4. The execution time and peak memory usage for the two AODV implementations with varying traffic load (in log scale)

and heavier traffic load. The increased execution time was
mostly caused by the overhead of copying and serializ-
ing real packets. The memory overhead of the ActComm
AODV (over 100%) was more significant. We attribute it to
the additional data structures used by the direct-execution
protocol session, the IP tunnel device, and the UDP socket
layer, which are proportional to the number of simulated
mobile stations. Moreover, in simulation, the directly exe-
cuted routing protocol implementation and the application
sent and received real packets with real message head-
ers and real payloads. The overhead grew with increasing
traffic intensity as packets stayed longer in the wireless
network due to more contentions.

In conclusion, direct-execution simulation requires
more computational resources, especially in memory us-

age. The benefit of directly executing a routing protocol
implementation in simulation is the assurance that the pro-
tocol implementation exhibits the same behavior as in a real
network. A routing protocol model implemented natively
in the simulator, however, may benefit from computational
optimizations such as eschewing actual message headers
and payloads. Thus, a protocol model is more suitable to
be used in situations where the resource requirement is
critical, such as in a simulation of a large-scale wireless
network. On the other hand, the extra costs of direct exe-
cution are not so onerous to disqualify the technique as a
means of experimentation. There are obvious advantages
to maintaining a common code base between a protocol’s
actual implementation and that used to study its behavior
in a simulator.

Volume 81, Number 4 SIMULATION 315

Liu, Yuan, Nicol, Gray, Newport, Kotz, and Perrone

5.2 Simulation vs. Reality

As the second step in our validation study, we compared
the results from two outdoor routing experiments with our
simulation results. In particular, we compared the results
from the real experiments with the simulation results using
different RF models. As mentioned earlier, the simulation
results using the simple stochastic wireless models cannot
match exactly with the results from the real experiments.
By validation, we mean we want to find out whether the
simulation can provide us enough confidence in the claims
we make to the performance of the routing protocols. In
other words, the purpose of this study is to reveal the sen-
sitivity of the performance of the routing protocols to the
underlying wireless models. It is not our focus here to com-
pare these protocols. We analyzed the behavior and com-
pared the performance of the protocols in another paper
[12].

5.2.1 The Real Experiments

We conducted two outdoor routing experiments in 2 years
on the same rectangular athletic field measuring approxi-
mately 225 by 365 meters. The field was divided into four
equal-sized quadrants, one of which was approximately 2
meters lower in elevation than the rest of the field. The
hills from the higher to lower elevation were steep and
short and thus did obstruct the wireless signal, increasing
the frequency with which the routing algorithms needed to
find a multihop route. We chose this field to conduct the
experiments because it was at a distance away from the
college campus and its wireless network. We used a differ-
ent wireless channel in the experiments to further reduce
the potential interference.

The first experiment was conducted in October 2003
with 40 laptop computers. The second experiment was con-
ducted in October 2004 with 22 laptop computers. Each
laptop was a Gateway Solo 9300 with a 700-MHz Pentium
III CPU, 256 KB of CPU cache, 256 MB of main mem-
ory, and a 20-GB hard drive and ran Linux kernel version
2.2.19 with PCMCIA Card Manager version 3.2.4. Each
laptop had a Lucent (Orinoco) 802.11 wireless card oper-
ating in peer-to-peer mode fixed at 2 Mb/sec, and the Card
Manager was configured to use the wvlan_cs, rather
than orinoco_cs, driver so that we could collect signal-
strength statistics for each received packet. Finally, each
laptop had a Garmin eTrex GPS unit attached via the serial
port. These GPS units did not have differential GPS capa-
bilities but were accurate to within a few meters during the
experiment.

The first experiment included four routing protocols:
APRL, AODV, ODMRP, and STARA. The second exper-
iment included only APRL, AODV, and ODMRP. GPSR
was still under development at the time of the outdoor ex-
periments and therefore was not included in this study.
The laptops, whose clocks were set to the time reported
by the GPS unit, automatically ran each routing algorithm

for 15 minutes (in the first experiment) or 20 minutes (in
the second experiment), with 2 minutes of network quies-
cence between each algorithm to handle cleanup and setup
chores. After each routing algorithm had been running for
1 minute, providing time to reach an initial stable rout-
ing configuration, the laptops automatically started a traf-
fic generator that generated “streams” of UDP packets. The
number of packets in each stream was Gaussian distributed
with mean 5.5 and standard deviation

√
2, the time be-

tween streams was exponentially distributed with mean 15
seconds, the time between packets inside a stream was ex-
ponentially distributed with mean 3 seconds, every packet
contained approximately 1200 data bytes, and the target
laptop for each stream was uniformly randomly selected
from among the other laptops. We chose these numeri-
cal parameters to approximate the traffic volume observed
during an earlier demonstration of a military application
[15]—approximately 423 outgoing data bytes (including
UDP, IP, and wireless Ethernet headers) per laptop per sec-
ond, a relatively modest traffic volume. The uniform ran-
dom target selection simply ensured that traffic flowed to
all parts of the network. The routing algorithm parameters,
such as the beacon interval for APRL and the forwarding
group lifetime for ODMRP, were set to “standard” values
taken from the literature and our own experience.

