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a proof of concept and, therefore, has been postponed
to a later time. In any case, one can argue that the
timing error incurred in our scheme is very small since
it is a fraction of the execution time of a task, which
by construction should be very small. The precise time
when a hardware interrupt is handled in the simulation
is delayed by a very small (perhaps even negligible) fac-
tor.

This first version of TOSSF does take liberties with
respect to the timing of certain operations for the sake
of simplifying the simulation model. In addition to
the absence of task preemption, TOSSF assumes that
tasks execute instantaneously, that is, in zero simula-
tion time. The time taken in the execution of com-
mands and events is also neglected. The simulation
clock is incremented only when events generated at the
level of TinyOS hardware components are processed.
Since communication latencies should dominate the ex-
ecution time of the applications, we expect that the
relative errors in timing should be small. However, we
intend to improve on the current design in an attempt
to increase the accuracy of timing in our simulations.

5 CONCLUSIONS

This paper presented concepts related to TinyOS, the
operating system behind Berkeley motes, a computing
platform capable of sensing and radio communication
that can be seen as the precursor of Smart Dust. Our
contribution with this work was to take SWAN, a high-
performance simulator of wireless ad-hoc networks, and
build upon it to develop an architecture for a flexible
and scalable simulator for TinyOS applications. The
TinyOS Scalable Simulation Framework, or TOSSF, re-
sulted in a collection of additional models for SWAN
that represent hardware components from the Berkeley
motes. Also, TOSSF offers the programmer of TinyOS
applications with a set of scripts that transparently
adapt the source code for execution in the simulator.

Through the use of dynamic linking of TinyOS compo-
nents into working applications, we have managed to
minimize the memory footprint of simulation models
at the cost of a degradation of memory access times
that still needs to be quantified. Finally, we indicate
that there is still work to be done to enable TOSSF
to produce faithful estimates of timing of execution of
applications.

TOSSF still needs to mature before becoming ready
for a public release. We expect that the demand for a
simulator with its features is already great and that it
keeps growing as more and more researchers look for-
ward to performing scalability studies in the applica-
tions under development.
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the simulator. All references to data in a component’s
frame via the VAR keyword are modified so that ac-
cess to the data is made indirectly: first a pointer to
that specific instance of the component is fetched from
TOSSF, then the data can be accessed. Surely this adds
overhead to the execution of the model by adding one
level of indirection to every data access. We have yet
to quantify this effect and analyze it in the light of its
benefits.

A positive consequence of this dynamic linking
scheme is that TOSSF can create application types on
the fly and reuse them throughout the model initializa-
tion. When the configuration script for a model is first
read in and a new application name is encountered, a
corresponding application type is created in the form of
a data structure containing a list of components and a
wiring map that describes the application graph. From
that point on, if the same application type is found
again in the configuration file, all the simulator has to
do is to allocate space for its component frames. In-
stances of the same application type share the same
wiring map, so no memory is occupied with multiple
replicas of the same information.

The configuration scripts used by TOSSF are very
similar to those in SWAN. They are described in DML
(Domain Modeling Language), which has a simple, but
powerful grammar whose worth has been proved time
and again in SSFNET models. The DML model script
can be described as the composition of three distinct
parts. First, the ARENA section defines models for mo-
bility, node deployment and radio propagation for the
length of the simulation run. Next, the MOTEs in the
model are instantiated one at a time, defining for each
one a unique identification and an application type.
Last, at the end of the script, comes a dictionary of
application types. Each application type in this dictio-
nary is derived mechanically from the original TinyOS
.desc files.

In the development of TOSSF, a substantial portion
of time was spent in the construction of programs or
scripts to instrument source code or convert configura-
tion file formats. While the latter of these two tasks
can be performed by simple Perl scripts, the transfor-
mations of component source codes proved a bit prob-
lematic. One crash at a time, we’ve discovered that
this translation process can get complicated. The Perl
script transforming the source code from TinyOS syn-
tax to C++ had to be corrected a number of times and
still does not cover all possible situations correctly. The
right approach in this circumstance is to leave this work
for a specialized tool such as a source-to-source com-
piler. As TOSSF matures, we expect to abandon our
much hacked Perl script in favour of a better solution.

