
THE DESIGN OF XML-BASED MODEL AND

EXPERIMENT DESCRIPTION LANGUAGES FOR

NETWORK SIMULATION

by

Andrew W. Hallagan

A Thesis

Presented to the Faculty of

Bucknell University

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science with Honors in Computer Science

June 1, 2011

Approved:
L. Felipe Perrone
Thesis Advisor

Stephen Guattery
Chair, Department of Computer Science

ii

Acknowledgments

Long after I have forgotten the details of regular tree grammars and XML parsing
techniques, I will remember my mentor and friend, Felipe Perrone. He taught me a
little bit about computer science and a lot about researching with my head up and
learning how to learn. I would also like to thank Peg Cronin, who was an enormous
source of support during this process. She understood the important stuff, like if
we can’t take a “plunge” we should at least have our “realm”! I am sorry that it
is only just now I have found such a wonderful ally and friend. I also appreciate
the time spent by my faculty readers, Sharon Garthewaite and Shane Markstrum.
Their comments have helped polish this work into something scholarly. I would also
mention Bryan Ward, who for years has been a great collaborator, co-conspirator,
and comrade. Inspiration doesn’t happen in a vacuum and Bryan has been a friend
more inspiring than he probably realizes. Finally, my family has seen all of this and
everything else from the beginning. Even if they don’t understand the next 85-or-so
pages, they’ll probably read most of them anyway, which makes me smile.

iii

Contents

Abstract x

1 Introduction and Background 1

2 Related Work 13

2.1 XML, Simulation and Model Description 13

2.2 XML, Simulation and Experiment Description 15

2.3 Alternative Model Description Languages 16

2.4 XML, Simulation and Ontologies . 18

3 Conceptual Design 21

3.1 Roles of NEDL and NSTL . 21

3.2 Language Goals . 22

3.3 Description with XML . 23

3.4 NEDL and NSTL in Practice . 24

CONTENTS iv

4 NEDL and NSTL Details 27

4.1 NEDL Syntax . 27

4.1.1 The experimentspace element 28

4.1.2 The factorlist element . 28

4.1.3 The conditions element . 29

4.1.4 The memberof element . 30

4.1.5 The levellist element . 30

4.1.6 The sequence element . 31

4.1.7 The exclusionrestriction element 32

4.1.8 The linkingrestriction element 33

4.2 Details on the sequence element . 33

4.3 Details on the exclusionrestriction element 35

4.4 Details on the linkingrestriction element 36

4.5 A Full Example . 36

4.5.1 The Experiment Design Matrix 39

4.6 NSTL Syntax . 39

4.6.1 The template element . 40

4.6.2 The group element . 41

4.6.3 The block element . 41

5 Parsing NEDL and NSTL Documents 43

CONTENTS v

5.1 Document Object Model . 44

5.2 Simple API for XML . 44

5.3 Data Binding . 45

5.4 Advantages to Data Binding . 46

5.5 Alternative Parsing Methods . 48

6 Validating NEDL and NSTL Documents 51

6.1 Introduction . 51

6.2 XML and Tree Grammars . 52

6.3 Implementation . 55

6.4 NEDL Checking . 57

6.4.1 Checking memberof elements 57

6.4.2 Checking sequence elements 57

6.4.3 Checking linkingrestriction elements 59

6.4.4 Checking exclusionrestriction elements 59

6.5 Chapter Summary . 60

7 Code Generation 61

7.1 Introduction . 61

7.2 Working with Design Points . 62

7.3 XML Transformations . 63

vi

7.3.1 Using XSLT . 64

7.3.2 An Alternative Approach: Groups and Blocks 67

7.3.3 How it Works . 68

7.4 Chapter Summary . 69

8 Conclusions and Future Work 71

A Schemas 75

A.1 NEDL Schema . 75

A.2 NSTL Schema . 79

A.3 LevelList Schema . 80

vii

List of Tables

1.1 A Simple Design . 5

4.1 A Full Design . 40

viii

List of Figures

1.1 Ways to study a system. 3

1.2 A high-level view of the SAFE architecture. 8

1.3 An HTML “anchor” element and all of its components. 10

5.1 From NEDL document to design point generation. 47

ix

Code Listings

2.1 An example fragment of DML. 17

5.1 An example grammar using the RELAX NGCC syntax. 48

5.2 An example instance document for use with RELAX NGCC. 49

7.1 An XSLT template from Grundy et al. [22] used for generating source
code. 65

7.2 An XSLT template from Swint et al. [48] used for generating source
code. 65

7.3 An XSLT template from Canonico et al. [13] used for generating source
code for the ns-2 network simulator. 66

7.4 An example Java method with XML additions. 68

7.5 Four sample output scripts. 69

x

Abstract

Empirical study of complex computer networks is costly, disruptive, and simply im-
practical. Simulating network models is a viable alternative, though this too has
problems; the process of effectively incorporating network simulation results into a
larger experimental study introduces many potential sources for error, which are
known to undermine the credibility of published work. The conspicuous absence of
such fundamental information as the simulator engine used, the size of the simulation,
details of the PRNGs used, etc., and poor use of statistical methodology are examples
of procedural errors that have often made the replication and scientific validation of
network simulation studies nearly impossible.

The Simulation Automation Framework for Experiments (SAFE) is a project cre-
ated to raise the level of abstraction in network simulation tools and thereby address
issues that undermine credibility. SAFE incorporates best practices in network simu-
lation to automate the experimental process and to guide users in the development of
sound scientific studies using the popular ns-3 network simulator. This thesis presents
my contributions to the SAFE project: the design of two XML-based languages called
NEDL (ns-3 Experiment Description Language) and NSTL (ns-3 Script Templating
Language), which facilitate the description of experiments and network simulation
models, respectively. The languages provide a foundation for the construction of bet-
ter interfaces between the user and the ns-3 simulator. They also provide input to a
mechanism which automates the execution of network simulation experiments. Addi-
tionally, this thesis demonstrates that one can develop tools to generate ns-3 scripts
in Python or C++ automatically from NSTL model descriptions.

1

Chapter 1

Introduction and Background

Computer networks leverage the power of many, and they have become more powerful
than ever for a few reasons: the cost of microprocessors continues to fall ever lower,
the computational power of these processors continues to rise, and mobile devices
using these processors are becoming ubiquitous. Researchers, engineers, government
leaders and business people seek to leverage the power of computer networks in many
different applications from disease control to energy consumption to military combat.
We can classify computer networks into three sets: hardwired, wireless, and ad-hoc.
The members of these networks are individual machines, perhaps laptop and desktop
computers. They could also be hand-held smart phones or even autonomous devices
that operate without direct user input. These members are called nodes. Nodes in a
network can send messages to one another and typically do so by first breaking the
message up into small, discrete chunks called packets and then transmitting a stream
of these packets to the receiving node. There are many advantages to this method,
one being that packets can move independently of one another which means they need
not all take the same route from sender to receiver. Additionally, packets are often
lost along the way because of excessive network traffic, busy servers or unplugged
cables, but because the size of the packet relative to the entire message is small, the
cost of re-transmitting the dropped packet is minimal.

The nodes in a hardwired network are connected with wires, such as Ethernet
cable, and packets are sent back and forth along this cable according to a fixed
protocol. Computers that contain the right hardware and software to follow this
protocol can communicate with each other and with servers connected to the Internet.
Wireless networks work in much the same way; the medium of communication in

CHAPTER 1. INTRODUCTION AND BACKGROUND 2

this case is electromagnetic radio waves, and the communication protocol might be
the IEEE 802.11 “WiFi” standard. Wireless ad-hoc networks are a third type of
network in which nodes can freely communicate with each other while moving about
arbitrarily. The idea is that the path of communication between any two nodes
changes with the network topology, and members of these networks are in implicit
agreement that messages between a sending and receiving node may in fact be routed
through other nodes along the way, consuming a certain computational resources of
these intermediate nodes.

There are innumerable variations to the kinds of computer networks used in re-
search, government, or industry. They each exhibit different behaviors in regards
to properties like speed, bandwidth, security vulnerabilities, power consumption and
mobility, among others. Scientists find these behaviors intriguing, and worth study-
ing.

My work addresses the ways in which these networks are studied, and it is helpful
to begin from the beginning: the scientific method and study of systems. In formal
terms, a system is the name we give to something under study. Averill M. Law,
author of Simulation Modeling & Analysis [29] defines a system as “a collection of
entities . . . that act and interact together toward the accomplishment of some logical
end.” Of course, this definition is made intentionally broad, and researchers talk
about a “system” in many different ways depending on the context. My work is
generally concerned with computer networks, and so here the systems in question
are comprised of computers communicating with each other using various pieces of
hardware and software, cables, and radio transmitters. These systems also include
the information flowing through the network and the protocols of communication,
along with their physical location and surroundings.

Scientists have many ways to study a system, and these methods are mapped
out in Figure 1.1 (source: Law [29]). The goal with each of these methods is to
answer questions about a system in order to learn more about its behavior. The most
direct method for doing this is by experimenting with the actual system; changing
it physically and observing its operation under new conditions. For many systems,
including computer networks, this is often too costly or too disruptive to do [30].
Consider a corporation wishing to test its network’s response to various kinds of
power failures. Actually bringing down parts of the network would interfere with
day-to-day operations and pose an unacceptable disruption to business. To avoid
this, researchers often experiment with a model of the system. Models can either
be a physical replica of the system or a mathematical representation, but all of the
models discussed here are of the mathematical kind (and hereafter I will simply use

CHAPTER 1. INTRODUCTION AND BACKGROUND 3

System

Experiment with
the actual system

Experiment with a
model of the system

Physical model Mathematical model

Analytical solution Simulation

Figure 1.1: Ways to study a system.

“model” as shorthand for “mathematical model”). A mathematical model is a set of
logical and quantitative relationships developed to represent a system. The equation
d = v · t is a mathematical model relating the distance d an object travels to it’s
velocity v and the time t spent traveling. Researchers can ask certain questions of
a system and use a model to predict the system’s would-be response [29]; in this
simplistic example we can predict the distance an object travels if we know the values
for v and t.

If a model is simple enough, a researcher may be able to answer their questions di-
rectly using mathematical techniques such as algebra, calculus, or probability theory.
In the d = v · t model, we can solve for any variable given the other two using simple
algebra. The two variables whose values are given are called the model inputs, and the
third variable we solve for is called the model output or model response. The answer
produced in this case is called an analytical solution. Many real-world systems are
exceedingly complex however, and are only represented accurately with exceedingly
complex models. It is not feasible to answer questions about these models analyti-
cally; the mathematical techniques needed are either very difficult or impossible. To
overcome this, researchers use simulation. In a simulation, we provide the input values
and evaluate a model numerically, usually using a computer. By simulating enough
model inputs, a researcher can begin to construct a metamodel – a model of a model

CHAPTER 1. INTRODUCTION AND BACKGROUND 4

– which most often manifests itself as a regression equation tying model response to
one or more model inputs. This metamodel is used to infer the kinds of mathematical
relationships among components within the model that we cannot derive analytically.
These mathematical relationships point to real relationships that could potentially
exist within the system, depending on the accuracy on the model [29].

Computer networks, especially large-scale computer networks, fall within this class
of exceedingly complex systems. Some can contain hundreds of millions of nodes,
comprising both static and dynamic structures [10]. Simplistic analytic models of
these networks are useful for a coarse level of analysis but are limited in the problems
they can tractably solve. Simulation of more complex network models provides a
feasible way to understand network behavior and optimize network designs before
physical deployment [35].

There are many compelling reasons for studying networks of this complexity and
size. In their white paper on the U.S. Department of Energy’s efforts to develop a
better understanding of complex networked systems, Brase and Brown [10] outline
many important applications for network simulation research, many of them related
to operations of the U.S. federal government. Broadly speaking, the U.S. government
has an important stake in knowing more about the inefficiencies, vulnerabilities and
design flaws in its own networks. For example, developing the capability to simulate
the nation’s power grid at scale is a crucial step on the way towards expanding and
modernizing its operations [10]. The Department of Energy also relies on the ability
of scientific groups to reliably and securely share significant amounts of information
between themselves over networks around the world in order to promote further sci-
entific discovery [10]. Other kinds of networks of interest to the government include
social networks, biological networks and networks that describe the spread of disease.
An improved understanding of all of these will have a substantial impact on federal
scientific missions and public policy.

The argument made by Brase and Brown [10] is that the U.S. Department of
Energy is in a position to develop this knowledge through further network simulation
research, but has not yet done so. They write that

[The Department of Energy] must continue the development of next-
generation complex networked systems that are more secure, less brittle
to unexpected events, and more controllable. For these emerging efforts to
be successful, it is essential that a firm intellectual foundation be provided
for understanding and simulating large-scale networks.

CHAPTER 1. INTRODUCTION AND BACKGROUND 5

Creating this foundation requires more substantial study into network simulation
techniques. In this arena of complexity however, such study is not as straight-forward
or intuitive as researchers might assume. Ultimately, my work addresses certain ob-
stacles that impede the production of credible research into these complex systems.
Such obstacles have their root in the modeling process described previously, as well as
in the experimental process that uses those models. There is much academic litera-
ture on the subject of experimental design [29, 32, 46], and the material is important
enough to warrant explicit discussion here. Below, I give a more rigorous descrip-
tion of the experimental process and experimental design, especially as it relates to
simulation. This material is central to the rest of my own work.

In general, an experiment involves changing the settings of factors in a model. Law
[29] defines a factor as “the input parameters and structural assumptions composing
a model.” Factors are sometimes are sometimes called variables in a simulation. For
instance, suppose we have a model with input parameters SPEED and DISTANCE. A
researcher may wish to determine how changes in these inputs affects the model’s
output behavior. The decision as to which factors should remain fixed and which
should be varied in an experiment is a choice left up to the experimenter, and depends
on the goals of the experiment rather than the model itself [29].

A design, as defined by Sanchez [46], is a matrix which has a column for each
factor being varied in the experiment. The entries in each column are the settings
for that factor – the level it will take on for any particular simulation. Thus, each
row represents a particular combination of factor levels, and is known as a design
point (see Table 1.1). Given a design point, we can plug in the given level values
corresponding to each factor and run the simulation. The data collected during that
simulation run is called the response.

SPEED DISTANCE

0 0
1 1
1 2

Table 1.1: A Simple Design

Of course, it would be difficult to draw conclusive results from the experiment
in Table 1.1 because the change in response between the first design point and the
second could have been the result of the change in SPEED or the change in DISTANCE,
or both. In this case, any change in model behavior cannot be conclusively explained

CHAPTER 1. INTRODUCTION AND BACKGROUND 6

without testing more design points. As it is now, the effects of changing SPEED and
DISTANCE are confounded.