During the course of the first experiment, the laptops
were continuously moving. At the start, the 40 partici-
pants were divided into equal-sized groups of 10, each of
which was instructed to randomly disburse in one of the
four quadrants of the field. The participants then walked
continuously, always picking a quadrant different from the
one in which they were currently located, picking a ran-
dom position within that quadrant, walking to that position
in a straight line, and then repeating. This approach was
chosen since it was simple but still provided continuous
movement to which the routing algorithms could react, as
well as similar laptop distributions across each of the four
routing algorithms. In the second experiment, we used the
same strategy in node movement, however, using only three
quadrants of the field. Construction prevented us from us-
ing the lower quadrant (the one that was 2 meters lower in
elevation than the others). The laptops moved within the
remaining three L-shaped quadrants at approximately the
same elevation. The difference in the number of laptops
and the movement patterns between the two experiments
caused variations in the performance of the protocols, as
expected.

Each laptop recorded extensive logs as described in sec-
tion 4. At the end of the first experiment, we discovered
that 7 laptops failed to generate any data or routing traf-
fic due to misconfiguration or hardware problems. Thus,
the experiment in practice reduced to a 33-laptop experi-
ment, and the logs from these 33 laptops were used as the
starting point for comparing the real-world and simulation
results. In the second experiment, the traffic generators in
two nodes were found misconfigured when we ran AODV.

316 SIMULATION Volume 81, Number 4

WIRELESS MODELS IN SIMULATIONS OF AD HOC ROUTING PROTOCOLS

 0%

20%

40%

60%

80%

100%

120%

gfedcbagfedcbagfedcbagfedcba

P
ac

ke
t D

el
iv

er
y

R
at

io

The First Experiment

AODV APRL ODMRP STARA

real experiment: a
generic model with connectivity: b

free-space with connectivity: c
two-ray with connectivity: d

generic model no connectivity: e
free-space no connectivity: f

two-ray no connectivity: g

 0%

20%

40%

60%

80%

100%

120%

gfedcbagfedcbagfedcba

P
ac

ke
t D

el
iv

er
y

R
at

io

The Second Experiment

AODV APRL ODMRP

real experiment: a
generic model with connectivity: b

free-space with connectivity: c
two-ray with connectivity: d

generic model no connectivity: e
free-space no connectivity: f

two-ray no connectivity: g

Figure 5. Comparing the data delivery ratio from the real experiments with various radio propagation models. “With connectivity”
means the connectivity trace was used.

We made adjustments accordingly in the simulation to re-
flect the real situation.

5.2.2 The Simulation

We processed the logs from the real experiments to derive
the node mobility and radio connectivity traces for each
laptop for the duration of running each routing algorithm.
We ran the simulation of each algorithm for the designated
period. We directly ran the routing protocol and the service
module in each simulated mobile station. We modified the
application traffic generator to read the application log and
generate the same packets as in the real experiment. To
compare with results from the first real experiment, we
focused only on the 33 laptops that actually transmitted,
received, and forwarded packets in the real experiment. To
reproduce the traffic pattern in simulation, the application
traffic generator on each of the 33 nodes still included the
7 crashed nodes as potential packet destinations.2 For the
second experiment, we included all 22 laptops in the sim-
ulation of the routing protocols but discarded the traffic
generation of the 2 laptops that were misconfigured in the
AODV run.

The mobile stations in simulation followed the mobil-
ity trace generated from the real experiments. We exam-
ined three radio propagation models: a free-space model,
a two-ray ground reflection model, and a generic prop-
agation model. The simulator delivered each transmitted
packet to all neighbor stations that could receive the packet
with an average receiving signal power above a minimum
threshold. We used the propagation models to determine
the power loss for each packet transmission and thus the
signal-to-noise ratio to quantify the state of interference at

2. Therefore, the packet-delivery ratios, both from the real experiment
and the simulation, should be slightly lower than expected since those
packets with unknown destinations could not be delivered.

the receiver—to determine whether a packet that arrived at
a mobile station could be received or should be dropped.
We combined the three models with the connectivity trace
derived from the beacon logs, leading to six different ra-
dio propagation models: three using the connectivity traces
and three not. In the first three cases, we used the connec-
tivity trace to determine whether a packet from a mobile
station could reach another mobile station, and then we
used the radio propagation models to determine the receiv-
ing power for the interference calculation. Comparison of
models with measured connectivity with those without pro-
vides us a means of refining a model’s power—if a model
is seen to require connectivity information to work well,
it is not a robust model because its power of prediction
comes from measurements. On the other hand, if a model
without measured connectivity information works about
as well as does the version with it, then the model itself
contains accurate predictive power for connectivity.