It is important to note that two facts drive us to

automate these transformations on source code. First,
from the perspective of the TinyOS programmer the
learning curve in using TOSSF has a very sharp rise.
The same set of files and programming tools used to
produce the application for a real Berkeley mote is used
to create the application for TOSSF. The programmer
does not need to aquire any skill other than learning to
write a very basic DML configuration script to define
the scenario for the simulation and the motes which
populate the simulation space. Second, the automation
of this translation process will likely be much less error
prone than if done by hand.

In addition to developing techniques to convert soft-
ware components and applications for execution on
TOSSF, we also had to develop additional SWAN mod-
els to represent the hardware components in the Berke-
ley mote platform, namely CLOCK, ADC, LEDS, RFM
and UART. Actually, since we were not currently inter-
ested in simulating the interaction of motes with PCs
via serial port, we have left the development of a UART
model for later. On the other hand, we have developed
software components that mimic the behavior of the
other pieces of hardware.

Our model for the radio transceiver, the RFM compo-
nent, is nearly identical to the physical layer in standard
SWAN. The CLOCK component was also very simple
to construct: it consists of a SWAN timer programmed
with the data for resolution and time scale passed dur-
ing the initialization of the CLOCK’s FSM. The ADC,
used to convert sensed data from analogue to digital
format, was also simple to implement. The command
to request data from the ADC spawns a SWAN timer
that expires after a fixed delay and pushes the converted
data out through the port specified in the request. Fi-
nally, the LEDS component which contains three LEDs
in red, green and yellow, only has to receive commands
to control individual diodes which are represented by
boolean variables in the frame of the component. These
components are made available for the construction of
models of applications and the resulting architecture,
illustrated in Figure 4 still bears much resemblance to
the original SWAN from Figure 3.

When we consider the current design of TOSSF, we
see that its main limitation regards the accuracy in es-
timates of the processing time for the applications ex-
ecuted. As of yet, TOSSF cannot deal with interrupts
that would preempt an executing task. If a the simu-
lation model of a hardware component flags an inter-
rupt during the execution of a task, the corresponding
event is queued to be handled when the task completes.
Of course, in the real hardware, the event would take
precedence over the task execution. In the simulation,
the implementation of task preemption would require
too much added complexity at a stage when we sought
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of the sensors which equip mobile nodes ultimately de-
termines the nature of environmental processes and, as
is the case with any other SWAN submodels, new spe-
cific environmental process can be easily added to the
framework.

Finally, the last model which depends on terrain data
describes the mobility of nodes. We have implemented
a number of different kinds of mobility models such as
those described in (Camp et al. 2002). It is currently
not possible to mix nodes with different mobility mod-
els in the same simulation, although we intend to relax
this restriction in future releases of SWAN. Building a
simulator for TinyOS sensor networks on top of SWAN
should perhaps require only one kind of mobility model:
one where nodes are stationary (either with random or
directed placement). It would seem that all the other
mobility models built into SWAN would be wasted on
TinyOS simulations because sensor nodes don’t move.
However, that is not the case. A research group at
USC has proposed Robomote, a robot design based on
Berkeley motes running TinyOS (Sibley et al. 2002).
Simulations of Robomotes would benefit from the vari-
ous mobility models that SWAN has to offer, especially
one that allows the application to determine dynami-
cally the direction and the speed of movement.

The description of the application code which runs
inside each mobile node in SWAN is also highly mod-
ular. We have provided for a number of options com-
monly used to compose the protocol stack in wireless
networks. To simulate Berkeley motes running TinyOS,
however, none of these are of any help with the excep-
tion of the physical layer model. Since Berkeley motes
use RF signals to communicate, we can reuse that com-
ponent from SWAN as the foundation for the commu-
nication hardware model in a TinyOS simulator. In the
next section, we discuss in detail how we constructed
this simulator from SWAN’s existing code base.

4 RUNNING TINYOS APPLICATIONS IN

A SIMULATOR

Adapting SWAN to produce a simulator for TinyOS ap-
plications requires modifications that lie mostly within
the model of a mobile node, which is shown as a stack
of protocols in Figure 3. Part of the attraction for using
SWAN as the foundation for this new simulator comes
from the fact that SWAN offers the flexibility of model
configuration at run time. In TinyOS, when an appli-
cation is changed, part of the code has to be recompiled
and a different executable is generated by the linker.

The first difficulty that arises when we try to imple-
ment a TinyOS application graph on a simulator comes
from the fact that to achieve the same flexibility of
model configuration found in SWAN, a lot more work

needs to be done. Not only the list of components that
makes up the application graph may change, but also
the way they are wired together.