The end goal of any simulation study is to determine the effect certain factors have
on the behavior of a model. If the experimenter has absolutely no idea where to begin,
a 2kfactorial design is often chosen [29]. In this scheme, each factor is assigned two
levels, chosen far enough apart that they will cause observable differences in model
behavior, but close enough that they do not produce wildly different results. If we
wish to measure every possible configuration of a model with k factors being varied,
then the total number of design points will be 2k, which is where this scheme gets its
name.

Of course, even with just a handful of experimental factors the number of design
points can quickly spiral out of control. If the number of factors stays constant then
increasing the number of levels each will take on increases the number of design points
polynomially. If the number of factors in the experiment increases, the number of
design points increases exponentially.

Since computer networks are time-dependent systems, simulation of a particular
design point often ends up requiring that a model be evaluated at many successive
points in time. Additionally, network models are usually built to exhibit certain kinds
of random behavior that reflect real-world variation (e.g., the amount of network traf-
fic between a user’s personal computer and a web server). In this case, researchers
must simulate each design point multiple times to estimate a model’s response within
reasonable statistical confidence intervals. For these reasons, network simulation is
often computationally expensive and time-consuming. Law [29] explains that a major
goal of experimental design in simulation is to identify which factors have the great-
est effect on model response, and to make that identification with the least amount
of simulating possible. This process is called factor screening or sensitivity analysis.
After learning more about which factors really do matter in changing response, an ex-
perimenter can begin to construct the kind of metamodel mentioned previously. The
metamodel allows researchers to make judicious decisions about which additional de-
sign points are worth spending time to run in simulation, and which can be predicted
using their metamodel.

Simulation itself begins by using software to define some network model and ob-
serving how it behaves. This definition is written formally in a computer language
and is called the model description. Every simulation requires a model description,
which contains information about the number of nodes involved, the way those nodes
are moving about, how much bandwidth is being used, the number of Internet access

CHAPTER 1. INTRODUCTION AND BACKGROUND 7

points, etc. The model description is subsequently given to a simulator engine (some-
times just “simulator” for short), which is a program that executes the simulation
and reports the results of an experiment.

Researchers have a number of network simulators at their disposal, including ns-3,
ns-2, GloMoSim, OPNET, CSIM and others [27]. Not only are the models difficult
to describe, but each simulator engine uses a different language for model description,
which makes it very difficult for researchers to share and reproduce their work across
platforms. The differences in model description languages, compounded by the sheer
complexity of the models being described have had a serious negative impact on the
credibility of many past simulation studies. Researchers should be able to trust the
published results of their peers and have confidence that their own results are exper-
imentally sound. But, in their report on the state of network simulation credibility,
Kurkowski et al. [27] identified a number of published studies where this was not
the case. The authors explain that without exhaustively listing all of the parameters
used in a simulation study, researchers make it very difficult for others to replicate
their work — a crucial piece of the scientific method. This sort of credibility gap
in published work is detrimental to the building of the “intellectual foundation” in
network simulation that Brase and Brown [10] speak of.

As it is today, if researchers want to reproduce their colleagues’ findings (obtained
using a simulator different from their own), they must translate a model description
file by hand, from one language to another. This creates enormous room for error.
There is the potential for making careless translation mistakes, and also the possibil-
ity of not being given the original model description in its entirety; certain parameters
may be left unspecified in the original description, with the intent that the under-
lying simulator will provide some default value instead. If these default values are
not explicitly made clear in the original model description, the second researcher is
forced to either guess what they were, or let their own simulator choose a default
value (which may or may not be the same one). It would seem that these mistakes
could be easily avoided in computer simulation; given that in simulation studies it
is possible to isolate the effects of all external forces, research conducted using com-
puter simulation should allow for exact reproducibility [50]. Nevertheless, Kurkowski
et al. [27] identified simulation setup as the most often ignored experimental phase in
mobile ad-hoc network simulation studies (a subset of all network simulation studies).
This undermines the scientific credibility of a study from the beginning.

While Perrone et al. [41] support the continuing emergence of new tools and
systems for network simulation, they argue that a concerted effort towards increasing
the credibility of research produced with these tools is requisite before any reliable

CHAPTER 1. INTRODUCTION AND BACKGROUND 8

Model
(XML)

EEM
(server)

Experiment
(XML)

Database
Backend

Database
Access API

Simulation
Client ns-3

Run length
detector

Steady-
state

detector

Simulation
Client ns-3

Run length
detector

Steady-
state

detector

Simulation
Client ns-3

Run length
detector

Steady-
state

detector

Web Based Interfaces
for Experiment Set Up

and
Output Visualization

Multiple Running Experiments

Figure 1.2: A high-level view of the SAFE architecture.

progress can be made. A central claim of [40] and [41] is that this credibility will
come when simulators can provide complete automation of the experimental process.
In my honors thesis work I have made significant steps towards the realization of this
goal by developing ways to create composable network simulation models for the ns-3
simulator that can be validated and transformed with Extensible Markup Language
(XML) technologies.

This project exists in the larger context of Dr. Felipe Perrone’s work on the ns-3
network simulator. It is part of a deliberate effort by Dr. Perrone and others to provide
tools that can substantially increase the credibility of network simulation studies. He
and other members of the ns-3 development team at the University of Washington
and the Georgia Institute of Technology have secured a four-year N.S.F. grant (CNS-
0958142) in order to fund the development of software frameworks to automate the
experimental process within ns-3. Dr. Perrone and Bucknell’s contribution to this
work is the Simulation Automation Framework for Experiments (SAFE), whose high-
level architecture is presented in Figure 1.2. The following description of SAFE,
copied literally from the project’s documentation, provides an overview of the system’s
goals and general structure:

“The automation framework will consist of user interfaces, description
languages, and tools that will help users of varying levels of expertise to

CHAPTER 1. INTRODUCTION AND BACKGROUND 9

produce more credible simulation experiments with ns-3. The functional-
ity offered will enable the user to define, deploy, and control ns-3 simula-
tion experiments that are methodologically valid and easy to reproduce by
third parties. The framework will include tools for: model composition;
structural validation of the model; configuration of model components;
description, deployment, and control of experiments; output data pro-
cessing and storage; and reporting of experimental setup. Although the
framework will offer graphical user interfaces, more experienced users will
be able to access automation functionality via the command-line.”

My work lies in the areas of experiment description, model description and auto-
matic code generation. I have developed the ns-3 Experiment Description Language
(NEDL), the ns-3 Script Templating Language (NSTL), and a set of tools to support
their use with the ns-3 simulator. The end goal is to provide an automation frame-
work that begins with experiment and model description and ends with automatic
generation of ns-3 simulation script code. My thesis is thus:

The community of network simulation researchers stands to benefit from a sub-
stantial increase in experimental credibility. The development of languages and tools
to support automated experiment description and model description help increase that
credibility. The implementation itself and especially the research I have conducted in
this work will impact the simulation experiment process on the ns-3 simulator in a
positive way.

This document describes the conceptual design of the NEDL and NSTL languages
and tools, as well the specific technologies used to create them. I have implemented
these languages using the Extensible Markup Language (XML) specification. Since
so much of this work centers on XML technology, it is appropriate in this introduction
to first provide some background on XML itself.

XML is a markup language standardized by the World Wide Web Consortium
(W3C) [6], an “international community that develops standards to ensure the long-
term growth of the Web.” In general, a markup language uses some notion of markers
that are present inside what would otherwise be unstructured textual data. The
markers are used to facilitate the procesing of information. The HyperText Markup
Language (HTML) is one markup language most laypeople have come into contact
with, thanks to its ubiquity on the Web. HTML is used to mark pieces of a web page
so that it can be automatically interpreted by a web browser and rendered (basically)
the same way to anyone who visits the page, regardless of their particular machine,

CHAPTER 1. INTRODUCTION AND BACKGROUND 10

operating system or web browser.

Just like an HTML document, an XML document is simply a text file that uses a
system of markers to define elements in a document. These markers are called tags,
and are identified using angle brackets (<, >), which, along with the ampersand (&),
are the only reserved symbols of the XML specification. The specification allows users
to define their own tags and what kind of contents a particular element can contain.
A rigorous discussion of the XML specification is beyond the scope of this work; much
more detailed information can be found in a number of places on the Web, including
the official W3C Recommendation [11]. Nevertheless, for those wholly unfamiliar, the
fundamental pieces worth explaining are:

• An XML start tag is just a word surrounded by angle brackets. E.g., <name>.

• Every opening tag must have a closing tag, which is identified with a slash
before the tag name. E.g., </name>. The opening-closing pair together with
whatever is contained between them constitute an element.

• Between the opening and closing tags, there can exist string content or other
XML elements.

• If there is nothing between two corresponding opening and closing tags, the tags
may be merged into one such that <name></name> becomes <name/>.

• An element may contain attributes, which are key-value pairs inserted after the
opening tag name, but before the right angle bracket.

See Figure 1.3 for a diagram of a sample XML element with labels for each of its
components.

<html:a href="http://www.google.com">Link to Google

Opening tag

Attribute
Attribute
value

Element
content

Closing tagNamespace
prefix

Figure 1.3: An HTML “anchor” element and all of its components.

CHAPTER 1. INTRODUCTION AND BACKGROUND 11

Following these rules, it is possible to create custom tags that express complex
relationships between entities. A small example is shown below. This made-up ex-
ample is meant to resemble the specification of a particular application-layer model
we can call the “Ping Application.”

1 <application>

2 <name>PingApplication</name>

3 <interval>1.5 seconds</interval>

4 <duration>0.5 seconds</duration>

5 </aplication>

Even for someone unfamiliar with simulation models, it should be at least plausible
that the hierarchical structure of XML lends itself quite naturally to describing rela-
tionships between nested components of a simulation model. The W3C has published
specifications for other technologies that can be used for analyzing and manipulating
these XML documents.

An original goal of my work was to develop a simulator-agnostic model description
language which allowed for model composability as well as automatic translation
into various simulator-specific renderings, the first being ns-3’s C++. This was an
ambitious goal that I found to be infeasible within the time available. NSTL allows
for an alternative solution using script templates tailored specifically to ns-3. This
represents a scaling back of the original goals of my work and is discussed in greater
detail in Chapter 7.

Chapter Summary

The overarching goal of this work is to investigate the experiment and model de-
scription processes used in network simulation research and find ways to automate
this. I have researched these processes and what others are doing to address the same
class of problems. The results of that have motivated the particular design choices I
have made in the implementation of the experiment description and model descrip-
tion languages, as well as the tools that automate the entire process from experiment
and model description to ns-3 code generation. This work focuses exclusively on the
experiment design and execution process on the ns-3 simulator.

CHAPTER 1. INTRODUCTION AND BACKGROUND 12

As part of this work, I have developed the ns-3 Experiment Description Language
(NEDL), and the ns-3 Script Templating Language (NSTL). Because of the enormous
complexities involved in transforming abstract model descriptions (in any form, in-
cluding XML) into ns-3-executable C++ models, I have decided to implement NSTL
as a language used for developing templates of ns-3 simulation scripts as opposed to
a language used to develop standalone simulation models.

13

Chapter 2

Related Work

The original XML specification was developed in 1996, which means researchers, de-
velopers and businesspeople have had 15 years to put XML through a spectrum of
different tests and use cases. Because of this, its use has proliferated in many differ-
ent problem domains, including systems biology [26], business applications [23] and
of course, network simulation [7] [44] [45]. XML has been investigated by a number
of researchers interested in creating simulations that are universal and portable. It is
an appealing language because it is complemented by a suite of W3C-endorsed and
third-party technologies for editing, querying, validating and transforming XML doc-
uments; it thus is a convenient data exchange format. The standard has established
itself as one that is robust, flexible and mature.

The rest of this chapter will focus on work others have done in the intersection of
the XML and network simulation domains. The discussion is meant to be a general
overview of this sort of work and I will try to cover the ideas presented in broad
strokes only. When talking of work whose details do have substantial overlap with
mine, however, I will be talking about those specifics too.

2.1 XML, Simulation and Model Description

Rioux et al. [44] present a technology-independent conceptual framework for describ-
ing simulation scenarios, validating those scenarios, and then converting those scenar-

CHAPTER 2. RELATED WORK 14

ios into software objects that can be used by a particular simulator engine. They show
that XML and some of its associated tools (JAXB, XQuery, XSLT and Native XML
Database) can be used to implement this framework. Because these tools are available
today, the time spent developing such an implementation is greatly reduced. Their
work does not match the goals of mine exactly, but their arguments for using XML
bolster the decisions made in my own work. They emphasize that in their case, XML
was chosen because of the ability to exploit the same technology throughout their
entire data pipeline. This includes visual representation, data binding, and stream
transformation. They also conclude that although other data encoding formats are
available, like the Hierarchical Data Format (HDF) or Network Common Data Form
(NetCDF), these binary formats do not offer the same flexibility and ease of use as
XML.

Amoretti et al. [7] have developed the Discrete Event Universal Simulator (DEUS)
which requires the network topology information to be written in an XML-based lan-
guage of their own design. The researchers have defined a transformation that maps
every topology descriptor in DEUS to an equivalent XML representation, and back
again. Configuration information for DEUS is also contained in an XML document.
They believe that using XML instead of another proprietary format eases the novice’s
entry into the project and makes editing the topology and configuration setup much
easier, especially when that data must be prepared from some other external source,
such as a database. Guiding the novice in their use of the ns-3 simulator is part of
the mission of SAFE and the work of Amoretti et al. [7] supports my claim that XML
is well-suited for this purpose.

Röhl and Uhrmacher [45] discuss XML-based model components and show that
the declarative specification of XML provides easier database integration, user read-
ability and development of graphical user interfaces. In addition, XML happens to
be an excellent data exchange format, allowing researchers to import and export
model definitions in a more platform-independent way. A disadvantage of describing
simulation models in XML is the problem of converting a declarative specification
(XML) to an imperative one (such as an ns-3 C++ script). For this reason, Röhl and
Uhrmacher [45] emphasize that it is important to maintain a separation of code de-
scribing the composition of a model and code describing the execution of that model in
the simulator engine. The authors demonstrate an implementation of this framework
as part of the James II simulation system. I encountered this same difficulty in trying
to separate model composition and execution when creating the NSTL language and
code generator module. As I’ll discuss in greater detail in Chapter 4 on NEDL and
NSTL syntax and Chapter 7 on code generation, I settled on an approach that is not
as ideal as the kind Röhl and Uhrmacher [45] advocate.