5.2.3 The Results

We first examine the packet delivery ratio. Figure 5 shows
the packet delivery ratio from the real experiments and the
simulation runs with six radio propagation models (three
of which used the connectivity trace derived from the real
experiment to determine the reachability of the signals).
Each simulation result is an average of five runs; the vari-
ance is insignificant and therefore not shown for the sake
of clarity. The generic propagation model used typical pa-
rameters to describe the outdoor environment of the real
experiment: we used 2.8 as the path-loss exponent and 6 dB
as the standard deviation for shadow fading. (We later show
the sensitivity of the results to these parameters.) We have
several observations:

• Different wireless models predicted vastly different pro-
tocol behaviors. The difference is significant enough in

Volume 81, Number 4 SIMULATION 317

Liu, Yuan, Nicol, Gray, Newport, Kotz, and Perrone

some cases to result in misleading conclusions, for ex-
ample, when comparing the performance of AODV and
ODMRP using the free-space model. The inaccuracy in
the model prediction is nonuniform and can undermine a
performance comparison study of different protocols.

• The simple generic propagation model with typical param-
eters for the outdoor test environment of the real experi-
ment offered an acceptable prediction of the performance
of the routing algorithms.

• For AODV, APRL, and STARA, the figure shows a large
exaggeration of the packet delivery ratio using the free-
space model and the two-ray ground reflection model.
Both models overestimated the transmission range of ra-
dio signals, causing shorter routes and a better packet
delivery ratio under the test traffic intensity. Even with
the connectivity trace, the free-space model and the two-
ray model overestimated the performance of the AODV,
APRL, and STARA protocols. None of the two models
captured the lossy characteristic of the radio propagation
environment—no packets were dropped due to variations
in the receiving signal strength.

• STARA’s low packet delivery ratio is attributed to the high
volume of control packets (measured over 150 per ap-
plication packet in the experiment), which simply over-
whelmed the wireless network. STARA periodically sent
dummy data packets to update delay estimates for high
latency routes. Optimizations in control packet handling
can significantly improve STARA’s performance [16]. Our
implementation did not take advantage of these optimiza-
tions, and therefore the result should not be used to rep-
resent the overall performance of the algorithm. The im-
plementation, however, can still serve as a good test case
in our simulation validation study. Note that, because of
the congestion at the wireless channel, the connectivity
trace derived from the beacon messages does not provide
an accurate estimate of the network condition.

• The performance of ODMRP was underestimated in the
first experiment. ODMRP, which is a multicast routing
algorithm that delivers packets using multiple paths to
their destinations, has a higher demand on the network
bandwidth. The overestimated transmission range in the
free-space and two-ray models and the assumptions of
the omni-directional radio coverage in simulation caused
more contentions and created a negative effect on the
throughput. The situation was improved in the second ex-
periment with fewer laptops moving at the same elevation.

• The propagation models that used the connectivity trace
generally lower the packet delivery ratio, when compared
with the propagation models that did not use the connec-
tivity trace. This result is not surprising: the connectiv-
ity trace, to some degree, can represent the peculiar ra-
dio propagation scenario of the test environment. Without
connectivity traces, the propagation models assumed an
omni-directional path loss dependent only on the distance,
which resulted in a more densely connected network (with
fewer hops for packet transmissions) and therefore a better
delivery ratio under the given traffic intensity. The differ-
ence was more pronounced in the first experiment because
the experiment included the lower quadrant—significant
elevation changes in the test field led to possible obstruc-
tion of radio signals between laptops.

The packet delivery ratio does not reflect the entire exe-
cution scenario of the routing algorithm. From the routing
event logs, we collected statistics related to each partic-
ular routing strategy. Figure 6 shows a histogram of the
number of hops that a data packet traversed in AODV be-
fore it either reached its destination or was dropped along
the path. For example, a hop count of zero means that
the packet was dropped at the source node; a hop count
of one means the packet went one hop: either the desti-
nation was the source’s neighbor or the packet failed to
reach the next hop. The figure shows the fraction of the
data packets that traveled the given number of hops. We
see clearly that the free-space and two-ray models with-
out the connectivity trace resulted in fewer hops because
of the exaggerated transmission range. The problem was
again more pronounced in the first experiment due to the
possible obstruction of the signal propagation, resulting
in longer routing paths. From the figure, we also see that
the connectivity trace was helpful in predicting the route
lengths, more likely in the first experiment for the same
reason.