The solution we chose to give TOSSF the same flex-
ibility of model configuration at run time found in
SWAN breaks the applications as TinyOS would have
built them, so that we can put them together again
our own way. Rather than allow TinyOS’ program-
ming tools to wire components together by mapping
symbols exported to symbols imported at compile time,
we compile applications one component at a time. The
commands and events exported by a component are reg-
istered with the simulator. This registration is achieved
by identifying the exported functions in the source code
and instrumenting them so that when constructors for
the objects in the program are called, a string with
the name of the function and a pointer to the function
are passes to the simulator. TOSSF organizes this in-
formation in a lookup table which is used later on to
perform the dynamic linking of components. We fur-
ther instrument the component to fetch from TOSSF
(during its initialization stage) the pointers to all the
functions from other components that it will call.

More than just add flexibility to model configuration,
with a little extra trickery, this scheme of dynamic link-
ing allows one single copy of the object code for each
component to reside in memory. Say that two differ-
ent application types A and B need to be used in the
same simulation model. If the intersection of the com-
ponent types used in the two applications is non-empty,
dynamic linking will guarantee that the memory foot-
print of the simulation model is optimal. If we were to
blindly bundle up all components that constitute ap-
plication type A, build an object-wrapper around this
bundle and then repeate the same process for applica-
tion type B, the components common to both types
would end up in memory twice.

It turns out that what we do for the sake of opti-
mizing the memory footprint of the simulation model
and for the sake of enhanced flexibility in model config-
uration is a must when we deal with the allocation of
storage for each component. Every different instance of
the same component must have its own frame. There-
fore, we need to ensure that when the code of a com-
ponent executes, it has access to the correct instance of
component frame. Again, we instrumented the TinyOS
source code. This time we translated frame defini-
tions to force components to register its frame type
with TOSSF. During the initialization of the compo-
nent, when the wave of INIT calls percolates through
the application graph carrying along in the function call
a unique identification for the mote to which it belongs,
its own instance of the frame is allocated. This instance
of the frame is also registered in a lookup table withing
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tion of a simulator based on the discrete-event world
view. If a kernel for discrete-event simulation, which
can efficiently deal with very large numbers of events,
is available, one of the hardest parts of the construc-
tion of the simulator is made easy. We have been work-
ing with such a kernel (DaSSF) and discuss it in more
detail in the next section, where we also introduce a
general purpose simulator for wireless ad-hoc networks
(SWAN) which has been used to create a substrate for
the implementation of a TinyOS simulator.

3 THE SIMULATION SUBSTRATE

The Dartmouth Scalable Simulation Framework
(DaSSF) is an implementation of the SSF standard
application programming interface for discrete-event
simulation of large and complex systems (SSF API
1999). This concise API allows for high portability
between compliant simulators and, furthermore, allows
for the automatic parallelization of simulation models.
DaSSF is one particular implementation of this API
and employs conservative synchronization in the
construction of a simulation kernel optimized for high
performance when dealing with large models (Liu and
Nicol 2001).

Since the SSF API was developed within the context
of models for telecommunication systems, it lends itself
naturally to the description of computer networks. The
five classes defined in SSF, Entity, Process, Event, in-
Channel and outChannel have proved useful and pow-
erful in the simulation of models for network protocols.
Starting from these few classes, SSFNET, a comprehen-
sive library of models for Internet protocols, was built
and extensively used in large-scale simulations (Cowie,
Nicol and Ogielski 1999a, 1999b). The SSFNET project
provides a high-performance alternative to established
simulators, such as ns-2 and OPNET, which scales well
with the number of nodes in the network model.

Our interest in investigating the use of self-
configurable wireless networks in emergency response
scenarios coupled with the expertise we accumulated in
the simulation of Internet protocols lead us to develop
a project similar to SSFNET, but focused on models
of wireless protocols instead. To this end, in cooper-
ation with BBN Technologies, we have constructed a
framework in which we can execute simulation models
of wireless networks in conjunction with detailed models
that describe the environment where the network oper-
ates. We named this framework SWAN: Simulator for
Wireless Ad-Hoc Networks (Liu et al. 2001a). Version
1.0, the first public release of the SWAN is available on
the WWW (Liu et al. 2002).

The architecture of SWAN, illustrated in Figure 3, is
composed of five classes of submodels. Each of these

Mobility Sensor

MAC

App

Net

PHY

IP

Sensor

MAC

App

Net

PHY

IP

RF Channel

...

