Bucknell

Enhancing the Credibility of Wireless Network Simulations with Experiment Automation

Dr. L. Felipe Perrone perrone@bucknell.edu
Christopher J. Kenna cjk@cs.wm.edu
Bryan C. Ward bryan.ward@bucknell.edu
Dept. of Computer Science
Bucknell University, Lewisburg, PA, U.S.A.

Why we run simulations

We need to understand the technology before we can rely on it for mission-critical applications.

Performance can be **quantified**/estimated with computer simulation.

Credibility issues

Bucknell

Experiments published are not always **reproducible**.

- What was the version of the simulator used?
- What what sub-models were used?
- Where to find the complete experimental set up?

Credibility issues

Bucknell

Output data is **unavailable** or **unreliable**.

- Papers publish a thin "slice" of experimental results.
- Methodology to compute the statistics of output data doesn't conform to best practices.
- Plots without units on axes, legends on data series, and/or confidence intervals.

Credibility issues

Bucknell

•

We know where and how we're failing.

• T. Camp, S. Kurkowski, and M. Colagrosso, "MANET simulation studies: The Incredibles," SIGMOBILE Mob. Comput. Commun. Rev., vol. 9, no. 4, pp. 50–61, 2005.

• K. Pawlikowski, H. J. Jeong, and J. R. Lee, "On credibility of simulation studies of telecommunication networks," IEEE Communications Magazine, vol. 40, January 2002.

• C. Cicconetti, E. Mingozzi, and G. Stea, "An integrated framework for enabling effective data collection and statistical analysis with ns-2," in Proceedings from the 2006 Workshop on ns-2, Pisa, Italy, October 2006.

We can use automation solutions to avoid problems.

Model Composition

Radio Propagation Channel

Model: 2-ray ground reflection

carrier_frequency	2.4 GHz
temperature	290 K
noise_figure	10.0 dB
ambient_noise_factor	0
system_loss	1.0

Terrain	
Model: Flat	
xdim	5,000 m
ydim	3,000 m
zdim	5.0 m
boundary	wraparound

Mobility		
Model: Random waypoint		
min_speed	5.0 m/s	
max_speed	10.0 m/s	
pause_time	65 s	

Node Deployment		
Model: Random		

October 12, 2008

SWAN Tools

Bucknell

A web-based application that guides the construction of the simulation experimental study and its data analysis. SWAN Tools is self-documenting: it allows experiments to be reproducible.

Web-based Interface to SWAN

- Control of the simulation process:
 - Experiment design
 - Configuration
 - Execution

- Data analysis
- Remote access via a web browser.
- Browser talks to server which automates the simulation process.

Bucknell

Experiment Configuration

• User can work with multiple experiments.

• Each experiment is bound to a specific code base of the simulator (user uploaded).

• For each experiment, define number of runs for each simulation, random number generator seeds, length of transient time (for data deletion).

• User can't change an ongoing or completed experiment.

Model Specification

- GUIs guide the user to enter all the parameters for all the sub-models employed.
- No default values for model parameters.
- Validates parameter data.
- Shows the units for each parameter and helps user to understand context.
- Experiment design builds list of levels for each parameter.

Simulations

Bucknell

- Generates all design points for the experiment.
- Creates a configuration file for each simulation run.

• Dispatches simulation runs for an experiment across multiple processors (multiple replications in parallel - MRIP).

Results

- User can see the *raw data* from each simulation run.
- Results are stored together with the configuration that was used to generate them.
- Uses established methodology to generate statistics (average, standard deviation, confidence intervals, etc.)

Plotter

- User can request the system to built plots from stored results.
- The user can define what the plot will include from the web browser. The system processes the relevant data, generates *a plot that meets standards*, and sends the results back to the browser for display or download.

Implementation or Why Ruby on Rails Rocks

It's All about the Database

Database Interactions

Migrations

- Easy to add/remove columns or tables
- Agile for developers
- Abstraction
 - Data accessible as class variables
 - Easily map relations between classes

Ruby

- Easy and powerful
- Metaprogramming
 - Dynamically create new methods
 - Flexibility

AJAX

- AJAX helpers provided by Ruby on Rails
- Easier interface
 - Reduced page loads and refreshes
- Component validation
 - Constrains user to enter only valid parameters

Embedded Ruby (ERb)

• Views

- Dynamic content with embedded ruby in views
- Access to RoR AJAX helper functions
- DML Configuration
 - Dynamically generate configuration files
 - Allows for a single global template

DML Configuration file

```
mobility [
```

Bucknell

model "mobility.random" # import models for random movement deployment "random" # distribute mobiles uniformly in space period I # time interval between position updates in sec.

Is this configuration interface safer?

Edit Mobility	Configuration
Mobid	1
Mobility Type Pause Time (s)	waypoint ÷
Increment Number of Levels	30 4
Min Speed (m/s) Increment	5
Number of Levels	2
Max Speed (m/s) Increment	5
Number of Levels	2

DML Configuration file

```
mobility [
```

Bucknell

model <%= self.model %> # import models for random movement deployment <%= self.deployment %> # distribute mobiles uniformly in space period <%= self.period %> # time interval between position updates in sec.

```
motion [
```

type <%= self.motion_type %> # use random waypoint mobility.
mobid <%= self.mob_id %> # unique identifier for this pattern of movement

```
pause_time <%= self.pause_time %> # pause time
min_speed <%= self.min_speed %> # minimum node speed
max_speed <%= self.max_speed %> # maximum node speed
] # end of random waypoint motion
```

] #end of mobility

Distributed Ruby (DRb)

Multiple Replications in Parallel (MRIP)

- Run on multiple systems
- Collect more samples by running more simulations
- All results reported to server process
- Statistics automatically generated no user error
- Results stored on filesystem and in database

Future Work

- AJAX plotting utility.
- AJAX runtime queue management.
- Automatically determine length of transient and length of simulation run given a desired level of confidence.