CHAPTER 2. RELATED WORK 15

In their paper on automated analysis of model specifications, Olson et al. [39] de-
scribe their work in developing an XML-based version of the Condition Specification
(CS) model specification form. Although the particulars of their work do not align ex-
actly with mine, they do discuss their translation process from this XML-based Con-
dition Specification (CS-XML) language into fully-executable C/C++ code. They
identify many of the benefits in using XML, including: “the semantic power of XML
due to its ‘extensible’ nature; flexibility of use over other document formats such as
binary, fixed-length or delimited text data; portability of XML documents across di-
verse systems and platforms.” XML alone does not carry any semantic information,
but perhaps the authors were referring to XML’s ability to represent many different
kinds abstract objects, which can be given semantic meaning by a Schema or parser.
Unfortunately, the authors do not produce anything more than a simple proof-of-
concept code generation scheme, so we cannot leverage any of their work in that
regard. The authors suggest that XSLT may be an acceptable solution for trans-
forming the CS-XML documents into C++ code. I attempted to implement such a
solution for SAFE but found XSLT tedious and cumbersome to deal with. The code
generation aspects of my work is discussed fully in Chapter 7.

2.2 XML, Simulation and Experiment Description

In regards to experiment description, the development of an XML-based language for
this purpose has been a goal in other problem domains besides network simulation.
For example, SEDML is an experiment description language used in computational
systems biology to describe simulations [26]. Köhn and Novère [26] launched the
Minimum Information About a Simulation Experiment (MAISE) project in 2007 to
provide guidelines on what sorts of information should be provided to give a full
description of simulation experiments. SEDML is the implementation of those guide-
lines and is a language independent of both the format used to encode models as well
as the tools used to execute simulations. SEDML is similar in spirit to the NEDL
language I have developed, though it exists in a domain that is far enough away from
network simulation that I deemed direct use of SEDML to be too difficult to pursue
and instead chose to implement NEDL from scratch.

In the field of network simulation, Canonico et al. [13] propose an XML language
for describing network simulation scenarios. Just as I do in my project, the authors
construct an XML Schema which defines all valid simulation scenario descriptions.
They also defined a set of translation rules using the Extensible Stylesheet Language

CHAPTER 2. RELATED WORK 16

Transformations language (XSLT) [15] for translating a simulation scenario descrip-
tions into an executable script for the ns-2 network simulator. Their arguments are
in support of the design decisions I have made while developing NEDL and NSTL,
specifically my choice to keep element and attribute structures simple and straight-
forward to ease the development of front-end GUI modules in the future. Simple XML
element structures favor automatic generation and Canonico et al. [13] say outright
that “simulation of large scale networks cannot rely on manual generation of the XML
simulation scenarios.” On the surface, the work appears to have much overlap with
my own, but the substantial differences between the ns-2 and ns-3 do much shrink
this intersecting area.

Bertoli et al. [9] provide a corroborating discussion on the state of network sim-
ulation research, acknowledging the usefulness of simulation while cautioning that
simulation can sometimes fail or produce non-accurate results. Common causes of
such failures and inaccuracies include incorrect statistical techniques implemented
in the simulator engine itself and users’ mistakes, such as inadequate level of detail
adopted to describe the target system, too short simulation time and errors in input
parameter values. It is precisely these sorts of errors that the SAFE architecture aims
to minimize, if not remove completely. In their architecture of JSIM, the simulation
module of the Java Modeling Tools (JMT) suite, the authors use XML documents
to provide a separation of what they describe as the “presentation” and “computa-
tional” layers of the module. This XML data layer is used to invoke the simulator
engine as well as save user-specified models. The graphical user interfaces of JSIM;
JSIMwiz and JSIMgraph are also built on an XML layer that guides users through
model parametrization and topology layout. The authors explain that an XML-based
interface between users and the simulator simplifies the implementation of graphical
user interfaces, a long-term goal of interest to the ns-3 community as well. These
interfaces would do much to guide novice users and ease their entry into the system.

2.3 Alternative Model Description Languages

As mentioned previously, the goal in my work of providing abstract model description
capabilities to the SAFE framework has been set aside in favor of a simpler, near-term
solution: providing ns-3 script templating functionality. Still, other model description
languages do exist, and a discussion of the most prominent ones and why they were
not incorporated into SAFE is appropriate here.

CHAPTER 2. RELATED WORK 17

The Domain Modeling Language [3] is an alternative model description language
that has been used in network simulation before, especially in projects using the Scal-
able Simulation Framework (SSF) [5]. Perrone and Nicol [42] describe the language
as a “simple, but powerful” way to describe models. Like XML, the DML language is
tree-based; it uses a set of key-value pairs to describe model entities, where the keys
are any alphanumeric string and the values are either strings themselves or other
DML entities enclosed in square brackets. The DML Reference Manual [3] contains
the following example of valid DML given in Listing 2.1.

1 portmaster [

2 _schema ".dictionary.schemas.portmaster"

3 serialnum 12345

4 hostname "far.near.net"

5 tty [name tty01 speed 40kBs]

6 tty [name tty02 speed 800Mbs]

7 tty [name tty03 speed 4kBs]

8 machinespecs [

9 _schema ".dictionary.schemas.machinespecs"

10 powerconsumption 1600w

11 mtbf "20 days"

12 replacementcost "$500,000"

13]

14]

Listing 2.1: An example fragment of DML.

In this example, the keys that begin with an underscore character are special re-
served keywords of the language. Note the keys tty and machinespecs within the
portmaster element; the corresponding values for these keys are further DML frag-
ments rather than just simple strings. In this way, DML describes tree structures in
much the same way as XML does. The element and attribute names of XML corre-
spond to the key strings in DML, and the contents of those elements and attributes
correspond to the value entities in DML. A “simple type” element or attribute in
XML is equivalent to a pair of key-value strings in DML, and a “complex type” el-
ement in XML is equivalent to a string-DML pair in DML (see [47] for details on
simple and complex element types in XML).

DML does have features, however, that XML lacks. Plainly, it is much more
concise. The verbosity of XML is a perennial complaint made in a great deal of

CHAPTER 2. RELATED WORK 18

literature on the subject [44] [18] [19]. Having a matching closing tag with each
opening tag creates redundant information and bloats XML file sizes considerably.
DML also supports inheritance models that XML does not. As a markup language,
XML of course provides no mechanism to support types and thus has no concept of
inheritance. Certain schema languages, however, like XML Schema [49], do support
something similar to inheritance. XML Schema allows for element “derivation” by
extension and restriction, but its utility is limited. DML, as a modeling language, does
this more naturally, supporting object-oriented style inheritance, and even multiple
inheritance.

Related to DML is a language developed by Kiddle et al. [25] called ANML, which
stands for “ANother Modeling Language.” In their work developing ANML, Kiddle
et al. [25] investigated a number of model description languages and found that al-
though DML supported hierarchical modelling, reusability, and the construction of
large models, it was difficult to express all of the necessary validation rules they
wished to incorporate into their models. XML has robust support for validation,
with multiple schema languages and validation tools available. The authors decided,
however, that description in XML was still more difficult than with DML, and elected
to base ANML primarily on the DML grammar, with support for some of the features
available in XML.

In my work, the validation tools are a crucial piece of the SAFE framework, and
XML is a good language choice because of the availability and reliability of these
tools. The language syntax is indeed verbose and does have some limitations for
model description, given that it is never anything more than a markup language.
However, there is an abundance of tools for parsing and manipulating XML that can
side step its limitations in model description. Additionally, its status as a World
Wide Web Consortium Recommendation is a benefit too since this makes it easier to
support further expansion and modularization of the description process using other
web-based technologies. Front-end web interfaces or GUIs can easily generate XML
automatically and exchange data with web-based systems much more efficiently than
would be possible with a language like ANML.

2.4 XML, Simulation and Ontologies

Taken broadly, the mission of the SAFE framework falls within the realm of ontology
development for the network simulation community. Though ontology development

CHAPTER 2. RELATED WORK 19

is outside the boundaries of this work, it very well may be pursued in the years ahead
for SAFE. It is therefore useful to discuss what ontologies are, their role in network
simulation research, and how my work makes positive steps in the direction advocated
by researchers in the field.

Benjamin et al. [8] define an ontology as “an inventory of the kinds of entities that
exist in a domain, their salient properties, and the salient relationships that can hold
between them.” The key here is the notion of formalizing knowledge in a such a way
that machines can perform work on that knowledge. As described in [20] and [31],
ontologies are hoped to be the next milestone in the development of the World Wide
Web; they promise to enable the Semantic Web, an additional layer to the Web stack
that gives meaning to the billions of documents, web pages, databases and files that
exist on the Web today. Ontologies can also be used in applications beyond the Web.
Researchers in many scientific fields are beginning to organize their knowledge into
ontologies; examples include the Gene Ontology in Biology, EngMath in Engineering
Math, EHEP in Physics, and OntoNova in Chemistry [31].

Benjamin et al. [8] discuss the growing need to develop ontologies for the modeling
and simulation communities and the benefits of doing so. The authors speak of de-
veloping ontology libraries: large knowledge bases that support constant revision and
integration of structured, domain-specific ontological information which can then be
extracted at many different levels of granularity in application situations. There are
important benefits in developing ontologies for the field of modeling and simulation.
First, they spur the creation of knowledge-based systems that describe not only the
makeup of systems and their components, but the semantics behind those relation-
ships and how to use them. Secondly, ontologies form the basis for the development
of reference models in the modeling and simulation field, which can be re-used in
many applications. Ontologies play a critical role in bringing about simulation model
interoperability, composition and information exchange at the semantic level.

The link between my work with experiment and model description languages and
the work of others towards ontology development is XML. Fishwick and Miller [20]
explain that one way an ontology may be encoded is XML, the standard the authors
call the “lingua franca” of the Web. The W3C has published standards for a stack
of XML-based languages that are to be a part of the Semantic Web initiative. These
include RDF (Resource Description Framework), RDF-S (RDF Schema), OWL 2
(Web Ontology Language, version 2), and SWRL (Semantic Web Rule Language).
(All of these can be referenced from the W3C website, http://www.w3.org [6]).

XML is thus the syntactic layer upon which the Semantic Web is to be built, and

http://www.w3.org

CHAPTER 2. RELATED WORK 20

researchers are already attempting to provide the functionality OWL 2 and SWRL
aim to provide using various dialects of XML, such as the Mathematics Markup Lan-
guage (MathML) [14] and the Chemical Markup Language (CML) [34]. My work
is well-aligned with this movement since it provides the same ingredients (an XML
dialect and associated schema) that more mature language projects have provided.
The Simulation Reference Markup Language (SRML) [43] and the Extensible Mod-
eling and Simulation Framework (XMSF)[12] are two examples of this in the field
of network simulation. Researchers generally agree that the development of XML-
based languages like SRML, XMSF, NEDL, and NSTL provides a useful source of
information for the creation of modeling and simulation ontologies [20].

Chapter Summary

The Extensible Markup Language has established itself as a standard that is simple
enough to be quickly understood and adopted, and flexible enough to find roles in a
range of applications across many different domains. This chapter discussed applica-
tions especially close to certain components of SAFE. The XML standard has been
endorsed by the World Wide Web Consortium, which has also endorsed an array of
other XML-related technologies and standards that support virtually all of the opera-
tions a programmer might wish to perform on an XML document. Researchers in the
field of network simulation have voiced the need for standardized model and experi-
ment descriptions to better support simulator interoperability, code robustness, ease
of simulator maintenance, and simulation credibility. Though ontology development
is beyond the scope of this work, providing XML-based languages for experiment and
model description is a necessary first step in the process of creating a domain-wide
network simulation ontology.

21

Chapter 3

Conceptual Design

Although the ns-3 simulator is a powerful system, it can be intimidating for new
users because of its complexity. The time it takes students to progress through the
codebase of ns-3 makes it challenging for educators to integrate the simulator into
curricular activities. My work has involved designing NEDL and NSTL as languages
that can facilitate a higher-level description of an experiment design space and the
construction of an ns-3 script template. As I demonstrate, this helps ensure that only
sound scientific research is conducted on ns-3. This chapter describes the process of
designing and testing these languages, including the specific goals they meet, the
reasoning behind having XML-based languages in the first place, and how the well
languages fit their intended purpose.

3.1 Roles of NEDL and NSTL

The NEDL language aims to facilitate the description of an experiment space as
described in Chapter 1. This includes language constructs that support the listing of
experimental factors along with their associated lists of levels. Since not all design
points in an experiment space are necessarily worth the time to run in simulation,
an important feature built into NEDL is the ability to “prune” design points that
are either meaningless, irrelevant or uninteresting before the simulation execution and
data collection stages.

CHAPTER 3. CONCEPTUAL DESIGN 22

NSTL is intended to support fast and intuitive construction of ns-3 script tem-
plates. It is designed such that existing ns-3 scripts can be quickly augmented with
special NSTL constructs that support templating at two levels of granularity: basic
parameter substitution as well as the swapping of interchangeable code blocks. I de-
veloped NSTL for use within the SAFE framework on the ns-3 simulator, though there
is no reason why it could not be used for any application requiring these templating
features.

3.2 Language Goals

In order for NEDL and NSTL to provide a meaningful contribution to the ns-3 ar-
chitecture and the experimental design process, they both should meet some basic
design objectives. The languages must be:

• Expressive: NEDL, in particular, should have the power to describe simple
design spaces while providing flexible constructs that allow for more complex
manipulation of the experiment design space.

• Compact: XML is verbose by its own nature and both languages should strike
a balance between having larger element structures and tag names that provide
self-description and smaller ones that favor brevity.

• Intuitive. The XML tag names and element structures should be easy enough
to write and edit by hand as well as automatically generated by some other
module (i.e., a front-end GUI).

Expressivity is an important feature that merits further discussion. With NEDL, it
is important that the language has the ability to describe the most basic experimental
design spaces (e.g., a list of experiment factors each with a corresponding list of levels)
in a simple, straight-forward way. NEDL should have constructs that allow one to
describe more complex experimental design spaces too. These complex design spaces
come up in cases when:

• one would like to “prune” some of the factor/level combinations out of the
experiment space that are of no interest to them;

CHAPTER 3. CONCEPTUAL DESIGN 23

• one would like to use a list of parameter values available in some external file,
perhaps for more than one factor in their experiment;

• one would like to describe the levels of a factor in some mathematical way, rather
than having to enumerate them by hand (e.g., all multiples of 50 between 100
and 1000).

3.3 Description with XML

This work demonstrates the feasibility of using XML-based languages to describe
network simulation experiments and models. Currently, researchers using different
model description languages must manually translate each others’ model descriptions
for the purpose of reproducing scientific results. The many different model descrip-
tion languages that each simulator uses, however, leave ample room for translating
mistakes. Lack of sound experiment design on the part of the researcher and lack of
safeguards built into the simulator to catch these mistakes compounds the problem
by introducing inaccurate results and assumptions.

