
A Scalable Simulator for
TinyOS Applications

L. Felipe Perrone (perrone@ists.dartmouth.edu)
David M. Nicol (nicol@ists.dartmouth.edu)

ISTS Dartmouth College

7/30/10 Winter Simulation Conference 2002 2

Motivation

The Smart Dust project

macro scale micro scale

UC Berkeley

7/30/10 Winter Simulation Conference 2002 3

The need for simulation

Network features:
Massively parallel, large-scale, self-
configurable, application diversity,
wireless, dynamic, mobility, behavior
dependent on environmental conditions.

Monitor/sensor

Chemical sensor

Environment features: Diversity of
independent and inter-dependent
dynamic processes.

Traffic sensor

Difficulties: Development, testing,
debugging, performance evaluation.

7/30/10 Winter Simulation Conference 2002 4

Wish list for a simulator

  Simulates:
  The processes that drive the sensors in the motes
  The programs that run on motes
  The communication medium

  Supports:
  Very large numbers of motes
  Direct-execution of programs that run on motes
  Different applications in the same environment
  Accurate radio propagation model

7/30/10 Winter Simulation Conference 2002 5

TinyOS

The operating system on the mote platform.

frame task

TOS Component

…

…

events from lower
components

…

events to higher
components commands from

higher components

…
commands to lower
components

Within a mote, tasks are scheduled in FIFO order.

Events are analogous to signals or
hardware interrupts. They may signal
other events or call commands.

Commands can call other commands
or post tasks.
Tasks may be interrupted by events,
but not by other tasks. They may
signal events and call commands.

Frames represent the internal state of
the component and are statically
allocated.

7/30/10 Winter Simulation Conference 2002 6

A TinyOS application description

main_sub_init

counter_init

main_sub_start

counter_start

clock_init clock_event
clock_fire_event

counter_sub_output_init

int_to_leds_init

CLOCK INT_TO_LEDS

MAIN

COUNTER
counter_output

include modules{
MAIN;
COUNTER;
INT_TO_LEDS;
CLOCK;
};

MAIN:MAIN_SUB_INIT COUNTER:COUNTER_INIT
MAIN:MAIN_SUB_START COUNTER:COUNTER_START

COUNTER:COUNTER_CLOCK_EVENT CLOCK:CLOCK_FIRE_EVENT
COUNTER:COUNTER_SUB_CLOCK_INIT CLOCK:CLOCK_INIT

COUNTER:COUNTER_SUB_OUTPUT_INIT INT_TO_LEDS:INT_TO_LEDS_INIT
COUNTER:COUNTER_OUTPUT INT_TO_LEDS:INT_TO_LEDS_OUTPUT

app.desc file

MAIN.comp
COUNTER.comp
CLOCK.comp
INT_TO_LEDS.comp

7/30/10 Winter Simulation Conference 2002 7

Toward direct execution simulation

RFM ADC CLOCK ADC UART

MAIN

Application Components …

Application code for one mote: components
are wired together through compilation and
linking.

Directly executed
on a simulator

Unnecessary replication of the
same code within the
simulator.

or

7/30/10 Winter Simulation Conference 2002 8

Frames and local variables

…

…

…

…

One instance of
the application
code

Multiple
instances of
the component
frames in the
application

mote 0

mote 1

mote n

Simulator’s memory space:
#define TOS_FRAME_TYPE mycomp_frame
TOS_FRAME_BEGIN(mycomp_frame) {
 int x;
}
TOS_FRAME_END(mycomp_frame);

VAR(x)=0;

Frame declaration:

Frame variable reference:

struct BLINK_frame : public TOSSF_Frame {
 char state;
};

registerFrame("BLINK", new BLINK_frame, moteId);
BLINK_frame* TOSSFptr = (BLINK_frame*)
 getFrame("BLINK", moteId);
(TOSSFptr->state)=0;

Frame variable reference:

Frame declaration:

7/30/10 Winter Simulation Conference 2002 9

Application / Component linkage

char BLINK_INIT_COMMAND(long moteId) {
 registerFrame("BLINK", new BLINK_frame, moteId);
 BLINK_frame* TOSSFptr = (BLINK_frame*) getFrame("BLINK", moteId);

 (*TOSSFwiringMap(“BLINK”,“BLINK_LEDr_off_COMMAND”)) (moteId);
 (*TOSSFwiringMap(“BLINK”,“BLINK_LEDy_off_COMMAND”)) (moteId);
 (*TOSSFwiringMap(“BLINK”,“BLINK_LEDg_off_COMMAND”)) (moteId);
 (TOSSFptr->state)=0;
 (*TOSSFwiringMap(“BLINK”,“BLINK_SUB_INIT_COMMAND”)) (moteId, tick1ps);
 return 1;
}

To each application associate an object that maps the outbound
wires of a component to the inbound wires of another. This object
can be initialized at run time: applications can be defined at run time
from a definition file or script.

REGISTER_COMMAND(“BLINK”, BLINK_INIT_COMMAND);
REGISTER_COMMAND(“BLINK”, BLINK_LEDr_off_COMMAND);
REGISTER_COMMAND(“BLINK”, BLINK_LEDy_off_COMMAND);
REGISTER_COMMAND(“BLINK”, BLINK_LEDg_off_COMMAND);

7/30/10 Winter Simulation Conference 2002 10

The simulation substrate

DaSSF

RF Channel
(SWAN)

Terrain
(SWAN)

Mobility
(SWAN)

Environmental processes

…

mobile computing nodes

7/30/10 Winter Simulation Conference 2002 11

A simple TOSSF model
MODEL [
 ARENA [
 MOBILITY [
 model "mobility.stationary"
 deployment "preset"
 seed 12345
 xdim 5000 ydim 5000]
 NETWORK [
 model "network.fixed-range"
 cutoff 200]
]

 MOTE [
 ID 1
 xpos 0 ypos 0
 battery 500
 _extends .APPLICATION_TYPES.BLINK
]
 …
]

APPLICATION_TYPES [
BLINK [
 components [
 session [name "LEDS" use "system.LEDS"]
 session [name "MAIN" use "core.MAIN"]
 session [name "CLOCK" use "core.CLOCK"]
 session [name “BLINK" use "app.BLINK"]
]
 wiring [
 map [MAIN MAIN_SUB_INIT
 BLINK BLINK_INIT]
 map [MAIN MAIN_SUB_START
 BLINK BLINK_START]
 map [BLINK BLINK_LEDy_on
 LEDS YELLOW_LED_ON]
 …
]
]
]

DML script describing the application and the simulation scenario

7/30/10 Winter Simulation Conference 2002 12

Limitations of TOSSF

 All interrupts are serviced after a task,
command or event finishes executing.

 Commands and event handlers execute
in zero simulation time units.

 No preemption.

7/30/10 Winter Simulation Conference 2002 13

Scalability

  The complete SWAN code occupies 1.5M bytes of memory.
  A workstation with 256M bytes memory can hold roughly

32,500 motes.
  The memory overhead associated with each application type

definition is that of a wiring map definition.
  The processing overhead involves table lookups for every

variable reference and every function call (command or
event). The cost incurred is application dependent.

  The model can be broken up for parallel simulation in SWAN:
we’ll be able to experiment with very large network.

7/30/10 Winter Simulation Conference 2002 14

Future work on TOSSF

  Mote platforms got a lot more powerful: memory has increased
from 8K to 128K. One can code up a single executable containing
different applications to be deployed in all motes.

  A new generation of motes slated to be released soon will use
different radio technology.

  With the release of TinyOS 1.0, applications are described in a
different way in a dialect of C: nesC. All the source-to-source
translation in TOSSF needs to be rethought.

  The nesC language is said to be a transient solution: a more
powerful programming language are a work in progress.