Terrain

Environmental Process

Models of the
mobile nodes

Figure 3: Component Architecture of the SWAN
Framework

submodels is encapsulated so that instances can be re-
moved or substituted by other instances from a library.
The specification of all the submodels that compose
a simulation resides in a configuration script which is
fed to the simulator engine at execution time. This
means that the code base does not have to be recom-
piled and submodels from the libraries provided can be
easily plugged in or out of the overall configuration.

The first submodel worth of mention is that of the
terrain, which affects how radio signals propagate, how
sensed processes behave and how the nodes in the net-
work move. As of now, only two simple terrain models
are available in SWAN: one shaped as a rectangle and
another shaped as a torus. The terrain models can be
simply bi-dimensional or have an extra axis to measure
elevation. We have on-going efforts to allow the mod-
eler to enter arbitrarily complex descriptions of terrain
features using file formats similar to TIGER, used in
electronic maps by the USGS.

The RF propagation model is also of great impor-
tance in this framework. Among other goals, the simu-
lation should be able to indicate the behavior and the
performance of the network in realistic conditions. Ra-
dio connectivity needs to be modeled at a level of detail
that is able to stress the salient features in the network
design and at the same time be simple enough so as not
to overburden the simulation with unnecessary compu-
tation (Takai et al. 2001). We have provided several
variants of RF propagation model, so that different lev-
els of detail are available to the simulationist, who can
tailor the specifics according to the requirements of the
experiments.

The environmental process, which interacts with sen-
sors in mobile nodes, may or may not be affected by the
terrain submodel. At this time, we have only imple-
mented a simple model for the diffusion of gases on the
simulated space, which is subject to a field specifying
the direction and strength of air currents. The nature
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structures such as the component’s frame, the com-
mand handlers it implements, the command calls it
makes, the event handlers it implements, the events it
signals, etc.

In what TinyOS programming style is concerned,
most components can be described by finite state ma-
chines (FSM). The first state in a component’s FSM is
an initialization state. This state is entered whenever
the component receives a command to initialize is issued
by another component in a higher position in the hier-
archy. In practice, the MAIN component in the applica-
tion, implemented by the main() function in C, spawns
a wave of initialization commands that propagates out
from its hooks and descends along the application graph
causing all components to be initialized. After initial-
ization, components enter a state where they wait for
another wave of commands, this time a wave of START
commands also spawned by the MAIN component, which
take the components’ FSMs into their main processing
loop.

Each component can be defined in isolation of others
or it can be defined as a collection of other components
hiding the internal details and offering the programmer,
at a higher-level of abstraction, just the functionality
the collective implements. This design philosophy al-
lows for the construction of databases of components
from which the programmer can draw pieces to quickly
assemble highly tailored applications.

Applications and components constructed from other
components need to define the interconnections be-
tween its pieces. For this purpose, TinyOS uses descrip-
tion (.desc) files, which contain two different sections:
first, an enumeration of the components used; sec-
ond, how these components are interconnected. These
interconnections are mappings between the endpoints
of the wires defined in each component’s .comp file
and define a directed graph such as the one in Fig-
ure 2. For instance, if a component CLOCK signals
the occurrence of an event CLOCK FIRE EVENT to an-
other component COUNTER, which expects to receive this
kind of events at a “wire” called COUNTER CLOCK EVENT,
one would find the following line in the appli-
cation’s .desc file: COUNTER:COUNTER CLOCK EVENT

CLOCK:CLOCK FIRE EVENT. Figure 2 also indicates that
there is a dichotomy in the kinds of components in
TinyOS: some are just software, while others are pieces
of hardware which interact with software components
according to the same component interface.

The TinyOS augmentations for the C language must
be translated to standard syntax before the source code
is passed to a C compiler. The translation process hap-
pens in several steps handled by compile time tools in-
voked from the application’s make file. The most im-
portant of these steps are the translation of TinyOS

SW

HW

COMP C

COMP A

COMP B

HW 1

HW 2

Figure 2: An Example of an Application Graph

keywords to standard C syntax and the wiring together
of components. This latter step consists of the creation
of a linkage header file which invokes the C preproces-
sor to do symbol substitutions mapping the endpoints
of component’s wires to one another. Clearly, in or-
der to allow for the direct execution of TinyOS source
code, a simulator will need to perform similar transla-
tions preserving the semantics from the original appli-
cation while adapting translated commands to fit in the
new framework. Providing the tools to accomplish the
translations for a simulator entails a simple, although,
unexciting task.