To address this, I argue that the network simulation community should adopt
languages into their frameworks that enable higher-level experiment and model de-
scriptions. These descriptions can then be translated into the various dialects that
each specific simulator requires. Currently, there are no such languages in the net-
work simulation domain, but XML seems to be an attractive candidate; it is a W3C-
endorsed standard that is complemented by a suite of related technologies for editing,
querying, validating, and transforming XML documents. The immediate availability
of these tools bolsters the decision to adopt an XML-based language in this domain.

A subsequent goal of interest to the network simulation community and certainly
ns-3 in particular, is to address the problem of model validation. Very often, a user
will want to implement some amount of customization to the “base” models provided
in the simulator library. To conduct a sound scientific study, however, users ought
to have a detailed and comprehensive understanding of the underlying simulation
engine and how specific model components fit together in that engine [41]. It is
not reasonable to expect every user to have this knowledge, much less novices or
students. Indeed, in the past four years, nearly 2 million lines of code have been
changed in the ns-3 code base, and the ns-3 simulator has been easily receiving over
five-thousand downloads per month for the past year. But according to the ns-3

CHAPTER 3. CONCEPTUAL DESIGN 24

version 3.9 documentation, there were just 67 contributors involved in the system [4].
The lopsidedness is not surprising for an open-source project like ns-3, but it does
mean that among the vast number of people who use the system, it is likely only a
tiny fraction deeply understand all of its internal pieces.

Thus, a great many users would benefit from the development of experiment and
model description languages. I designed languages which can be validated at many
levels of granularity. Again, XML was well-suited to this purpose thanks to the
many already-defined XML schema languages available, including the W3C-endorsed
XML Schema [49], as well as alternative schema languages such as RELAX NG [16]
and Schematron [2].

3.4 NEDL and NSTL in Practice

My work designing and implementing NEDL and NSTL brings to light many of the
complexities involved in language design, both in a general sense and in regards to the
specific problem domain of experiment and model description for network simulation.
Experiment description and model description are facilitated in some way by every
simulator engine, usually in ways that are tightly connected to the simulator itself.
To take those descriptions out of context and de-couple them from the simulator for
which they were designed is hard.

Although the grandest vision would have an experiment and model description
language that can be translated into every popular simulator’s specific dialect, this
work narrows the scope considerably by choosing ns-3 as the simulator engine whose
model description language we translate to. Since the ns-3 simulator is written in the
C++ programming language, C++ has become the target language when translating
NEDL and NSTL documents. There are many difficulties in doing this, perhaps
the most fundamental of which is attempting to represent information encoded in
an algorithmic, object-oriented language, using a tag-based markup language. The
particular pieces of an ns-3 script that ultimately define an experiment and what
models are used exist within all sorts of other supporting code. All of this code of
course, is developed with the knowledge that it is executable; it defines an algorithm,
a process, a sequence of events. The great difficulty lies in the fact that XML by
itself, does not.

Experiment description proved to be the easier task simply because no immediate

CHAPTER 3. CONCEPTUAL DESIGN 25

knowledge of network simulation itself is even required for one to consider experiment
description in XML. There is no shortage of literature on the topic, and as discussed
in Chapter 1, Law [29], Morris [32], and Sanchez [46] all give domain-independent
accounts of what an experiment is and how to go about formally describing one. I
decided to limit NEDL to describing experiments whose factor/level combinations
were in the end just key-value pairs that could be represented in machine terms as
string-string pairs or string-number pairs.

In the SAFE framework, running a simulation means executing a particular script –
a static C++ file. An experiment that involves changing the levels of one or more
factors requires a new simulation to be run for each design point. (In fact, this is
simplified somewhat since a simulation may be run many times over in order to obtain
a suitable statistical sample for the metric of interest. But this still only requires one
simulation script to be re-run repeatedly.) Thus, any process involving the validation
and parsing of NEDL files requires no knowledge of the inner workings of any par-
ticular script itself. Furthermore, NEDL was developed with the intention that users
should not necessarily need to know the program structure of a particular simulation
script in order to design an experiment. Instead, users can focus on looking at exper-
iment factors from an abstract point of view and developing lists of levels to associate
with them. These levels are later directly substituted into the static ns-3 script files
before the scripts are run on the simulator.

Developing a model description language was the harder task because models in
ns-3 are built using software classes and “connecting” them together sequentially,
using various method calls and data structures. I ultimately decided that trying to
encode the structure of these classes and their relationships to one another, as defined
statically in the ns-3 object hierarchy as well as dynamically with the use of references
and pointers, was not feasible in the time that I had.

Instead, I elected to use “template-based” model description, which means models
are built out of static blocks of C++ code within an ns-3 script. These blocks make
up a script template, which is the reason for naming the language the ns-3 Script
Templating Language. Once a researcher has written and validated their code, they
can remove any kind of strings or numbers from the script and insert special NSTL
markers instead. The NSTL markers facilitate the substitution of different parameter
values into the script as well as swapping interchangeable blocks of code to generate
scripts with different model components. The lowest-level markers are used for simple
string-substitution and correspond to the factors listed in a NED document. These
markers are replaced with values which are defined in the level lists described with
NEDL. Thus, my original goal of enabling model validation and composability has

CHAPTER 3. CONCEPTUAL DESIGN 26

been pared down somewhat. In some ways this provides researchers with a much
finer degree of control since they can tweak their simulation scripts by hand and then
just insert custom markers after verifying the script executes as intended. This is all
discussed in much greater detail in Chapter 7, on code generation.

Chapter Summary

This chapter described the NEDL and NSTL languages from a conceptual standpoint.
NEDL and NSTL are languages that enable a higher-level description of experiments
and models in ns-3. The goals of NEDL are to provide simulator-agnostic experiment
descriptions that can be transformed into a set of design points that pair factors rep-
resented as strings with corresponding levels, represented as either strings or numbers.
This functionality alone is an immense help to researchers using standard factorial
experiment design. Those who wish to prune specific design points from their exper-
iment design space can do so with special constructs built into NEDL.

Ideally, high level model descriptions should be expressed in a “simulator-agnostic”
language. However, given the great complexity in transforming abstract model defini-
tions from a markup language to ns-3-compatible ones in an imperative programming
language, I opted for a template-based form of model description. In this scheme,
models are defined exactly as they would be in an ns-3 simulation script, but with
hard-coded parameter values replaced with special NSTL markers. Entire code blocks
are also delimited with NSTL markers too, which facilitates swapping of interchange-
able code blocks — an approximation of sub-model composability.

27

Chapter 4

NEDL and NSTL Details

This chapter provides the technical, syntax-level details of the NEDL and NSTL
languages. I explain here every construct available in each of the languages and
provide their use cases. Each language element is also followed by a corresponding
piece of XML Schema to describe its structure and content formally. Finally, small
examples of each language are given to help make their intended usage clear.

4.1 NEDL Syntax

The following sections provide an explanation of each of the elements allowed in a
NEDL document, along with the relevant piece of XML Schema that defines element
multiplicity and content type. Note that in the XML Schema snippets, the namespace
prefix tns is used by convention to reference the same namespace specified by the
targetNamespace attribute in the Schema. It is difficult to not make a few forward
references to the validation process and parsing process described more fully in Chap-
ters 6 and 5, respectively. For the time being, the reader should be aware that NEDL
documents are validated against a schema written in the XML Schema language, and
this schema is called the NEDL Schema. My project incorporates other validation
procedures beyond just checking a NEDL document against the NEDL Schema. The
module that performs these additional validation procedures will be temporarily re-
ferred to as “the NEDL validator.” The module that performs the parsing of NEDL
documents will be temporarily referred to as “the NEDL parser.”

CHAPTER 4. NEDL AND NSTL DETAILS 28

4.1.1 The experimentspace element

The experimentspace element must be the top-level element in a NEDL document.
It must exist in the namespace identified by the following URI:

http://www.eg.bucknell.edu/safe/exp

The allowed sub-elements of the experimentspace root are factorlist and conditions.
The factorlist element lists all of the factors that will be varied in the experiment,
and the conditions element specifies what conditions the factor levels must meet to
be considered a valid design point.

1 <xs:element name="experimentspace" type="tns:ExperimentSpace"/>

2 <xs:complexType name="ExperimentSpace">

3 <xs:sequence>

4 <xs:element ref="tns:factorlist"/>

5 <xs:element ref="tns:conditions"/>

6 </xs:sequence>

7 </xs:complexType>

4.1.2 The factorlist element

The factorlist element is the required first child of the experimentspace element.
It specifies the set of experimental factors a researcher wishes to vary throughout the
experiment. The element has no attributes. The only child element of factorlist
is factor. Each factor element specifies the name of a factor (e.g., “ONTIME,”
“PACKETSIZE,” “FREQUENCY,” etc.)

1 <xs:element name="factorlist" type="tns:FactorList"/>

2 <xs:complexType name="FactorList">

3 <xs:sequence>

4 <xs:element ref="tns:factor" maxOccurs="unbounded"/>

5 </xs:sequence>

6 </xs:complexType>

CHAPTER 4. NEDL AND NSTL DETAILS 29

4.1.3 The conditions element

The conditions element is the required second child of the experimentspace ele-
ment. The conditions element has no attributes. The possible child elements of
conditions, listed in the order in which they must appear are as follows:

• memberof, which specifies the name of a list of values that a given factor will
take on in the experiment. This list can exist within the experiment description
file itself or in an external file.

• levellist, an element that contains a simple list of level values which can be
referenced by one or more memberof elements.

• sequence, which specifies a sequence of level values for a factor to take on in
terms of a mathematical sequence.

• exclusionrestriction, which specifies certain “partial points” that the ex-
perimenter wishes to exclude in final design space.

• linkingrestriction, which specifies the factors which have a “one-to-one”
level correspondence.

According to the NEDL Schema, each of these elements has a multiplicity of zero
or more, though the NEDL validator checks that each factor listed in factorlist

somehow has a specification of level values, through either the memberof or sequence
elements.

1 <xs:element name="conditions" type="tns:Conditions"/>

2 <xs:complexType name="Conditions">

3 <xs:sequence>

4 <xs:element ref="tns:memberof"

5 maxOccurs="unbounded" minOccurs="0"/>

6 <xs:element ref="tns:levellist"

7 maxOccurs="unbounded" minOccurs="0"/>

8 <xs:element ref="tns:sequence"

9 maxOccurs="unbounded" minOccurs="0"/>

10 <xs:element ref="tns:exclusionrestriction"

11 maxOccurs="unbounded" minOccurs="0"/>

12 <xs:element ref="tns:linkingrestriction"

CHAPTER 4. NEDL AND NSTL DETAILS 30

13 maxOccurs="unbounded" minOccurs="0"/>

14 </xs:sequence>

15 </xs:complexType>

4.1.4 The memberof element

The memberof element specifies a list of level values for a factor to take on during
the experiment. The element has no attributes, but does have two required child
elements, factor and listid. The factor element specifies the factor to associate
with this list, and the listid element specifies either the pathname of an external
XML file which conforms to the LevelList Schema or the id of a levellist element
that specifies a simple list of level values (see Appendix A.3). Each have a multiplicity
of 1. In the case that the content of listid matches both an internally-defined list and
an external filename, the NEDL parser always uses the internally-defined levellist.

1 <xs:element name="memberof" type="tns:MemberOf"/>

2 <xs:complexType name="MemberOf">

3 <xs:sequence>

4 <xs:element ref="tns:factor"/>

5 <xs:element ref="tns:listid"/>

6 </xs:sequence>

7 </xs:complexType>

4.1.5 The levellist element

The levellist element provides a simple list of level values. It has one required
attribute, id, which is an arbitrary identifier of the list, used to reference the list
within a memberof element. The levellist element can have just one type of child
element, the level element.

1 <xs:element name="levellist" type="tns:LevelList"/>

2 <xs:element name="level" type="xs:string"/>

3 <xs:complexType name="LevelList">

4 <xs:sequence>

CHAPTER 4. NEDL AND NSTL DETAILS 31

5 <xs:element ref="tns:level" maxOccurs="unbounded" minOccurs="0"/>

6 </xs:sequence>

7 <xs:attribute name="id" type="xs:string"/>

8 </xs:complexType>

4.1.6 The sequence element

The sequence element specifies a sequence of values based on some mathematical
expression. The sequence element has no attributes. The child elements of sequence,
in the order in which they must appear are:

• factor, which specifies the factor to associate with this sequence,

• test, an element whose value may either be EQUALS, GT or LT (which stand for
“greater-than” and “less-than”),

• lconst or lvar, which specify either a constant numerical value or the variable
being stepped in the sequence

• op, an element whose value may be one of the following mathematical operators:

– “MULT” (multiplication)

– “FDIV” (floating-point division)

– “IDIV” (integer division)

– “PLUS” (addition)

– “MINUS” (subtraction)

– “MOD” (modulo)

– “POW” (power raising)

• rconst or rvar, which specify either a constant numerical value or the variable
being stepped in the sequence

• where, an optional element which specifies the range of values for the stepping
variable to take on. The required child element of where is the range element,
whose required children are:

– var, the variable to be stepped

CHAPTER 4. NEDL AND NSTL DETAILS 32

– lo, the lower bound of the stepping variable

– hi, the upper bound of the stepping variable

– delta, the increment of the stepping variable

1 <xs:complexType name="Sequence">

2 <xs:sequence>

3 <xs:element ref="tns:factor"/>

4 <xs:element ref="tns:test"/>

5 <xs:choice>

6 <xs:element ref="tns:lexpr"/>

7 <xs:element ref="tns:lvar"/>

8 <xs:element ref="tns:lconst"/>

9 </xs:choice>

10 <xs:element ref="tns:op"/>

11 <xs:choice>

12 <xs:element ref="tns:rexpr"/>

13 <xs:element ref="tns:rvar"/>

14 <xs:element ref="tns:rconst"/>

15 </xs:choice>

16 <xs:element ref="tns:where" maxOccurs="1" minOccurs="0"/>

17 </xs:sequence>

18 </xs:complexType>

For factors whose levels are specified with both a memberof and sequence element,
the resulting level list produced by the parser is the union of both.

4.1.7 The exclusionrestriction element

The exclusionrestriction element specifies a partial design point which should
be considered invalid during design point generation. It has no attributes, and it’s
required child is the setting element. setting has two required attributes, factor
and level which specify a particular factor/level combination considered invalid.