A bigger problem with the free-space and two-ray mod-
els was that they did not consider packet losses caused
by variations in the receiving signal power. We illustrate
this point in Figure 7, which plots the beacon reception
ratio—the fraction of beacon messages received over the
total number of beacon messages sent—at different dis-
tances between the transmitter and the receiver during the
AODV run in the first experiment. We divided the distance
range into buckets of 25 meters each and calculated the
fraction of successful beacon receptions at each bucket.
For better exposition, the figure shows the reception ratio
at each distance bucket as a point (in the middle of the
bucket). The beacon reception ratio was lower for mod-
els with the connectivity trace because of the additional
precondition for the signals’ reachability. The ratio gener-
ally decreased over longer distances because weaker sig-
nals were dropped when collisions happened. The generic
propagation model provided the best fit for the real exper-
iment results. In contrast, the two-ray model exhibited a
sharp cliff in the curve—without variations, the quality of
the modeled wireless channel changed abruptly from rel-
atively good to none as soon as the distance threshold was
crossed. Since we assumed 15 dBm as the radio transmis-
sion power and –81 dBm as the receiving threshold, the
two-ray model had a maximum transmission range of 251
meters. For the free-space model, the range was 604 me-
ters, longer than the maximum separation of laptops in the
real experiment. The generic model with a path-loss ex-
ponent of 2.8 had a transmission range of only 97 meters.
Because of the variations (modeled as a lognormal dis-
tribution with correlations over time), the reception ratio
decreased gradually as in the real case.

The generic propagation model with typical parame-
ters to represent the outdoor test environment offered a
relatively good prediction of the performance of the rout-

318 SIMULATION Volume 81, Number 4

WIRELESS MODELS IN SIMULATIONS OF AD HOC ROUTING PROTOCOLS

 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

gfedcbagfedcbagfedcbagfedcbagfedcbagfedcba

F
ra

ct
io

n
of

 T
ot

al
 D

at
a

P
ac

ke
ts

 in
 T

ra
ns

it

The First Experiment

0 1 2 3 4 5
Hop Count

real experiment: a
generic model with connectivity: b

free-space with connectivity: c
two-ray with connectivity: d

generic model no connectivity: e
free-space no connectivity: f

two-ray no connectivity: g

 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

gfedcbagfedcbagfedcbagfedcbagfedcbagfedcba

F
ra

ct
io

n
of

 T
ot

al
 D

at
a

P
ac

ke
ts

 in
 T

ra
ns

it

The Second Experiment

0 1 2 3 4 5
Hop Count

real experiment: a
generic model with connectivity: b

free-space with connectivity: c
two-ray with connectivity: d

generic model no connectivity: e
free-space no connectivity: f

two-ray no connectivity: g

Figure 6. The hop-count histogram of AODV in real experiments and in simulation

 0%

 20%

 40%

 60%

 80%

 100%

 0 50 100 150 200 250 300

B
ea

co
n

R
ec

ep
tio

n
R

at
io

Distance (in meters)

real experiment
generic model with connectivity

free-space with connectivity
two-ray with connectivity

generic model no connectivity
free-space no connectivity

two-ray no connectivity

Figure 7. The beacon reception ratio at different distances
between the sender and the receiver

ing algorithms. One must, however, choose the correct pa-
rameters carefully to reflect the wireless environment. The
exponent for the distance path loss and the standard devia-
tion in the lognormal distribution for the shadow fading are
heavily dependent on the environment under investigation.
In the next experiment, we ran a simulation with the same
number of mobile stations and with the same traffic load as
in the real experiment. Figure 8 showsAODV performance
in the packet delivery ratio with the same network settings
but varying the path-loss exponent from 2 to 4 and the
shadow lognormal standard deviation from 0 to 12 dB—
the ranges suggested for modeling outdoor environments
[14].

TheAODV behavior was more sensitive to the path-loss
exponent than to the shadow standard deviation. That is,
the signal propagation distance had a stronger effect on

2

2.5

3

3.5

4

0
2

4
6

8
10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Path Loss Exponent
Shadow Stdev

P
ac

ke
t D

el
iv

er
y

R
at

io

Figure 8. Sensitivity of AODV performance to parameters of
large-scale fading model

the algorithm’s performance. A shorter transmission range
means packets must travel through more hops (via longer
routes) before reaching their destinations and therefore
have a higher probability to be dropped. A larger shadow
standard deviation caused the links to be more unstable, but
the effect varied. When the path-loss exponent was small
and the signals had a long transmission range, the small
variation in the receiving signal strength did not have a
significant effect on routing, causing only infrequent link
breakage. When the exponent was large, most nodes were
disconnected. A variation in the receiving signal power
helped establish some routes that were impossible if not
for the signal power fluctuation. Between the extremes, a
larger variation in the link quality generally caused more
transmission failures and therefore resulted in a slightly
lower packet delivery ratio.