We have identified features of TinyOS, however, that
are encouraging for the development of a scalable sim-
ulator for the execution of mote applications. First and
foremost, it is interesting to note that the memory foot-
print of the simulated mote is very small. Clearly, the
memory space occupied by source code of the mote ap-
plication is the same whether one simulates a model
with one mote or with hundreds of thousands of motes.
Only one copy of the source code for each component
needs to be kept in memory. This fact is exploited in
TOSSIM (Levis 2002). On the other hand, the overall
memory space occupied by component frames is pro-
portional to the number of motes multiplied by the
number of components per mote. Since motes have very
small RAM space, however, one can expect that even
in today’s humble platforms such as a workstation with
512M bytes of memory, it would be possible to store
large numbers of component frames for a simulation.

Second, the fact that the memory for each mote appli-
cation is static and has its size defined at compile-time
makes memory management in the simulator nearly
trivial. Exchanges between components happen exclu-
sively via commands or events, which deposit data in
the frame of the callee. Component frames can be en-
capsulated by wrapper-classes in object-oriented pro-
gramming and allocated prior to the start of the simu-
lation.

Third and finally, the event-driven nature of the
TinyOS programming model facilitates the construc-
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Framework, and SWAN, our Simulator for Wireless Ad-
Hoc Networks. We present more details on DaSSF and
SWAN in later sections of this paper; for now, suffice it
to say that DaSSF is a streamlined and optimized simu-
lation kernel with a proved record for high-performance
and scalability, and that SWAN is collection of C++
classes that builds up on the DaSSF kernel to offer a
range of models for the simulation of wireless ad hoc
networks.

The remainder of this paper is organized as follows.
Section 2 presents concepts on TinyOS, expounding
its philosophy of application design, its programming
model and implementation. Section 3 introduces the
reader to the most important concepts in DaSSF and
SWAN, explaining the foundation upon which TOSSF
is built, while Section 4 describes the architecture
and the implementation of TOSSF. Finally, Section 5
presents the challenges in the evolution of TOSSF and
the work that lies ahead in its development.

2 TINYOS CONCEPTS

One of the greatest contributions TinyOS makes to the
development of applications for massively distributed,
heavily constrained computing platforms is arguably its
programming model. Applications are made of small,
self-contained units called components which are inter-
connected by a directed graph to compose the greater
picture. A TinyOS component is made of collections
of command handlers, event handlers, and tasks plus
its frame, a fixed-size portion of memory allocated at
compilation-time to store the local state.

task
frame

TOS Component

...

...

...

...

commands from
higher components

commands from lower
components

events from lower
components

events to higher
components

Figure 1: Structure of a TinyOS Component

Figure 1 illustrates the standard component struc-
ture defined in the TinyOS literature (Hill et al. 2000,
TinyOS Programming Bootcamp 2001). Triangles
pointing up represent event handlers. Events are soft-
ware signals analogous to hardware interrupts. The ori-
entation of the triangles is not an arbitrary choice, but
rather indicates that the events a component handles
can only be signaled by components below in the hi-

erarchy. An event can signal higher events or issue
commands to lower components. Similarly, triangles
pointing down represent command handlers and indi-
cate that only components placed above can issue com-
mands to the component. The arrows indicate that a
component can only issue commands to other compo-
nents below and events to other components above. It is
important to point out that commands are non-blocking
function calls to a lower component (which can in its
turn trigger commands to even lower components) and
also that both event and commands are expected to
execute in very short time.

Commands or events can post tasks into a FIFO
queue handled by the scheduler for the mote. We can
say that task scheduling is the only “service” imple-
mented by TinyOS, or put in another way, that the task
scheduler is basically the kernel of this operating sys-
tem. Once a task starts to execute, it can only be pre-
empted by the arrival of an event, neither by commands
nor by other tasks. Tasks can post other tasks and op-
erate only on data that is placed within the frame of
the component to which they belong. When the queue
empties out, in the absence of any events, the mote can
enters a dormant, power-saving state.