1 <xs:complexType name="ExclusionRestriction">

2 <xs:sequence>

CHAPTER 4. NEDL AND NSTL DETAILS 33

3 <xs:element ref="tns:setting" maxOccurs="unbounded"/>

4 </xs:sequence>

5 </xs:complexType>

6

7 <xs:element name="setting" type="tns:PointComponent"/>

8 <xs:complexType name="PointComponent">

9 <xs:attribute name="factor" type="xs:string"/>

10 <xs:attribute name="level" type="xs:string"/>

11 </xs:complexType>

4.1.8 The linkingrestriction element

The linkingrestriction element specifies a set of factors whose level values must
correspond to the same index within their respective lists. It has one required child
element, factor, which has a multiplicity of 1 or more.

1 <xs:complexType name="LinkingRestriction">

2 <xs:sequence>

3 <xs:element ref="tns:factor" maxOccurs="unbounded"/>

4 </xs:sequence>

5 </xs:complexType>

4.2 Details on the sequence element

The kind of sequence description the sequence element can provide is best illustrated
with some examples. Suppose we have the factor ONTIME and would like to create
for it a list of all multiples of 10 between 0 and 100. There are of course an infinite
number of mathematical expressions that would generate this sequence, but one of
them is

ONTIME = (x0, x1, x2, . . . , xi, . . . xn)

where xi = 10× i and n = 10. More informally, and in a form more easily translated
into the format of NEDL, we could say

ONTIME = 10× i where 10 ≤ i ≤ 100

CHAPTER 4. NEDL AND NSTL DETAILS 34

More complex sequences can be described as well, such as

ONTIME =
i2

2
where 1 ≤ i ≤ 4

which would give ONTIME = (0.5, 2.0, 4.5, 8.0).

A snippet of XML used to describe the first sequence is as follows.

1 <sequence>

2 <factor>ONTIME</factor>

3 <test>EQUALS</test>

4 <lvar>i</lvar>

5 <op>MULT</op>

6 <rconst>10</rconst>

7 <where>

8 <range>

9 <var>i</var>

10 <lo>0</lo>

11 <hi>10</hi>

12 <delta>1</delta>

13 </range>

14 </where>

15 </sequence>

A snippet of XML used to describe the second sequence is as follows.

1 <sequence>

2 <factor>ONTIME</factor>

3 <test>EQUALS</test>

4 <lexpr>

5 <lvar>i</lvar>

6 <op>POW</op>

7 <rconst>2</rconst>

8 </lexpr>

9 <op>FDIV</op>

10 <rconst>2</rconst>

11 <where>

12 <range>

CHAPTER 4. NEDL AND NSTL DETAILS 35

13 <var>i</var>

14 <lo>0</lo>

15 <hi>4</hi>

16 <delta>1</delta>

17 </range>

18 </where>

19 </sequence>

4.3 Details on the exclusionrestriction element

The exclusionrestriction element specifies individual design points an experi-
menter wishes to discard from the experiment design space. For example, suppose
we have the following exclusionrestriction snippet.

1 <exclusionrestriction>

2 <setting factor="ONTIME" level="3.0"/>

3 <setting factor="OFFTIME" level="12.0"/>

4 </exclusionrestriction>

Then the design point

{ONTIME = 3, OFFTIME = 12, DELAY = 4}

would not be valid because it contains the ONTIME = 3, OFFTIME = 12 combination,
but the design point

{ONTIME = 2, OFFTIME = 12, DELAY = 4}

would be valid, because it does not contain an invalid combination.

CHAPTER 4. NEDL AND NSTL DETAILS 36

4.4 Details on the linkingrestriction element

Every factor specified in a NEDL document has an associated list of level values.
Each level value has a certain index within this list and the linkingrestriction

element provides a way to specify a set of factors whose level values should all occur
at the same index in their respective level lists. For example, suppose we have the
following linkingrestriction element specified below.

1 <linkingrestriction>

2 <factor>ONTIME</factor>

3 <factor>DELAY</factor>

4 </linkingrestriction>

If the lists of level values associated with each factor are

ONTIME DELAY

0 0
1 1.5
2 3
3 4.5

then the set of all possible valid design points would be

{ONTIME = 0, DELAY = 0.0}

{ONTIME = 1, DELAY = 1.5}

{ONTIME = 2, DELAY = 3.0}

{ONTIME = 3, DELAY = 4.5}

since the level values for ONTIME are “linked” with the level values for DELAY.

4.5 A Full Example

The following example describes an experiment space consisting of three factors,
ONTIME, OFFTIME and DELAY. The level values for ONTIME are contained in the ex-

CHAPTER 4. NEDL AND NSTL DETAILS 37

ternal file onTimeValues.xml, whereas the level values for OFFTIME are contained in
an internally-defined levellist element. Finally, the level values for DELAY are ex-
pressed as i× 5, where 0 ≤ i ≤ 10.

There are two restrictions that prune the final set of design points. The first
restriction is an exclusionrestriction, which specifies that any design point where

{ONTIME = 3, OFFTIME = 12}

is invalid. The second is a linkingrestriction between ONTIME and DELAY. With
this restriction in place, valid design points are ones in which the level values of
ONTIME and DELAY correspond to the same list index.

FullExample.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <experimentspace xmlns="http://www.eg.bucknell.edu/safe/exp">

3

4 <factorlist>

5 <factor>ONTIME</factor>

6 <factor>OFFTIME</factor>

7 <factor>DELAY</factor>

8 </factorlist>

9

10 <conditions>

11 <!-- Member-Of Constraints: -->

12

13 <!-- This associates ONTIME with an external list of level

14 values found in the ‘onTimeValues.xml’ file. -->

15 <memberof>

16 <factor>ONTIME</factor>

17 <listid>onTimeValues.xml</listid>

18 </memberof>

19

20 <!-- This associates OFFTIME with an internally-specified

21 list of level values found in the ‘levellist’ element whose

22 ‘id’ attribute is ’offTimeValues’ -->

CHAPTER 4. NEDL AND NSTL DETAILS 38

23 <memberof>

24 <factor>OFFTIME</factor>

25 <listid>offTimeValues</listid>

26 </memberof>

27

28 <levellist id="offTimeValues">

29 <level>10</level>

30 <level>11</level>

31 <level>12</level>

32 </levellist>

33

34 <!-- Sequences -->

35 <!-- This associates DELAY with a sequence of values.

36 DELAY = i*1.5 where 0 <= i <= 10 -->

37 <sequence>

38 <factor>DELAY</factor>

39 <test>EQUALS</test>

40 <lvar>i</lvar>

41 <op>MULT</op>

42 <rconst>1.5</rconst>

43 <where>

44 <range>

45 <var>i</var>

46 <lo>0</lo>

47 <hi>10</hi>

48 <delta>1</delta>

49 </range>

50 </where>

51 </sequence>

52

53 <!-- Exclusion Restrictions -->

54 <!-- This type of restriction means that any design points

55 which have ONTIME = 3.0 and OFFTIME = 12.0 are invalid -->

56 <exclusionrestriction>

57 <setting factor="ONTIME" level="3.0"/>

58 <setting factor="OFFTIME" level="12.0"/>

59 </exclusionrestriction>

60

61 <!-- This type of restriction means that ONTIME and DELAY

CHAPTER 4. NEDL AND NSTL DETAILS 39

62 should occur in one-to-one correspondence. That is, a design

63 point is valid only if the level value of ONTIME is at the

64 same list index as the level value for DELAY -->

65 <linkingrestriction>

66 <factor>ONTIME</factor>

67 <factor>DELAY</factor>

68 </linkingrestriction>

69

70 </conditions>

71

72 </experimentspace>

onTimeValues.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <levellist xmlns="http://www.eg.bucknell.edu/safe/exp">

3 <level>0</level>

4 <level>1</level>

5 <level>2</level>

6 <level>3</level>

7 </levellist>

4.5.1 The Experiment Design Matrix

The experiment design matrix described by these documents is given in Table 4.1.
Note that the linkingrestriction and exclusionrestriction constraints have
reduced the number of valid design points drastically. Without these conditions there
would have been a total of 132 design points (4 ONTIME points, 3 OFFTIME points and
11 DELAY points). With the restrictions in place, there are just 11.

4.6 NSTL Syntax

The following sections provide an explanation of each of the elements allowed in a
NSTL document, along with the relevant piece of XML Schema that defines element

CHAPTER 4. NEDL AND NSTL DETAILS 40

DELAY OFFTIME ONTIME

0.0 10.0 0.0
0.0 11.0 0.0
0.0 12.0 0.0

1.5 10.0 1.0
1.5 11.0 1.0
1.5 12.0 1.0

3.0 10.0 2.0
3.0 11.0 2.0
3.0 12.0 2.0

4.5 10.0 3.0
4.5 11.0 3.0

Table 4.1: A Full Design

multiplicity and content type. In keeping with my goal that NSTL be straight-
forward to use and understand, there are just three allowed elements in an NSTL
document. Note that in the XML Schema snippets, the namespace prefix tns is used
by convention to reference the same namespace specified by the targetNamespace

attribute in the Schema.

4.6.1 The template element

The template element must be the top-level element in an NSTL document. It must
exist in the namespace identified by the following URI:

http://www.eg.bucknell.edu/safe/exp

The only allowed sub-element of the template root is the group element. I envision
that when researchers wish to create a new NSTL document they will first begin with
an existing ns-3 C++ script and annotate that script with NSTL tags after the fact.
Thus the content type of a template element is “mixed,” meaning that it can contain
both text and other elements. The allows for group elements to be inserted in and
around the code of an ns-3 script.

CHAPTER 4. NEDL AND NSTL DETAILS 41

1 <xs:element name="template" type="tns:Template"/>

2 <xs:complexType name="Template" mixed="true">

3 <xs:sequence>

4 <xs:element ref="tns:group" minOccurs="1"

5 maxOccurs="unbounded"/>

6 </xs:sequence>

7 </xs:complexType>

4.6.2 The group element

The group element is the required child of the template element and there may be an
unlimited number of occurrences of the element. A group element has one required
child element: the block element. The idea is that the group element will contain
a number of swappable code blocks, each within their own block element.

1 <xs:element name="group" type="tns:Group"/>

2 <xs:complexType name="Group">

3 <xs:sequence>

4 <xs:element ref="tns:block" minOccurs="1"

5 maxOccurs="unbounded"/>

6 </xs:sequence>

7 <xs:attribute name="id"/>

8 </xs:complexType>

4.6.3 The block element

The block element is intended to contain some block of ns-3 script code which the
user wishes to swap out with other code blocks over the course of the experiment. As
stated previously, each of these block elements should be within a single group for
proper code generation.

1 <xs:element name="block" type="xs:string"/>

A full example to better illustrate the use of NSTL is in order, but this is given
later in Chapter 7 on code generation. For now, the important points worth repeating

CHAPTER 4. NEDL AND NSTL DETAILS 42

are that NSTL has been pared back as a model description language and now serves a
purpose better described as template description language. It allows one to annotate
an existing ns-3 script with special NSTL markers that facilitate the swapping of
certain code blocks within a section of code (these sections are delimited by group

elements). If a researcher wished to use two different Application Layer models in
their simulation script, they could instantiate each of those models in a different
block element and run simulations comparing the two.

Chapter Summary

This chapter included the syntax-level details of both languages I have developed,
NEDL and NSTL. NEDL is somewhat more complex and allows for an abstract
description of an experiment design space. The language also has special constructs
(i.e., exclusionrestriction and linkingrestriction) that provide ways to prune
unwanted design points from the experiment design space.

NSTL has a simple grammar; it augments the code of an existing ns-3 simulation
script with annotations to facilitate text replacement. Its structures allow one to
delimit sections of code with group elements and swap blocks of code within that
section by placing the blocks within block elements. Although NSTL does not al-
low for “simulator-agnostic” high-level model descriptions, it provides a flexible and
useful templating mechanism for users of the ns-3 simulator. Chapter 7 discusses the
challenges identified in my experience in generating ns-3 code from high-level model
descriptions.

43

Chapter 5

Parsing NEDL and NSTL
Documents

This chapter discusses the larger points related to manipulating documents written in
XML-based languages, such as NEDL and NSTL. The only way to access information
programmatically within an XML file is to first parse it, and the act is so common that
there exist a variety of XML parsing libaries in every major programming language.
These libraries present an interface to the programmer, and it is through this interface
that the document can be read and written to. There are three main approaches for
parsing an XML file. The first involves parsing the entire document and then building
a tree data structure in memory that matches the tree structure of the document. In
this approach, the programmer is presented with the Document Object Model (DOM)
interface. The second approach involves parsing the document and firing events as
certain elements are encountered. In this approach, the programmer is presented
with the Simple API for XML (SAX) interface. In the last approach, the document
is parsed and used to instantiate a custom-designed object in memory that matches
the element names and attributes of the document. This last approach is called data
binding, and is perhaps the most programmer-friendly of the three [28] [45].

CHAPTER 5. PARSING NEDL AND NSTL DOCUMENTS 44

5.1 Document Object Model

To create the DOM interface, the entire XML document is read into memory and
placed in a tree data structure. The structure of XML documents corresponds natu-
rally to a tree hierarchy with parent and child node relationships. The programmer is
provided a reference to the top-level element in the document (the root) and may ref-
erence other positions in the document (called nodes) using either special method calls
like getFirstChild() (which returns a reference to the first child element appearing
underneath the root). If the programmer has a reference to some node underneath
the root, they could call methods like getNextSibling(), which returns a reference
to the next node in the document whose parent is the same as the current node’s.

The DOM interface is usually easier for those less familiar with XML processing
as it allows for random access to any part of the XML document tree using intuitive
methods and names. The DOM parser that constructs the tree in main memory,
however, requires substantial resources in terms of CPU time and memory. Memory
requirements are often 2 to 5 times the size of the document itself, which limits the
scalability of DOM parsing as the XML document size grows [36].

5.2 Simple API for XML

The Simple API for XML (SAX) provides an event-based interface to the programmer.
SAX parsers read through an XML document and report events to the programmer
through callbacks. For example, a startElement event will fire when the parser
hits the opening tag of an element, and an endElement event will fire when the
parser reaches the closing tag. The programmer constructs event handlers in their
application to process information as it is read from the document. Since a SAX parser
delivers an event stream to the programmer, memory requirements remain constant
even as the XML document size increases [36]. Additionally, SAX parsers can process
a large document between 2 and 7 times faster than a DOM parser [21]. The drawback
to SAX parsers is their complexity; handling an event stream is conceptually much
different than working with a document tree. For this reason, SAX parsers can be
difficult to build and maintain.

CHAPTER 5. PARSING NEDL AND NSTL DOCUMENTS 45

5.3 Data Binding

Data binding, a third approach for parsing XML documents, is the approach I chose
in implementing the relevant pieces of the SAFE framework. Both the SAX and DOM
interface to XML documents are very low level and document-centered [28] [45]. It
can be tedious work, since the transformation of data to and from XML has to
be done manually. A more streamlined approach is to allow the programmer to
work with objects that better reflect the structure of the application domain rather
than that of the underlying tree structure of XML [45]. This is accomplished by
creating custom software objects that correspond to the thing an XML document is
intended to represent and creating data members for each of the document’s XML
elements. Programmers used to an object-oriented paradigm find it natural to interact
with XML documents in this fashion. This not only makes things easier for the
programmer, but also makes sense from a software engineering standpoint; software
objects provide the semantics that XML by itself does not.