Volume 81, Number 4 SIMULATION 319

Liu, Yuan, Nicol, Gray, Newport, Kotz, and Perrone

The critical implication of this sensitivity study is that
we cannot just grab a set of large-scale fading parameters,
use them, and expect meaningful results for any specific
environment of interest. On one hand, presimulation em-
pirical work to estimate path-loss characteristics might be
called for, if the point of the experiment is to quantify be-
havior in a given environment. Alternatively, one may re-
quire more complex radio models (such as ray tracing) that
include complex explicit representations of the domain of
interest. On the other hand, if the objective is to compare
protocols, knowledge that the generic propagation model is
good lets us compare protocols using a range of path-loss
values. While this does not quantify behavior, it may al-
low us to make qualitative conclusions about the protocols
over a range of environments. We emphasize the necessity
of experimenting with a range of parameters, as different
protocols may perform better under different conditions.

To summarize, we used simple stochastic radio propa-
gation models and the traces generated from carefully de-
signed real experiments. Direct-execution simulation pro-
vided a common baseline for comparing the behavior of
routing protocols both in the real experiment and in simula-
tion. We found that it is critical to choose a proper wireless
model that reflects a real-world scenario for studying the
performance of ad hoc routing algorithms. In contrast to
earlier studies [3], we found that using a simple stochastic
RF model with parameters typical to the outdoor environ-
ment can produce acceptable results. We must recognize,
however, that the results are sensitive to these parameters.
It is for this reason we caution that the conclusions drawn
from simulation studies using simple propagation models
should apply only to the environment they represent. The
free-space model and the two-ray model, which exagger-
ate the radio transmission range and ignore the variations
in the receiving signal power, can largely misrepresent the
network conditions.

6. Discussion

It is difficult to design real experiments to offer a good
coverage of diverse experimental settings, such as differ-
ent geographical terrains and different network conditions
(traffic, mobility, etc.). Furthermore, a large-scale outdoor
experiment that involves many people and a large amount
of hardware equipment can easily become difficult to man-
age and maintain, not to mention that it is also quite costly
to organize. Because of these barriers, using large-scale
real experiments for validation cannot be adopted as a gen-
eral approach. This is why simulation remains important
for performance evaluation studies in the MANET commu-
nity. One would argue, and we agree, that one should vali-
date individual components of the simulation models—one
at a time, whenever possible. Actually, the simple stochas-
tic RF models were all tried and true within their design
perimeters where the models are applicable. The question
is how sensitive the simulation-based performance evalu-
ation is to the wireless models applied without us knowing

the exact design perimeters. Here, using data from the care-
fully designed real experiments can help answer this ques-
tion. Our approach in coupling direct execution and the
traces from the real experiments helps isolate and reveal
the effect of the interdependent models in ad hoc network
simulations.

The aforementioned drawbacks of conducting large real
experiments lead to the limitations of our approach. The
two outdoor experiments, described in section 5, only pro-
vide us with a few reference points in studying the effect
of underlying wireless models on the performance eval-
uations of ad hoc routing protocols in simulation. Other
experiments are needed to explore sensitivities under dif-
ferent settings. For example, we have yet to compare the
results from our indoor tabletop experiments with the sim-
ulation results [12], in which case, the simple stochastic RF
models are highly questionable for representing the indoor
environments. Furthermore, it remains a challenge to gen-
eralize the results from our validation studies to large net-
work scenarios (with hundreds or more mobile stations).

We applied statistical goodness-of-fit tests to compare
the results from the real experiments with the simulation
results. We choose not to show the test results simply be-
cause the null hypothesis that the results from the real and
simulation experiments are from the same probability dis-
tribution is obviously incorrect. For example, the packet de-
livery ratio is an aggregate statistic over tens of thousands
of packets transmitted during each experiment and there-
fore allows only small Monte Carlo errors. A confidence
interval validation test would simply reject the hypothe-
sis in this case, unless the packet delivery ratios are very
close to each other. Nonetheless, a statistical test can pro-
vide a common base for comparing different models and
their effect on the performance of the routing protocols. For
instance, a chi-square test comparing the hop-count distri-
butions for AODV runs in the first outdoor experiment and
simulation clearly shows that both free-space and two-ray
ground reflection models without the connectivity trace
were way off, and the generic model provided much bet-
ter match. We can simply draw the same conclusions by
inspecting the graphs.

For future work, we are currently investigating using the
link quality information collected by the wireless device
driver to improve the accuracy of the connectivity trace.
Also, we want to translate the terrain information of the
real experiment into a radio propagation gain matrix for a
more realistic representation of the wireless environment,
as well as study the effect of such modeling details on the
performance evaluation of wireless ad hoc routing proto-
cols. Furthermore, our comparative studies assumed that
the model for the 802.11 MAC layer protocol is valid. We
would like to validate the model using simple real test sce-
narios and the validation testbed described in this article.

7. Related Work

There are varying degrees of complexity involved in the
direct execution of routing protocols inside a simulator.