Activity in a TinyOS application starts down at the
hardware, the lowest level of components in the hier-
archy. Events such as the arrival of a sensor reading
from the analogue-to-digital converter or an incoming
message from the radio receiver cause a hardware in-
terrupt, which is handled by some component, which
may, in its turn, initiate an upward flow of events. At
a certain point, this upward flow changes direction and
the components at the high-end of the chain issue a
downward flow of commands with processing activities
eventually ceasing until the arrival of another hardware
interrupt. This architecture supports multiple flows, or
threads, allowing for the representation of the extensive
concurrency inherent to applications in this regime.

The programmer uses the C programming language
to describe the component in two distinct steps. First,
the interface is defined in a .comp file using keywords
that label blocks containing function prototypes. The
keywords HANDLES and SIGNALS, respectively, indicate
the events the component handles and the events the
component generates on higher components. The key-
words ACCEPTS and USES, respectively, indicate the
commands that the component exports to higher com-
ponents and the commands from lower components that
it calls. The .comp interface files describe the connec-
tion points for software wires that represent inputs and
outputs of a component in the same way that one could
describe a piece of hardware. Second, the “guts” of
the component are defined in a dialect of the standard
C syntax that introduces TinyOS keywords to specify
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optimizations and ease of expression of the extensive
level of concurrency inherent to the system. The pro-
gramming model used in TinyOS imposes a hierarchi-
cal, component-based design resembling the organiza-
tion of hardware, as we see later in this paper.

Although this hierarchical design methodology can
lead to application programs that are easier to under-
stand, construct and maintain, it does not eliminate the
need for verification, debugging and, very likely, opti-
mization before the code is run in production stages.
Even if one takes great pains to ascertain the correct-
ness and the performance of the application by trial
runs on a few of motes, little can be said about what
happens when conditions that affect communication
change or when the number of motes participating in
the network is substantially increased. In circumstances
such as these, the value of conducting trial runs over a
simulator is obvious and unquestionable.

For quite a while, the distribution of TinyOS has
shipped with a simple simulator TOSSIM (Levis 2002)
that allows the verification of basic properties of appli-
cations before they are loaded into motes for operation
in the field. Although helpful for preliminary debug-
ging and verification of applications, this simulator has
proved to restrictive in a number of ways.

First, TOSSIM doesn’t allow one to mix different
applications in the same simulation run: all motes in
the simulation must run exactly the same code. One
can easily conceive of scenarios where different motes in
a Smart Dust cloud would have specialized functions,
thus running different applications, and still cooperate
toward a common objective. With a bit of program-
ming trickery, one can get around this limitation and
make TOSSIM run different branches of the same code
for different types of motes. For instance: if the iden-
tification for a mote is an even number, take a certain
branch in the code and behave as application A, if the
identification is an odd number, take another branch
and behave as application B. While this may suffice
for simulation purposes, it would require that the code
executed on the simulator be a modification of the ac-
tual code that is loaded onto real motes for operation.
This process of source code modification for simulation
introduces the possibility of changing the behavior the
application would exhibit in the real system, thus inval-
idating the results of the simulation. It would be much
preferable if the simulation could run the code that goes
in the mote as-is.

Second, this simulator is rather simplistic in model-
ing the environment where motes are placed. There is
no provision for simulating the processes that stimulate
the sensors on the motes. For instance, one could design
a cloud of motes that can take measurements of temper-
ature and the presence of a certain gas, then somehow

process and exchange the collected data. Without mod-
els that accurately represent the conditions of tempera-
ture and diffusion of gases in the environment, simula-
tion runs will not exhibit the same reactions that motes
experience in the field and the verification of correct-
ness or the estimation of performance of the application
software are severely impaired. Another important en-
vironmental model which can be improved in TOSSIM
regards the propagation of radio signals. Radio connec-
tivity is described by an all-or-nothing approach: the
radio channel is either perfect (effective bit error rate of
zero), or totally broken, meaning that the motes can-
not communicate. A common criticism to simulators
of wireless communicating devices is that they hardly
ever accurately portray what happens in the real world.
Rather than give up on studying a wireless network by
simulation for this reason, we propose the development
of a more detailed simulator, one which accounts for
how radio signals propagate on a given terrain with fea-
tures specified by the modeler.