Every major programming language has XML data binding libraries available
which are able to transform a given XML document into an object-oriented data
structure. To do this, the libraries must first know what structure and content to
expect in the document, and this information is provided in an XML schema given
as input to the data binding program. The output of that program is a set of object
classes corresponding to the schema [44]. The schema language that has the widest
support is the W3C XML Schema language. Every XML Schema defines a certain
class of XML documents, and generating the programming code to represent that
class of documents is straight-forward and easily automated [44].

Once the object classes have been generated we can unmarshal XML documents
into instances of these classes. Since the SAFE framework is implemented in Python
and C++, it made sense to unmarshal our XML documents into instances of Python
classes. The PyXB library [1] was my library of choice. From the command line we
can simply run

$ pyxbgen -u MySchema.xsd -m mymodule.py

and PyXB will automatically generate the mymodule.py file, which defines a Python
class corresponding to the structure of MySchema.xsd. If we have the XML file
MyDocument.xml which validates against MySchema.xsd, then a call to

CHAPTER 5. PARSING NEDL AND NSTL DOCUMENTS 46

mymodule.CreateFromDocument(file(‘MyDocument.xml’).read())

instantiates a Python object whose instance variables correspond exactly to the struc-
ture and content of the XML document’s elements and attributes.

The great benefit of this is that we now have object-oriented access to the XML
document contents and are saved from having to write custom SAX or DOM parsers
by hand. As an aside, the CreateFromDocument() method generated by PyXB in
fact uses a custom-built SAX parser to incrementally construct a class instance from
an XML document [1]. If the definition in the original schema changes (e.g., a change
in MySchema.xsd) then we need only to re-run the pyxbgen tool to generate a new
binding module. To do this by hand would mean re-factoring the original SAX parser
every time the schema definition evolved, which is tedious and error-prone work.

5.4 Advantages to Data Binding

In the context of the SAFE framework for ns-3, the XML documents that we are
parsing and binding to Python objects are NEDL files for experiment description
and NSTL files for template description. For the moment, I will concentrate on the
processing associated with a given NEDL file.

As mentioned in Chapter 1, an experiment design space is composed of a set of
design points. The goal in my work is to take a NEDL file as input and generate
each design point within the set of all design points described by that document.
Data binding provides a way to modularize this process. In writing a DOM or SAX
parser by hand it would be tempting to generate these design points as the document
is parsed, and in fact, it may even be more efficient that way. The problem with
this approach is that if either the inputs or outputs to the process change, the entire
parsing module would have be re-factored and re-compiled by hand. As shown in
Figure 5.1, the binding classes generated by PyXB allow for a separation of the
parsing and experiment space generation logic.

CHAPTER 5. PARSING NEDL AND NSTL DOCUMENTS 47

NEDL
Document

NEDL
Parser

Unmarshalled
XML Object

(an "Experiment
Space" object)

Design
Point

Generator

given to

generates accesses

Design
Point

Design
Point

Design
Point

ge
ne

ra
te

s

generates

generates

...

Figure 5.1: From NEDL document to design point generation.

Of course, for now, the names of instance variables that are accessed by the NEDL
Parser module depend on element and attribute names defined in the NEDL Schema,
so if the input Schema were to change, the parsing module would have to be re-factored
as well. In most data binding libraries, those could be modified with a special bindings
file that specifies names of XML elements and what their corresponding instance
variable names should be in the generated class. This functionality is not supported
by PyXB, but implementing it would not be unreasonably difficult, it is safe to assume
that if this functionality is not supported in future versions of PyXB, another binding
library will support this. If one were to tweak the NEDL Schema in a way that would
only affect element or attribute names, then they could make similar changes in the
bindings file and re-run the pyxbgen tool without having to make any changes in the
NEDL Parser module. On the other end, if one wished to change the internal logic
of the NEDL Parser module or change any of its method signatures, they could
do so without having to interfere with any code relating to syntax-level document
parsing. These advantages also apply to the parsing of NSTL documents, though the
issue of an evolving structure is less urgent in that case since NSTL documents have
a much simpler structure than NEDL documents.

CHAPTER 5. PARSING NEDL AND NSTL DOCUMENTS 48

5.5 Alternative Parsing Methods

There are other “hybrid” parsing methods available, notably the RELAX NG Compiler-
Compiler (RELAX NGCC) technology [38]. This technology allows a user to annotate
a schema written in the RELAX NG language with lines of Java source code that
will execute as the document is being parsed and validated against the schema. It
does this by reading the annotated RELAX NG schema and generating a dedicated
SAX parser that integrates the Java code embedded in the schema into the call-
back methods. For example, the RELAX NGCC website provides the following small
grammar:

1 <?xml version="1.0" encoding="utf-8"?>

2 <grammar xmlns="http://relaxng.org/ns/structure/1.0"

3 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"

4 xmlns:c="http://www.xml.gr.jp/xmlns/relaxngcc">

5

6 <start c:class="Driver">

7

8 <element name="team">

9 <oneOrMore>

10 <element name="player">

11 <attribute name="number">

12 <data type="positiveInteger" c:alias="number"/>

13 <c:java>System.out.println(number);</c:java>

14 </attribute>

15 <element name="name">

16 <text c:alias="name"/>

17 <c:java>System.out.println(name);</c:java>

18 </element>

19 </element>

20 </oneOrMore>

21 </element>

22

23 </start>

24

25 </grammar>

Listing 5.1: An example grammar using the RELAX NGCC syntax.

CHAPTER 5. PARSING NEDL AND NSTL DOCUMENTS 49

The grammar describes a team roster written in XML that would look something
like the following.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!-- this file is "Team.xml" -->

3 <team>

4 <player number="23">

5 <name>John Smith</name>

6 </player>

7 <player number="11">

8 <name>Bob Jones</name>

9 </player>

10 </team>

Listing 5.2: An example instance document for use with RELAX NGCC.

The tools provided by the RELAX NGCC project allow one to compile the gram-
mar given in Listing 5.5 into the source code for a SAX parser that makes the calls to
System.out.println() whenever the number attribute or name element are reached
in the instance document. This source code can then be compiled with the stan-
dard Java compiler into executable Java byte code whose input is the XML instance
document and whose output (in this case) would be:

1 $ java Driver Team.xml

2 23

3 John Smith

4 11

5 Bob Jones

This compiler-compiler approach is helpful because it is able to associate behavior
with XML documents through the use of annotations in the schema document [28].
My work does not utilize the RELAX NGCC technology largely because it is intended
for generating Java source code from a given grammar [38] and I believed that the
ns-3 community would rather see the implementation of the SAFE framework done
in a language they already use and are familiar with (i.e., Python or C++). Like
the RELAX NGCC approach, my work uses data binding libraries to build custom
parsers too. The difference however, is that RELAX NGCC allows a programmer to
specify special actions for the parser to take as it parses the document, whereas in

CHAPTER 5. PARSING NEDL AND NSTL DOCUMENTS 50

my approach, the document is first parsed and used to populate an object instance in
memory. From there, special actions can be taken on the values of its instance vari-
ables. The compiler-compiler approach is perhaps more efficient, but unmarshalling
with PyXB is suitable too, since it provides the important benefit of separation of
low-level syntax processing code and application logic.

Chapter Summary

This chapter discusses XML parsing techniques as they relate to SAFE. Parsing is
a necessary step for interacting with an XML document in any programmatic way.
There are three main ways to go about this, and they involved working with different
interfaces to the XML document. Using the DOM interface, the programmer is
presented with the entire document tree in memory, and has random access to any
node in the tree. Using the SAX interface, the programmer is presented with an event
stream and is responsible for writing handler methods to operate on the document
contents appropriately. Although the DOM interface is easier for most beginners to
use, it consumes an amount of memory proportional to the document and therefore
does not scale well with large XML documents.

A third approach is data-binding, which is the process of using an XML schema
to generate a class file that encapsulate the information which the XML document is
intended to represent. Given this class file, a data-binding program can unmarshal
the document into an instance of that class. This instantiated object is much easier
for a programmer to use because it uses represents the document as an abstract
data type rather than tree of nodes or stream of events. I have used the PyXB
data-binding library because I believe it is a reasonably-efficient parsing method and
makes the experiment space generation and template generation logic much easier to
understand.

51

Chapter 6

Validating NEDL and NSTL
Documents

A crucial step in the SAFE framework is validation of NEDL and NSTL files. De-
veloping XML-based languages was a decision motivated largely by the existence of
so many tools and methods available for document validation, and as such, the topic
of validation merits further discussion here. In this chapter, I talk about some of the
ways an XML document may be validated, including grammar-based and rules-based
methods. There are many languages available to describe XML grammars and it is
advantageous to develop a grammar for the purposes of data-binding, as described
in Chapter 5. It is difficult, however, to capture all of the semantic rules of a lan-
guage in a grammar, and for this reason I have also implemented a tool that performs
something like rules-based validation on top of a grammar-based validation.

6.1 Introduction

An XML schema is a rigorous specification of the allowed elements and attributes in
a particular XML-based language. The schema defines constraints on what elements
and attributes are allowed in the language, and how they should be structured [33].
We say that an XML document is valid against a schema if it does not break any
of the constraints laid out in that schema. The computer languages used to encode
a schema are known as schema languages. A validator for a schema language is a

CHAPTER 6. VALIDATING NEDL AND NSTL DOCUMENTS 52

computer program that takes as input both an XML schema written in that language
and an XML document, and subsequently determines if the document is valid against
the schema.

There are several schema languages at our disposal, including the general-purpose
Document Type Definition (DTD) [11], W3C XML Schema [47], and RELAX NG [16].
Although other languages do exist for specialized applications or research activities
(e.g., XDuce, DSD, RDF Schema), these are not well-suited for this project. More-
over, as described in my review of data-binding in Chapter 5, there is an advantage
to pursuing the more widely-supported schema languages. Worth noting, however, is
ISO Schematron [2], which uses a system of rules-based validation to check the valid-
ity of a document. In rules-based validation, the XML instance document is simply
subjected to a series of “checks” (these are the rules) to decide if it is valid or not.
The rules can be very specific, allowing for tight control over the document structure
and contents. One could, for example, specify that the contents of an XML element
of the form <bogus n="2">4</bogus> always has numerical content value that is
double the value of the n attribute. Although I do not integrate ISO Schematron
itself into my work, I have borrowed concepts from its rules-based scheme in my own
validation process.

Murata et al. [33] have completed substantial work in the area of XML validation
using formal language theory. Their research has influenced the design choices I have
made regarding the specific methods for validation and the schema language used for
defining valid NEDL and NSTL documents.

6.2 XML and Tree Grammars

Of the two languages I have developed, NEDL is the most difficult to validate. This
is because there are many constructs within a NEDL document for which validation
is hard. Consider, for example, the NEDL excerpt shown below.

CHAPTER 6. VALIDATING NEDL AND NSTL DOCUMENTS 53

1 <factorlist>

2 <factor>DELAY</factor>

3 <factor>FREQ</factor>

4 </factorlist>

5 <conditions>

6 <memberof>

7 <factor>ONTIME</factor>

8 <listid>bogus_id</listid>

9 </memberof>

10 </conditions>

The NEDL Schema specifies that a memberof element must have the factor

and listid elements as children, but there is no way to specify in the schema that
the value of factor is a string that appears in the original factorlist and that
listid marches either a levellist element’s id attribute or an external filename.
The problem here is XML Schema’s limited expressivity as a language for describing
grammars.

Murata et al. [33] give rigor to our discussion by introducing tree grammars, which
are grammars that generate trees. These should not be confused with the perhaps
more familiar context-free grammars, which generate strings. Since an XML doc-
ument is a representation of a tree structure, tree grammars are more appropriate
when talking about XML. The class of tree grammars that are of interest to us are
regular tree grammars. This class can be further divided into local and single-type
grammars.

First, a formal definition of regular tree grammars. This definition is borrowed
from Comon et al. [17]. A regular tree grammar is a 4-tuple G = (N, T, S, P) where

• N is a finite set of nonterminals,

• T is a finite set of terminals,

• S is a set of start symbols, where S is a subset of N ,

• P is the set of production rules of the form X → ar where X ∈ N , a ∈ T and
r is a regular expression over N ; X is the left-hand side, ar is the right-hand
side, and r is the called the content model of this production rule.

CHAPTER 6. VALIDATING NEDL AND NSTL DOCUMENTS 54

Using this framework Murata et al. [33] are able to classify the relative power of
the three important schema languages I listed earlier: DTD, XML Schema and RE-
LAX NG. The power they talk about comes from each of the language’s expressivity
and to what degree they allow for competition among nonterminals and terminals
in a grammar G. Competition among two different nonterminals occurs when two
production rules that have different left-hand sides share the same terminal in their
right-hand sides. Given the following production rules (where ∗ is the Kleene-star
operator)

BOOK → author CHAPTER∗

REPORT → author ABSTRACT

the nonterminals BOOK and REPORT are in competition with each other. Validating
an XML document against this grammar is more difficult, since the validator must
somehow decide which production rule to use when comparing an XML tree against
this grammar.

DTD is the least expressive schema language because it prohibits competition of
nonterminals and is only able to describe local tree grammars. XML Schema expands
on the expressivity of DTD by allowing for competition among nonterminals, as long
as they do not exist within the same single content model. This class of grammars is
called single type. For example, the production rules

COLLECTION → BOOK REPORT

BOOK → author CHAPTER∗

REPORT → author ABSTRACT

could not be part of a single-type grammar, because both BOOK and REPORT
are part of the content model of COLLECTION, and BOOK and REPORT are in
competition with each other. However, if the rules were modified so that we had

COLLECTION → B R

B → booktitle BOOK

R → reporttitle REPORT

BOOK → author CHAPTER∗

REPORT → author ABSTRACT

CHAPTER 6. VALIDATING NEDL AND NSTL DOCUMENTS 55

then the grammar would be single-type. Nonterminals BOOK and REPORT are
indeed in competition with each other, but they are not part of the same content
model. The class of single-type grammar corresponds roughly to XML Schema.