320 SIMULATION Volume 81, Number 4

WIRELESS MODELS IN SIMULATIONS OF AD HOC ROUTING PROTOCOLS

Previously, we ported WiroKit, a portable router for wire-
less ad hoc networks, developed by BBN Technologies,
to execute directly in SWAN [17]. To maintain platform
independence, WiroKit has only a few well-defined inter-
action points with the supporting operating system, which
include memory allocations, communications, and access-
ing the real-time clock. We applied only small changes at
the interaction points to allow direct-execution simulation.

Nsclick directly executes the Click Modular Router in-
side the ns-2 network simulator [18]. The Click Modu-
lar Router provides a layer of abstraction and a flexible
and configurable environment for developing ad hoc rout-
ing protocols. Similar to our approach, the integration of
Click with ns-2 requires visible changes to the original
source code. Recently, Dimitropoulos and Riley [19] in-
corporated a public-domain implementation of the Bor-
der Gateway Protocol (BGP), from the routing software
called Zebra, into simulation. The transition involves so-
phisticated changes to the original source code, including
the use of event-driven scheduling to replace the original
process-oriented design. Our work differs from theirs in
that our approach is more specific to the ActComm frame-
work where source code transformation is straightforward
and can be done manually.

Direct-execution simulation has been used extensively
in areas such as parallel architectures (e.g., [20, 21]) and
distributed algorithms (e.g., [22]). They aim at obtaining an
execution profile of the directly executed code. The former
is concerned with measuring the execution time of running
applications on the simulated computer platforms, whereas
the latter is about assessing the efficiency of a parallel al-
gorithm in a distributed environment. These are different
from our case of direct-executing routing protocols in an
ad hoc network simulation—measuring the execution time
of the routing algorithms is of less importance than sim-
ulating packet routing across the network and therefore is
often ignored in such models unless one wants to study
a network in a resource-constrained situation. In this re-
spect, Liljenstam et al. [23] recently proposed a way to effi-
ciently model CPU and memory resources in large network
simulations.

Direct-execution simulation is closely related to em-
ulation. Emulation requires that the simulation clock be
synchronized with the wall-clock time. Typically, emula-
tion involves running unmodified software prototypes to
interact with the emulated entities. For example, a net-
work emulator provides a controlled network environment
to facilitate network protocol development and application
performance evaluation. Distributed applications, such as
Web services, may run unmodified to supply traffic to go
through the emulated network. A number of techniques
can be used for executing unmodified software, including
kernel virtualization [24], network packet capturing [25],
dynamic linking library [26], and executable modification
[27]. We are currently investigating these approaches.

Validation of simulations in general and wireless ad hoc
network simulations in particular has been a focal point sur-

rounding the applicability of simulation studies. Johnson
[28] first suggested using the log information from run-
ning ad hoc routing algorithms during a real experiment
to simulate identical node movement and communication
scenarios. We have not seen such validation efforts in real-
ization. There has been research in wireless network em-
ulation based on traces [29]. In their approach, the traces
are modulated and reduced to a simple wireless network
model that preserves the end-to-end characteristics of a
real wireless network. Our approach collects traces from
the application layer down to the signal reception, which
are used selectively to exercise and validate different com-
ponents of a detailed wireless model.

Finally, Takai and others [3, 4] provide a study of the
effect of a wireless physical layer and radio channel mod-
eling on the performance evaluation of ad hoc routing algo-
rithms. Their study considers the effect of several factors—
including signal preambles, radio propagation models, and
interference and noise calculations—on routing protocols
in simulation. Our research is inspired by their studies but
differs in our focus on using real experiments to support
our simulation studies.

8. Conclusions

This article reports on our efforts to support direct-
execution simulation of a set of wireless ad hoc routing pro-
tocols to facilitate validation of wireless network models.
We conducted two real experiments running multiple pro-
tocols on laptop computers in an outdoor environment. We
embedded a sophisticated logging mechanism in the pro-
tocol implementations. All activities related to the routing
algorithms and the applications were recorded in files. In
particular, we constantly recorded the GPS location of the
mobile stations, which were later translated into a mobility
trace. Each mobile station also recorded the beacon mes-
sages from its neighbors, which were used to reconstruct
the radio connectivity of the mobile stations. Postprocess-
ing these files resulted in traces that we used in simulation
to reproduce the same network condition. Using direct-
execution simulation together with the traces from the real
experiments, we are able to isolate and validate the ef-
fect of the underlying wireless models on the performance
evaluation of the ad hoc routing protocols.

We found that one can use a simple stochastic radio
propagation model to predict the behavior of the routing
protocols with fairly good accuracy, but the results are quite
sensitive to the model’s parameters.We argue that choosing
a proper wireless model that represents the wireless envi-
ronment of interest is critical in performance evaluation of
the routing algorithms. Because of the sensitivity of the
behavior to the underlying radio model, one should either
choose a more complex radio model for a more accurate
representation of the wireless environment or use a simple
model with caution. In the latter case, we suggest that one
should either use models that incorporate measurements
from an environment typical of the one of interest or study

Volume 81, Number 4 SIMULATION 321

Liu, Yuan, Nicol, Gray, Newport, Kotz, and Perrone

the protocol behavior over a range of environments for a
more complete representation.