Finally, and most importantly, TOSSIM was not
built with performance scalability in mind: the current
documentation reports that simulations scale well up
to one thoursand motes. One cannot use TOSSIM to
efficiently run experiments where the number of motes
has the same order of magnitude as that which is ex-
pected of large-scale Smart Dust systems. We may de-
sign applications that are intended to bring together
hundreds of thousands of motes, or perhaps even more,
but if the number of motes we can simulate is actually
orders of magnitude smaller, simulation will teach us
little about the dynamics of the larger system. More-
over, it is a well-known fact that simulation provides
the experimentalist with not only a virtual environment
with nearly endless possibilities, but also with powers
of controllability and repeatability over the conditions
where experiments are run. The importance of these
powers is magnified when we consider the difficulty of
controlling field experiments with large-scale wireless
networks and the near impossibility of repeating all the
conditions for each test trial. Even if one could amass
the incredible resources to perform experiments with a
large-scale Smart Dust system, deploying it and exer-
cising any measure of control over an experiment with
it would be a herculean task, not to mention what it
would take to observe it in action.

These gaps in what current simulators for TinyOS
devices have to offer and the long wish list of what
would be desirable in a simulator have motivated us
to start the project which we call TOSSF, a TinyOS
Scalable Simulation Framework. Fortunately, our ef-
forts in constructing TOSSF don’t start from ground
zero, but rather build up on two other projects in
our group: DaSSF, the Dartmouth Scalable Simulation
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ABSTRACT

Large clouds of tiny devices capable of computation,
communication and sensing, goal of the Smart Dust
project, will soon become a reality. Hardware minia-
turization is shrinking devices and research in software
is producing applications that allow devices to com-
municate and cooperate toward a common goal. Suc-
cess on the software front hinges on the design of algo-
rithms that can scale up with system size. Given that
the number of individual cooperating devices will reach
high orders of magnitude (hundreds of thousands or
even millions), debugging and evaluating the software
in such a large system can reap much benefit from sim-
ulation. This paper describes the design of a scalable
and flexible simulator which allows for the direct exe-
cution, at source code level, of applications written for
TinyOS, the operating system that executes on Smart
Dust. This simulator also provides detailed models for
radio signal propagation and node mobility.

1 INTRODUCTION

The idea of Smart Dust, which seemed seemed to be
almost science fiction not long ago, is fast becoming a
reality. This project born to a group at UC Berkeley,
has aimed at producing tiny devices called motes, which
are capable of some form of communication, using either
laser or radio frequency, and are embedded with a mi-
croprocessor, memory and sensing circuits (Warneke et
al. 2001). These devices, the motes, can be distributed
over some portion of physical space where they self-
organize into a communication network that is tightly
integrated with the environment and, perhaps, even in-
visible. In large numbers, the devices can come close
to being ubiquitous and, one small portion at a time,
the physical world can be imbued with the ability to
take inputs, process them and react back on the phys-
ical world (Estrin et al. 2002). One cannot overstate
the impact this new technology will have on the way
computing devices and the world interact.

In many ways, the diminutive size of the devices will
be one of the key factors behind this revolution in the
way computing is done. For this reason, it is only nat-
ural that the word tiny has been associated with the
Smart Dust project from its inception. Their main goal
at this time is to achieve a level of integration, using
micro-electrical mechanical systems (MEMS) technol-
ogy, that brings the form factor of the mote down to one
cubic millimeter (Warneke, Atwood and Pister 2001).
While the fruits of these efforts in miniaturization take
time to ripen, devices with much larger form factor are
becoming increasingly popular in the research commu-
nity.

The motes currently in industrial production (Cross-
Bow 2002) are perhaps unworthy of being called a speck
of dust since their form factor is 1 inch by 1.5 inches.
Time and experience are demonstrating, however, that
even at this size, these wireless computing platforms
have a wide range of applicability. Motes are enabling
several projects in remote sensing as well as in robotics
(Sibley et al. 2002). The success and the popularity of
these devices is not only the result of advances in hard-
ware, but also of ingenuity in the design of TinyOS, the
system software that empowers them.

TinyOS can be considered as much of a technology
enabler as motes themselves are. It is the operating
system that allows Smart Dust to happen creating an
environment of high flexibility for application design
and execution over a severely constrained computing
platform. Some may question what TinyOS really is,
in this day and age when some operating systems have
been more super-sized than meals at fast-food restau-
rants. What this operating system offers lies not so
much in the range of services it provides, but rather in
the principles that guide the design of these applica-
tions.

At the core of TinyOS are lean mechanisms for task
scheduling and interrupt handling. The application de-
sign framework based on this foundation is one which
allows the high flexibility desirable in problem-specific


