
Acknowledgements
This project was started thanks to Bucknell University internal grants for
the support of undergraduate research. The continued development of
the framework described here is funded under NSF grant CNS-0958142.

Related Work
[1] ANDREOZZI, M. M., STEA, G., AND VALLATI, C. A framework for large-scale

simulations and output result analysis with ns-2. In Proc. of the 2nd Intl. Conf. on
Simulation Tools and Techniques (SIMUTools ’09) (2009), pp. 1–7.

[2] MURATA, M., LEE, D., MANI, M., AND KAWAGUCHI, K. Taxonomy of XML
schema languages using formal language theory. ACM Trans. Internet Tech. 5, 4
(2005), 660–704.

[3] PAWLIKOWSKI, K. Akaroa2: Exploiting network computing by distributing
stochastic simulation. In Proc. of the 1999 European Simulation Multiconference
(Warsaw, Poland, 1999), pp. 175–181.

[4] PERRONE, L., KENNA, C., AND WARD, B. Enhancing the credibility of wireless
network simulations with experiment automation. In Proc. of the 2008 IEEE Intl.
Conf. on Wireless & Mobile Computing, Networking and Communications (WiMob
’08) (2008), pp. 631–637.

[5] PERRONE, L. F., CICCONETTI, C., STEA, G., AND WARD, B. C. On the automa-
tion of computer network simulators. In Proc. of the 2nd Intl. Conf. on Simulation
Tools and Techniques (SIMUTools ’09) (2009), pp. 1–10.

Posterior Analysis
• Tabular Results:

– Publish results to the web; increases credibility of results when ex-
periments linked in publications.

– Export results as CSV, allows users to use spreadsheets or other
statistical analysis software.

• Plotting Utility:
– Web based for cross platform compatibility.
– Ensures plots accurately depict actual results.
– encourages the use of confidence intervals.
– Allows other users to explore results easily via a web browser.
– Similar functionality as that found in ANSWER and SWAN-Tools.

• RESTful API:
– Provides access to results to users developing custom scripts.

Code Generation
• Event-based parsing of XML documents uses less memory, but

may require multiple passes in the case of object-oriented code
generation, in order to update references correctly.

• RELAX NG Schemas provide the basis for generating various Python
classes.

• Iterate through the final simulation description document, creating
instances of these Python classes. Set all known constants where
appropriate and add flags for object references impossible to iden-
tify.

• Re-iterate through this simulation description document again in
order to update Python object references.

Experiment Automation Framework Architecture

model_description.rng

experiment_description.rng

restrictions.rng

model_description.xml

experiment_description.xml

restrictions.xml

Experiment
Execution
Manager

simulation_1.xml

simulation_n.xml

SimulationClient
.py

Executable
Model

transformation and
code generation

SimulateResults

Constrained and
Validated against

Input

All simulations to run
based on inputs

Requested by
SimulationClient

for execution

Input
Requested before simulation execution

Used for code generation

Architecture of a flexible experiment automation framework.

Multiple Replications In Parallel
(MRIP) Architecture

Database

Experiment
Execution Manager

Node 1

Results

simulation.xml

Node N

simulation.xml
Results

...

model_description.rng

experiment_description.rng

restrictions.rng

Architecture of the experiment execution manager which will simu-
late using the MRIP strategy.

Simulation Client Design
• Setup simulation environment

– Find or build simulator to match exact version of simulator spec-
ified by experiment manager.

– Request Model Description RELAX NG Schema for code gen-
eration purposes.

• Request Simulation
– Request simulation from experiment manager.
– Generate ns-3 Python code from received XML simulation con-

figuration.

• Execute Simulation
– Periodically send collected samples to experiment manager.
– Based upon experiment manager’s response, continue simula-

tion, or terminate.
– Request new simulation upon termination.

Experiment Manager Design
• Multiple Replications in Parallel (MRIP)

– Execute simulations in parallel across networked machines.
– Global experiment manager determines execution time for all

simulations.

• Built around HTTP based webservice
– Developed in Django.
– Easily interface with database through common Object Rela-

tional Mapper (ORM).
– Easy to build API using standard HTTP libraries.
– Not bound to a specific language or platform.

User Interfaces
• Web Based:

– Simple enough for even a novice user to work with.
– Guides user through proper experimental design.
– Gives user access to valid models and factor values.
– Validates along the way to ensure no mistakes are made.
– Browser based application makes the application cross platform ca-

pable.

• Command Line Interface:
– Geared towards the more advanced user.
– Gives user additional flexibility in configuration.
– Driven by user developed XML files and command line scripts.
– Values given are validated before the experiment can proceed.

RELAX NG Compact Syntax
RELAX NG can describe attribute-element constraints that are impossi-
ble to express in W3C XML Schema. In this case, the content of the el-
ement speed variable depends on the value of the type attribute.

element speed-variable = { RandomVariable }
RandomVariable = Uniform | Exponential
Define each distribution type
Uniform = attribute type { "uniform" },

attribute lo { text },
attribute hi { text }

Exponential = attribute type { "exponential" },
attribute mean { text },
attribute bound { text }

The corresponding XML is concise, intuitive, and readable (and also
impossible to validate against any W3C XML Schema definition):

<speed-variable type="uniform" lo="0" hi="1"/>

When the value of the type attribute is set to “uniform,” the contents
are validated against a different definition than if the type attribute is
set to “exponential.”

Defining a Grammar
A grammar for our XML languages serves two purposes:

• Defines correct semantic structure of any simulation description.
The XML standard already provides the syntactical constraints.

• Provides the structures used in data binding: mapping XML el-
ements to software object definitions in a language like Python.
Changing the grammar definition of a particular model will result
in an automatic change in the object definition of that model.

XML Modeling
• Model Description Language:

– Consists of the overarching “model” which itself is composed of a
collection of sub-models.

– Model nesting corresponds closely to ns-3 class hierarchy.

• Experiment Description Language:
– Lists each experimental factor in turn and describes some list of

parameter values which the factor will take on.
– Provides constructs for building different types of lists.
– Describes a factorial experiment design.

• Restriction Description Language:
– Prunes factorial experiment design.
– Specifies parameters to occur in tandem and in exclusion.

These languages will all be validated by RELAX NG schemas as they
are more expressive and allow more sophisticated constructs than the
W3C XML Schema standard.

Abstract
Recent studies have indicated that tools that automate the execution of
simulation experiments can serve to enhance both the usability of net-
work simulators and the credibility of the studies developed with them.
In this poster, we present the architecture for an experiment automa-
tion framework for the ns-3 network simulator. The architecture was
designed with two specific goals in mind. First, it raises the level of ab-
straction of the ns-3 user interface to make the simulator easier to use
in large scale experimental studies. Second, it provides functionalities
to guide the user along known correct methodologies for modeling and
simulation, thereby increasing the confidence one can have in the cor-
rectness of the experimental results.

Andrew W. Hallagan, Bryan C. Ward and Luiz Felipe Perrone
Department of Computer Science

Bucknell University
Lewisburg, PA, U.S.A. 17837

{andrew.hallagan,bryan.ward,perrone}@bucknell.edu

An Experiment Automation Framework for ns-3