9. Acknowledgments

This work was supported in part by Dartmouth’s Center
for Mobile Computing, DARPA (contract N66001-96-C-
8530), the Department of Homeland Security (contract
2000-CX-K001), and the Department of Defense (MURI
AFOSR contract F49620-97-1-03821). Points of view in
this document are those of the authors and do not necessar-
ily represent the official position of the sponsors. The U.S.
government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this work, or
allow others to do so, for U.S. government purposes.

We thank Nikita Dubrovsky, Aaron Fiske, Chris Ma-
sone, and Michael DeRosa for implementing the routing
algorithms and most of the outdoor experiment infrastruc-
ture. Piyush Gupta and Brad Karp helped with the source
code of STARA and APRL. Dennis McGrath helped with
the initial class structure for the routing algorithms. We
thank Chip Elliott at BBN Technologies and Bill Navidi at
the Colorado School of Mines for their valuable insights
and suggestions. We thank Lisa Shay, Susan McGrath, and
Eileen Entin for designing the application scenario and the
60 Dartmouth students and staff members who participated
in the outdoor experiments. We also thank the anonymous
reviewers for their helpful comments and suggestions.

A preliminary version of this article appeared in the Pro-
ceedings of the 18th Workshop on Parallel and Distributed
Simulation (PADS 2004) [30].

10. References

[1] Law, A. M., and W. D. Kelton. 2000. Simulation modeling and anal-
ysis. 3rd ed. New York: McGraw-Hill.

[2] Heidemann, J., N. Bulusu, J. Elson, C. Intanagonwiwat, K. Lan, Y.
Xu, W. Ye, D. Estrin, and R. Govindan. 2001. Effects of details
in wireless network simulation. In Proceedings of the SCS Multi-
conference on Distributed Simulation, January, pp. 3-11.

[3] Takai, M., R. Bagrodia, K. Tang, and M. Gerla. 2001. Efficient wire-
less network simulations with detailed propagation models. Wire-
less Networks 7 (3): 297-305.

[4] Takai, M., J. Martin, and R. Bagrodia. 2001. Effects of wireless phys-
ical layer modeling in mobile ad hoc networks. In Proceedings of
the 2nd ACM International Symposium on Mobile Ad Hoc Net-
working & Computing (MobiHoc’01), October, pp. 87-94.

[5] Kotz, D., C. Newport, R. Gray, J. Liu, Y. Yuan, and C. Elliott. 2004.
Experimental evaluation of wireless simulation assumptions. In
Proceedings of the 7th ACM/IEEE International Symposium on
Modeling, Analysis and Simulation of Wireless and Mobile Sys-
tems (MSWiM’04), October, pp. 78-82.

[6] Bajaj, L., M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla.
1999. GloMoSim: A scalable network simulation environment.
Tech. Rep. 990027, Department of Computer Science, University
of California at Los Angeles.

[7] Karp, B., and H. T. Kung. 1998. Dynamic neighbor discovery and
loopfree, multi-hop routing for wireless, mobile networks. Un-
published manuscript, Harvard University, Cambridge, MA.

[8] Perkins, C. E., and E. M. Royer. 1999. Ad hoc on-demand distance
vector routing. In Proceedings of the 2nd IEEE Workshop on Mo-

bile Computing Systems and Applications, February, pp. 90-100.
[9] Karp, B., and H. T. Kung. 2000. Greedy perimeter stateless routing for

wireless networks. In Proceedings of the Sixth Annual ACM/IEEE
International Conference on Mobile Computing and Networking
(Mobi-Com’00), August, pp. 243-54.

[10] Lee, S. J., M. Gerla, and C. C. Chiang. 2002. On-demand multicast
routing protocol in multihop wireless mobile networks. Mobile
Networks and Applications 7 (6): 441-53.

[11] Gupta, P., and P. R. Kumar. 1997. A system and traffic dependent
adaptive routing algorithm for ad hoc networks. In Proceedings of
the 36th IEEE Conference on Decision and Control, December,
pp. 2375-80.

[12] Gray, R. S., D. Kotz, C. Newport, N. Dubrovsky, A. Fiske, J. Liu, C.
Masone, S. McGrath, and Y. Yuan. 2004. Outdoor experimental
comparison of four ad hoc routing algorithms. In Proceedings of
the 7th ACM/IEEE International Symposium on Modeling, Analy-
sis and Simulation of Wireless and Mobile Systems (MSWiM’04),
October, pp. 220-9.

[13] Liu, J., and D. M. Nicol. 2002. Lookahead revisited in wireless
network simulations. In Proceedings of the 16th Workshop on
Parallel and Distributed Simulation (PADS’02), May, pp. 79-88.