RELAX NG broadens this expressivity further still by allowing for competition
among nonterminals in any context. For this reason, it is generally considered to be
the most powerful schema language of those I am considering here. RELAX NG is
able to encode the production rules

BOOK → author CHAPTER∗

REPORT → author ABSTRACT

and validators exist to validate a document conforming to this grammar. Despite
RELAX NG’s expressive power, it does not enjoy the same widespread use that
XML Schema has across many types of applications, due in part to XML Schema’s
official endorsement by the World Web Consortium. By incorporating elements of
rules-based validation into the overall validation process we can mitigate the limited
expressivity of XML Schema while leveraging the wide support is has as the de-facto
schema language standard in the XML community.

To this end, a NEDL document is first validated against the NEDL Schema written
in XML Schema. XML well-formedness checking is implicit in this process. As shown
earlier however, there are a number of variations that are valid according to the NEDL
Schema but meaningless or nonsensical from the perspective of the NEDL parser. I
have written the NEDLValidator class to perform the sort of rules-based validation
alluded to earlier that can check for the presence of specific content in the document
and ensure that it is semantically correct.

6.3 Implementation

The implementation of the NEDLValidator class is relatively straight-forward. The
hierarchical structure of XML makes it easy to perform element-by-element valida-
tion. The NEDLValidator class is initialized with an XML document string (that
is, a string containing an entire XML document). The constructor uses a PyXB-
generated module to unmarshal the document into a Python class. The method
ExpValidator.validate() begins the validation process by accessing XML elements
and contents in their unmarshalled form.

CHAPTER 6. VALIDATING NEDL AND NSTL DOCUMENTS 56

Recall that a NEDL document has the following form outlined below.

1 <experimentspace xmlns="http://www.eg.bucknell.edu/safe/exp">

2

3 <factorlist>

4 <factor>DATARATE</factor>

5 <factor>DELAY</factor>

6 <factor>ONTIMEMEAN</factor>

7 <factor>ONTIMEVARIANCE</factor>

8 </factorlist>

9

10 <conditions>

11 <!-- ... -->

12 </conditions>

13

14 </experimentspace>

The NEDLValidator.validate() method first iterates through the factor elements
within factorlist and constructs a list data structure to hold each of the factor
names. Subsequently, a series of methods are called that correspond exactly to
the XML document structure. Since every NEDL document has a conditions ele-
ment immediately after factorlist, the NEDLValidator.validate_conditions()

method is called next, which itself simply calls NEDLValidator.validate_memberof()
and NEDLValidator.validate_sequence(). The NEDLValidator class has a method
name of the form validate_<ELEMENT NAME> for every complex type element in a
NEDL document. The next section describes what kind of checking is performed
in the validation of each element in a NEDL document. Because NSTL documents
are essentially just augmented ns-3 scripts, attempting to validate an NSTL docu-
ment at a granularity any finer than basic element structure would be tantamount
to validating the C++ code itself – a task better suited to existing compilers. Thus,
NSTL documents are validated only against the NSTL Schema (see Appendix A.2)
and there is no further semantic validation performed.

CHAPTER 6. VALIDATING NEDL AND NSTL DOCUMENTS 57

6.4 NEDL Checking

The NEDLValidator class contains methods for checking each type of element that
may be in a NEDL document. There are four methods used to check the most
important elements in the document. These methods are used for

• validating memberof elements,

• validating sequence elements,

• validating linkingrestriction elements, and

• validating exclusionrestriction elements.

6.4.1 Checking memberof elements

The memberof element has children factor and listid. A typical memberof element
has the following form:

1 <memberof>

2 <factor>ONTIME</factor>

3 <listid>onTimeValues</listid>

4 <memberof>

The NEDLValidator checks that the factor element matches one of those listed in
the factorlist element. The validator also checks that listid matches either (1)
the id attribute of some levellist element or (2) the name of a file in the users
current working directory.

6.4.2 Checking sequence elements

NEDL sequence elements are more complex to validate than memberof elements
because there is greater flexibility in the NEDL Schema to allow for grammatically-
correct but semantically-incorrect element contents. Recall that a typical sequence
element has the following form:

CHAPTER 6. VALIDATING NEDL AND NSTL DOCUMENTS 58

1 <sequence>

2 <factor>ONTIME</factor>

3 <test>EQUALS</test>

4 <lconst>2</lconst>

5 <op>PLUS</op>

6 <rvar>i</rvar>

7 <where>

8 <range>

9 <var>i</var>

10 <lo>100</lo>

11 <hi>110</hi>

12 <delta>1</delta>

13 </range>

14 </where>

15 </sequence>

The general validation process executed by the NEDLValidator for these elements
is detailed below. Note that from the point of view of the NEDLValidator, the lexpr

and rexpr represent “expression” elements, which can themselves contain further
nested expressions. Loosely speaking, these expression elements contain a left-hand
side, an operator, and a right-hand side. See the NEDL Schema for details on this
feature.

1. Verify that the factor element matches one of those listed in the original
factorlist element.

2. Verify that the value of the test element is one of the three strings “EQUALS”,
“LT” or “GT”.

3. Validate the next lconst, lvar or lexpr element, depending on which is
present.

• lconst: Check that the value of this element is an integer or float.

• lvar: If this is the first lvar or rvar element encountered, NEDLValidator
saves the value of this string. For the sake of simplicity, only single-variable
expressions are allowed in NEDL files, so all subsequent lvar and rvar

elements are compared to this first string. If the value differs from the
initial variable identifier, NEDLValidator issues a warning, but continues
on as if the variable identifiers were all the same.

CHAPTER 6. VALIDATING NEDL AND NSTL DOCUMENTS 59

• lexpr: Recursively validate this as a nested “expression” element.

4. Verify that the value of the op element is one of the strings “MULT”, “FDIV”,
“IDIV”, “PLUS”, “MINUS”, “MOD”, or “POW”.

5. Validate the next rconst, rvar or rexpr element, depending on which is
present. Following the exact same procedure described in Step 3.

6. Validate the where element by verifying that the nested lo, hi, and delta

elements contain valid integers or floating-point numbers.

Subsequently, NEDLValidator checks that the value of the op element is one of
the strings Finally, the checks performed for the rconst, rvar and rexpr elements
are exactly the same as described above for the lconst, lvar and lexpr elements.

6.4.3 Checking linkingrestriction elements

A typical linkingrestriction element has the following form:

1 <linkingrestriction>

2 <factor>ONTIME</factor>

3 <factor>OFFTIME</factor>

4 <factor>DELAY</factor>

5 <factor>DATARATE</factor>

6 </linkingrestriction>

The NEDLValidator simply checks that each factor element matches one of those
listed in the original factorlist element.

6.4.4 Checking exclusionrestriction elements

A typical exclusionrestriction element has the following form:

1 <exclusionrestriction>

2 <setting factor="ONTIME" level="1.0"/>

CHAPTER 6. VALIDATING NEDL AND NSTL DOCUMENTS 60

3 <setting factor="OFFTIME" level="3.0"/>

4 </exclusionrestriction>

The NEDLValidator checks that the value of each factor attribute matches the value
of one of factor elements in the original factorlist element. The validator also
verifies that value of the setting attribute is a float or integer.

6.5 Chapter Summary

Validation is a crucial piece of the SAFE framework and the various validation options
explored over the course of this project were discussed in this chapter. We have a
range of schema languages to choose from when deciding how to encode the grammar
of an XML language. Among them, the most common are DTD, XML Schema and
RELAX NG, which are each able to describe increasingly larger subsets of the class
of regular tree grammars. The DTD language corresponds roughly to the class of local
tree grammars, the XML Schema language corresponds roughly to the class of single-
type grammars, and RELAX NG is able to describe the entire class of regular tree
grammars. Although RELAX NG represents the greatest degree of expressivity over
an XML grammar, it does not have the widespread adoption that XML Schema has
enjoyed. Because XML Schema is so well integrated into all sorts of XML applications,
there exist a variety of robust libraries and tools that depend on the language. Data-
binding, in particular, is often carried out using an XML Schema. To account for the
instances in which XML Schema is insufficient for describing a valid NEDL document,
I have written the NEDLValidator tool which carries out a series of checks to ensure
that a given NEDL document is semantically correct and ready to be parsed.

61

Chapter 7

Code Generation

Automatic code generation is one of the higher-level goals of the SAFE project and
has been perhaps the most ambitious goal of the project. I have concentrated on
providing a language that facilitates using code templates in flexible ways. Although
the pool of researchers who know the codebase of ns-3 well is small, if these people help
develop several dozen script templates then the larger group of all network simulation
researchers will have a collection of robust scripts that allow for interchangeable code
blocks and changes in model input parameters. This chapter gives some further
background to code generation and how it is typically performed in XML applications,
along with a description of the specific steps I took in my own code generation scheme.

7.1 Introduction

The NEDL language provides ways to describe design spaces completely and rela-
tively succinctly. When the experiment description document has been validated
and parsed, it is ready to be given to the design point generator module. Two
classes written in Python, safe.dpgenerators.LinearDesignPointGenerator and
safe.dpgenerators.BacktrackingDesignPointGenerator perform this design point
generation. In the SAFE framework, a single design point is represented as a Python
dictionary, where the keys of the dictionary are factor names and the values are the
corresponding level values for these factors. Given a single design point, the next
step in the process is code generation. Code generation is generally the process of

CHAPTER 7. CODE GENERATION 62

transforming a high-level document into a low-level one [24].

The high-level language in this case is the XML language NEDL and the lower-
level target language is ns-3-executable C++. Though the input language is XML
this process should not be confused with data binding. We do not wish to instanti-
ate objects in the ns-3 library — we are generating flat text files containing C++
scripts that each correspond to a single simulation that is part of a many-simulation
experiment.

7.2 Working with Design Points

The simplest sort of code generation scheme is one involving string substitution. For
example, suppose we have a snippet of a simulation script that is the following.

1 OnOffHelper onoff ("ns3::UdpSocketFactory",

2 Address (InetSocketAddress (Ipv4Address ("10.1.1.2"), port)));

3 onoff.SetAttribute (

4 "OnTime", RandomVariableValue (ConstantVariable (1)));

5 onoff.SetAttribute (

6 "OffTime", RandomVariableValue (ConstantVariable (0)));

If a researcher wanted to vary the values used for the OnTime and OffTime at-
tributes, they could use the NEDL language described previously to generate a series
of design points with different level values for OnTime and OffTime. One way of trans-
forming these design points into executable code is to examine an existent simulation
script and find all the places where each factor in the design space is set. Using the
level value contained in the design point, it is only a matter of substituting this value
into the existent script and outputting the result to a user-specified file.

In this project I chose to use special markers within a simulation script to identify
places where such substitution would occur. These markers are identified by a pair
of dollar sign ($) symbols. Thus, if we had a NEDL document that set up a design
space with factors ONTIME and OFFTIME, then the previous piece of code setting up
the OnOffHelper object would look like:

CHAPTER 7. CODE GENERATION 63

1 OnOffHelper onoff ("ns3::UdpSocketFactory",

2 Address (InetSocketAddress (Ipv4Address ("10.1.1.2"), port)));

3 onoff.SetAttribute (

4 "OnTime", RandomVariableValue (ConstantVariable ($ONTIME$)));

5 onoff.SetAttribute (

6 "OffTime", RandomVariableValue (ConstantVariable ($OFFTIME$)));

The code generating module in this case has only to pluck the level values cor-
responding to the ONTIME and OFFTIME factors (recall that this information is con-
tained in a Python dictionary) and substitute these values in place of the markers.
This functionality, while quite trivial to implement, already provides a great deal of
flexibility to the experimenter. No extra special command-line arguments are needed
to run each of the outputted scripts — the markers have already been replaced by
hard-coded values. The ns-3 simulator is billed as a simulator used for both edu-
cation and research [37], and one use case that this functionality targets is that of
a professor providing students with a pre-built ns-3 script with these special factor
markers embedded inside. The students could easily design their own experiments
using the NEDL language and observe how simulator behavior changes after running
each script.

7.3 XML Transformations

Any code generation that is more complex than simply value substitution involves the
transformation of XML documents into some other form. It is “compiling” XML into
the target language. XML-to-C++ transformations could be done in the following
ways:

• by hand, using a SAX or DOM parser and custom-designed handlers that print
out the right C++ code to an output file;

• by hand, using a specification written in the eXtensible Stylesheets Transfor-
mation Language (XSLT).

CHAPTER 7. CODE GENERATION 64

7.3.1 Using XSLT

XSLT is an oft-used language for XML document transformation; its specification is
an official recommendation of the World Wide Web Consortium [15] (as is XML [11]).
Processing in XSLT is divided into special templates. Each template can either be
called explicitly or invoked whenever a certain XPath expression matches a node in
the input document. It is best suited, however, for transforming one XML document
into another XML document, as opposed to transforming that same XML document
into an arbitrary text file (such as C++ source code).

Projects that have used XSLT for source code generation typically develop tem-
plates that consist mostly of blocks of the target code with small pieces of XSLT that
“plug in” values from the input XML document [48] [22] [13]. For example, consider
the XSLT template in Listing 7.1 offered as an example in [22] where the XSLT pro-
cessing information is highlighted in gray, and the surrounding text that is simply
dumped as output is in black. Another example from [48] is given in Listing 7.2.
Finally, a third example taken from Canonico et al. [13], whose work lies squarely in
the domain of network simulation, is given in Listing 7.3.

These examples illustrate some of the major drawbacks of XSLT. For one, it is
itself written in XML and is rather verbose. Also, it is not always immediately
obvious what exactly the XSLT code is accomplishing. The programmer is forced to
write what are sometimes cumbersome XPath expressions and the for-loop detailed
in Listing 7.2 is not formatted in a way most programmers are used to seeing (i.e., no
special indentation for the loop body or braces). These examples are straight-forward
enough, but a more complex transformation can become nearly indecipherable, and if
the specification of the input XML document changes, maintenance of the stylesheet
is all the more difficult. It seems that most kinds of code generation using XSLT use
the same sort of concept as [48] and [22]: manually create the skeleton code block
of the target language and use <xsl:value-of/> elements to pluck element contents
from the input XML document.

CHAPTER 7. CODE GENERATION 65

1 <xsl:template match="RemoteObject" mode="connect">

2 try {

3 ORB orb = org.omg.CORBA.ORB.init(args, null);

4 org.omg.CORBA.Object objRef =

5 orb.resolve_initial_references("NameService");

6 NamingContext ncRef = NamingContextHelper.narrow(objRef);

7 NameComponent nc =

8 new NameComponent("<xsl:value-of select="."/>", " ");

9 NameComponent path[] = {nc};

10 <xsl:value-of select="."/>_SINGLETON =

11 <xsl:value-of select="../RemoteServer"/>Lib.

12 <xsl:value-of select="."/> Helper.narrow(

13 ncRef.resolve(path));

14 } catch(Exception e) {

15 System.out.println("ERROR : " + e);

16 e.printStackTrace(System.out);

17 }

18 </xsl:template>

Listing 7.1: An XSLT template from Grundy et al. [22] used for generating source
code.