[14] Rappaport, T. S. 1996. Wireless communications: Principles and
practice. Englewood Cliffs, NJ: Prentice Hall.

[15] Gray, R. S. 2000. Soldiers, agents and wireless networks: A report
on a military application. In Proceedings of the 5th International
Conference and Exhibition on the Practical Application of Intel-
ligent Agents and Multi-Agents, April.

[16] Gupta, P. 2000. Design and performance analysis of wireless net-
works. Ph.D. diss., University of Illinois at Urbana-Champaign.

[17] Liu, J., L. F. Perrone, D. M. Nicol, M. Liljenstam, C. Elliott, and D.
Pearson. 2001. Simulation modeling of large-scale ad-hoc sensor
networks. In Proceedings of the European Simulation Interoper-
ability Workshop (Euro-SIW’01), June.

[18] Neufeld, M.,A. Jain, and D. Grunwald. 2002. Nsclick: Bridging net-
work simulation and deployment. In Proceedings of the 5th ACM
International Workshop on Modeling Analysis and Simulation of
Wireless and Mobile Systems (MSWiM’02), September, pp. 74-81.

[19] Dimitropoulos, X. A., and G. F. Riley. 2003. Creating realistic
BGP models. In Proceedings of the 11th IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of Computer
Telecommunications Systems (MASCOTS’03), October, pp. 64-
70.

[20] Dwarkadas, S., J. R. Jump, and J. B. Sinclair. 1994. Execution-driven
simulation of multiprocessors. ACM Transactions on Modeling
and Computer Simulation 4 (4): 314-38.

[21] Reinhardt, S. K., M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis,
and D. A. Wood. 1993. The Wisconsin Wind Tunnel: Virtual pro-
totyping of parallel computers. In Proceedings of the 1993 ACM
SIGMETRICS Conference, May, pp. 48-60.

[22] Dickens, P. M., P. Heidelberger, and D. M. Nicol. 1996. Parallelized
direct execution simulation of message passing parallel programs.
IEEE Transactions on Parallel and Distributed Systems 7 (10):
1090-1105.

[23] Liljenstam, M., J. Liu, D. M. Nicol, Y. Yuan, G. Yan, and C. Grier.
2005. RINSE: The real-time interactive network simulation envi-
ronment for network security exercises. Proceedings of the 19th
Workshop on Parallel and Distributed Simulation (PADS ’05),
Monterey, CA, pp. 119-28.

[24] Huang, X. W., R. Sharma, and S. Keshav. 1999. The ENTRAPID
protocol development environment. In Proceedings of the 1999
IEEE INFOCOMM Conference, March, pp. 1107-15.

[25] Simmonds, R., and B. Unger. 2003. Towards scalable network em-
ulation. Computer Communications 26 (3): 264-77.

[26] Song, H. J., X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura,
andA. Chien. 2000. The MicroGrid:A scientific tool for modeling
computational grids. Scientific Programming 8 (3): 127-41.

[27] Mukherjee, J. 2002.A compiler directed framework for parallel com-
positional systems. Master’s thesis, Department of Computer Sci-
ence, Virginia Polytechnic Institute and State University.

322 SIMULATION Volume 81, Number 4

WIRELESS MODELS IN SIMULATIONS OF AD HOC ROUTING PROTOCOLS

[28] Johnson, D. B. 1999. Validation of wireless and mobile network
models and simulation. In DARPA/NIST Network Simulation Val-
idation Workshop, May.

[29] Noble, B. D., M. Satyanarayanan, G. T. Nguyen, and R. H. Katz.
1997. Trace-based mobile network emulation. In Proceedings of
the 1997 ACM SIGCOMM Conference, September, pp. 51-61.

[30] Liu, J.,Y.Yuan, D. M. Nicol, R. S. Gray, C. C. Newport, D. Kotz, and
L. F. Perrone. 2004. Simulation validation using direct execution
of wireless ad-hoc routing protocols. In Proceedings of the 18th
Workshop on Parallel and Distributed Simulation (PADS’04),
May, pp. 7-16.

Jason Liu is an assistant professor of Computer Science at the
Colorado School of Mines, Golden, Colorado.

YouguYuan is a graduate student at Dartmouth College, Hanover,
New Hampshire.

David M. Nicol is a professor at the Coordinated Science Lab-
oratory, University of Illinois at Urbana-Champaign, Urbana,
Illinois.

Robert S. Gray is currently working for BAE Systems.

Calvin C. Newport is a graduate student in the Computer Sci-
ence and Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology, Cambridge, Massachusetts.

David Kotz is a professor in the Department of Computer Science
at Dartmouth College, Hanover, New Hampshire.

Luiz Felipe Perrone is an assistant professor in the Depart-
ment of Computer Science at Bucknell University, Lewisburg,
Pennsylvania.

Volume 81, Number 4 SIMULATION 323