1 // shutdown all our connections

2 int infopipe_<xsl:value-of select="$thisPipeName"/>_shutdown()

3 {

4 <jpt:pipe point="shutdown">

5 // shutdown incoming ports <xsl:for-each select="./ports/inport">

6 infopipe_<xsl:value-of select="@name"/>_shutdown(); </xsl:for-each>

7 // shutdown outgoing ports <xsl:for-each select="./ports/outport">

8 infopipe_<xsl:value-of select="@name"/>}_shutdown(); </xsl:for-each>

9 </jpt:pipe>

10 return 0;

11 }

Listing 7.2: An XSLT template from Swint et al. [48] used for generating source
code.

CHAPTER 7. CODE GENERATION 66

1 <xsl:template match="/">

2 #Code Generated by SimulationScenarioTons.xsl

3 set ns [new Simulator]

4 <xsl:apply-templates

5 select="//sce:simulationCommand/sce:

6 nsConfigurationCommand/sce:traceall"/>

7 <xsl:apply-templates

8 select="//sce:networkDescription"/>

9 <xsl:apply-templates

10 select="//sce:traffic"/>

11 #finish proc

12 proc finish {} {

13 global ns

14 $ns flush-trace

15 <xsl:if

16 test="//sce:simulationCommand/sce:

17 nsConfigurationCommand/sce:traceall/@nam=’false’">

18 global tf

19 close $tf

20 </xsl:if>

21 <xsl:if

22 test="//sce:simulationCommand/sce:

23 nsConfigurationCommand/sce:traceall/@nam=’true’">

24 global nf

25 close $nf

26 </xsl:if>

27 exit 0

28 }

29 #Simulation Run

30 $ns at <xsl:value-of select="//sce:simulationCommand/@stopTime"/>

31 "finish"

32 $ns run

33 </xsl:template>

34 </xsl:stylesheet>

Listing 7.3: An XSLT template from Canonico et al. [13] used for generating source
code for the ns-2 network simulator.

CHAPTER 7. CODE GENERATION 67

7.3.2 An Alternative Approach: Groups and Blocks

Having spent a good deal of time working with XSLT, I believe there is a better
approach for generating source code from XML. As mentioned previously, the key
observation to be made is that most kinds of source code generation involve pre-
cooked “templates” of Java, C++ or whatever the target language is, with spots
for simple substitution of XML element contents. This situation is hard to avoid,
especially in the context of ns-3. As described in [24], most code generation is done
in the context of software engineering to enable the automatic generation of software
components that would otherwise be tedious or difficult to write accurately by hand.
Examples include GUI component creation, and middleware deployment [24].

In the case of ns-3, a single simulation script can hardly be considered the kind of
boilerplate or repetitive code that is usually the target for code generation. Indeed,
the code base for ns-3 is one that is been under development for several years and is
comprised of hundreds of thousands of lines of code. Frankly, it is unreasonable to
imagine that “true” XML-to-C++ code generation could be implemented in the time
span I have had without any templating “shortcut.”

To this end, the code generation scheme I have formulated favors the re-use of ex-
isting ns-3 scripts, similar to the way XSLT-style code generation re-uses code blocks.
In my implementation, an ns-3 script is made into a very sparse XML document, de-
scribed by the NSTL Schema (see Appendix A.2. It consists of zero or more group

elements which partition the script into segments. Within each group, one can insert
any number of block tags to delimit blocks of code within the group. The idea is that
if a researcher wishes to run a simulation using C++ object ModelA and compare it
to the same simulation using object ModelB, they can write the necessary code used
to construct each object within their own block element. During the process of code
generation, a separate two scripts will be created; in the first, ModelA will be used
and in the second, ModelB will be used.

Converting an existing script to an NSTL document is not difficult. In fact, simply
adding an opening and closing <template> tag to the very first and last lines of an
ns-3 script will produce a valid NSTL document. Within the root template tag one
delimits code segments with group tags; blocks of code within a group tag can be
delimited with block tags.

CHAPTER 7. CODE GENERATION 68

7.3.3 How it Works

The code generation scheme works like this: each group element acts as a “place-
holder” in the output script. If there are three block elements in a group then there
will be three different output scripts generated. In the first, the text inside the first
block will appear within the space held by the group; in the second, the text inside
the second block element will appear within the space held by the group, and so on.
To illustrate, consider the following small example in Listing 7.4.

1 public static void main(String[] args) {

2 System.out.println("This is the beginning of the main method!");

3 <group id="greeting">

4 <block>

5 System.out.println("Hello!");

6 </block>

7 <block>

8 System.out.println("Bonjour!");

9 </block>

10 </group>

11 <group id="farewell">

12 <block>

13 System.out.println("Goodbye!");

14 </block>

15 <block>

16 System.out.println("Auf Wiedersehen!");

17 </block>

18 </group>

19 }

Listing 7.4: An example Java method with XML additions.

In this example the highlighted XML dominates the line count, but this is only
because such small blocks of code appear in each block element. The code generator
will generate a total of four output scripts, since there are two block elements in the
first group, two block elements in the second group and 2 × 2 = 4. The resulting
scripts would be as follows:

CHAPTER 7. CODE GENERATION 69

1 public static void main(String[] args) {

2 System.out.println("This is the beginning of the main method.");

3 System.out.println("Hello!");

4 System.out.println("Goodbye!");

5 }

1 public static void main(String[] args) {

2 System.out.println("This is the beginning of the main method.");

3 System.out.println("Hello!");

4 System.out.println("Auf Wiedersehen!");

5 }

1 public static void main(String[] args) {

2 System.out.println("This is the beginning of the main method.");

3 System.out.println("Bonjour!");

4 System.out.println("Goodbye!");

5 }

1 public static void main(String[] args) {

2 System.out.println("This is the beginning of the main method.");

3 System.out.println("Bonjour!");

4 System.out.println("Auf Wiedersehen!");

5 }

Listing 7.5: Four sample output scripts.

The group and block elements allow for composition at the model level, allowing
an experimenter to develop sophisticated code blocks and swap those out for other
blocks of arbitrarily-complex code.

7.4 Chapter Summary

This chapter discussed the process of code generation within the SAFE framework
and how NSTL constructs facilitate script templating. XML-to-C++ code generation
is a long-term goal of interest to the ns-3 community. An ideal scenario would be one
in which novice and veteran users alike could quickly build up a set of models and

CHAPTER 7. CODE GENERATION 70

experimental parameter values for those models and observe the resulting simulation
behavior. XML is well-suited for handling the input end of this architecture. It is
a well-understood technology for which many libraries are available in every major
language to handle. Already there exist graphical user interfaces that help automate
the creation of XML documents. As it stands today, however, simple value substi-
tution seems to be the most widely-used technique for code generation. Under this
scheme, blocks of pre-cooked script code surround a special marker which is then
automatically replaced by a hard-coded value.

My code generation scheme takes a similar approach, but does so without the use
of XSLT. Instead, pre-existent C++ scripts are augmented with certain NSTL tags
to turn them into a “template” document that validates against the NSTL Schema.
Using group and block elements in combination with the value substitution markers
(identified with $ signs) a user can develop a sophisticated compositions of models
and parameter values which are then transformed into many unique simulation scripts
and written to separate output files.

71

Chapter 8

Conclusions and Future Work

This work began as a general investigation into network simulation, and especially
the kind of complex, large-scale network simulation that is difficult to conduct. This
difficulty is compounded by the lack of credibility in network simulation research,
which can be attributed a number of reasons, including

• the large number of viable simulation engines available and the difficulty in
replicating work done on one simulator with another;

• the increasing complexity of simulator engines as researchers find need to add
custom modules and functionality to support their own investigations;

• the lack of complete documentation published to describe all of the decisions
made in a simulation experiment (either explicitly by the researcher or implicitly
because of default behaviors);

• the lack of a framework to guide less-than-expert users through the not only
the simulation process itself, but the entire experiment design and execution
phases.

This last point is especially important; intimate knowledge of a particular simu-
lator engine does not necessarily imply knowledge of domain-specific best practices,
experimental design, or even what qualifies as a sound scientific study. Perhaps re-
searchers in the field of network simulation take this knowledge as a given. If so,

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 72

they have been disappointingly wrong; time and again published network simula-
tion research has been shown to be at best incomplete and at worst scientifically
unsound [27].

My work with Dr. Felipe Perrone has provided first steps towards the end-goal of
simulator-independent experiment and model description. The goal is ambitious but
frankly, infeasible for an undergraduate student in this space of time. Because of this,
we have narrowed our scope to focus just on the ns-3 network simulator. ns-3 is a
very powerful simulator used widely by researchers across the field. Our goal was to
develop languages to support experiment and model description and integrate those
languages into a larger experiment automation framework. This framework is named
the Simulation Automation Framework for Experiments (SAFE). The experiment
and model description languages used in this framework fit on top of the existing
ns-3 architecture and allow for a substantial (though not yet complete) degree of
experiment automation.

From the start, we believed that creating XML-based experiment and model de-
scription languages was the best choice. XML is a well-established standard used by
researchers, businesspeople and students in nearly every application domain. There
exist a variety of tools that can be used to aid in the development of XML languages,
as well as those for parsing, querying, validating and manipulating XML instance doc-
uments. Still, I have investigated other languages too, notably DML and ANML, and
found that they are not as attractive as XML. XML is fine as an experiment descrip-
tion language, and though it possesses limitations as a model description language,
those limitations are made up for in XML’s wide support for document processing
and validation.

The ns-3 Experiment Description Language (NEDL) and ns-3 Script Templat-
ing Language (NSTL) were the two languages I developed to serve the purposes of
experiment description and model description, respectively. Experiment description
is relatively straight-forward with NEDL and the language is designed to make the
process intuitive to a novice. Special constructs in NEDL allow for efficient prun-
ing of unwanted design points, which streamlines the experiment workflow. There
are no constructs in NEDL that necessarily tie the language to description of ns-3
experiments. Because its design was motivated by literature published in the field
of experiment design (as opposed to the more specific field of network simulation
experiment design), it could very well be used to describe any sort of experiment
which pairs factors represented as strings to level values represented as either strings
or numbers.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 73

NSTL represents a step back from true model description and instead is intended
to provide an easy templating mechanism for ns-3 scripts. Given the complexity
of many ns-3 scripts, this solution is one way of allowing expert users to at least
provide well-documented examples that others can easily manipulate and test using
NSTL instead of changing the original script code itself. Like NEDL, there are no
constructs in the NSTL language that necessarily tie the language to ns-3. Any text
file, programming code or otherwise, could be augmented with the correct NSTL tags
that are used in an NSTL document. One could generate a set of MATLAB scripts,
for example, using NEDL and NSTL.

Document validation is a crucial piece of the entire SAFE framework and is car-
ried out by checking NEDL and NSTL documents against the NEDL and NSTL
Schemas, written in the W3C XML Schema language. Users have much greater re-
sponsibility in writing semantically-correct NSTL documents, since code blocks and
groups are all assumed to be valid ns-3 code. NEDL documents have a much more
rigorous specification and are validated at a level of granularity that even the NEDL
Schema cannot provide. To provide this validation, I have written a Python module
called NEDLValidator that performs a series of checks to ensure that the document
contents are semantically correct. NEDLValidator checks several properties of the
document that the NEDL Schema cannot, such as comparing strings within the doc-
ument against each other or against external filenames.

Code generation represents the final piece of my work within the SAFE framework.
Given the deliberate design of NSTL as a templating language, code generation is an
easily-automated process of using design points to generate an appropriate number
of ns-3 scripts using the group and block elements in the NSTL document. Given
a valid NEDL file, certain modules in the SAFE framework can generate a series of
experimental design points which are given to the code generating module I have
implemented in Python. For each design point generated, this module generates
the appropriate number of output scripts (depending the number of block elements
within each group) and makes the proper strings replacements of model parameter
placeholders with specific level values.

Future Work

NEDL and NSTL were designed with straight-forwardness in mind; they were kept
simple in design to give both novice and expert users easy accessibility. It is not espe-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 74

cially difficult to create and edit these documents by hand, though the development
of front-end interfaces to documents is certainly an area of future work. The lexpr

and rexpr expression elements in NSTL, for example, lend themselves naturally to
automatic generation. An alternative design choice would have been to represent
expressions as strings, such as “i * 5 + 2”, rather than verbose XML element trees.
But, pulling each part of the expression out into individual XML elements makes the
development of interfaces that create and edit these expressions easier since there is
no expression string parsing required.

75

Appendix A

Schemas

A.1 NEDL Schema

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema targetNamespace="http://www.bucknell.edu/safe/exp"

3 xmlns:tns="http://www.bucknell.edu/safe/exp"

4 xmlns:xs="http://www.w3.org/2001/XMLSchema">

5

6 <xs:include schemaLocation="LevelList.xsd"/>

7 <xs:element name="rvar" type="xs:string"/>

8 <xs:element name="rconst" type="xs:string"/>

9 <xs:element name="var" type="xs:string"/>

10 <xs:element name="lconst" type="xs:string"/>

11 <xs:element name="lvar" type="xs:string"/>

12 <xs:element name="lo" type="xs:string"/>

13 <xs:element name="hi" type="xs:string"/>

14 <xs:element name="delta" type="xs:string"/>

15 <xs:element name="factorid" type="xs:string"/>

16 <xs:element name="test" type="xs:string"/>

17 <xs:element name="op" type="xs:string"/>

18 <xs:element name="value" type="xs:string"/>

19 <xs:element name="indexid" type="xs:string"/>

20 <xs:element name="listid" type="xs:string"/>

APPENDIX A. SCHEMAS 76

21 <xs:element name="factor" type="xs:string"/>

22

23 <xs:element name="experimentspace" type="tns:ExperimentSpace"/>

24 <xs:element name="factorlist" type="tns:FactorList"/>

25 <xs:element name="conditions" type="tns:Conditions"/>

26 <xs:element name="memberof" type="tns:MemberOf"/>

27 <xs:element name="sequence" type="tns:Sequence"/>

28 <xs:element name="lexpr" type="tns:Expression"/>

29 <xs:element name="rexpr" type="tns:Expression"/>

30 <xs:element name="where" type="tns:Where"/>

31 <xs:element name="range" type="tns:RangeConstraint"/>

32 <xs:element name="linkingrestriction"

33 type="tns:LinkingRestriction"/>

34 <xs:element name="exclusionrestriction"

35 type="tns:ExclusionRestriction"/>

36 <xs:element name="setting"

37 type="tns:PointComponent"/>

38

39 <xs:complexType name="LinkingRestriction">

40 <xs:sequence>

41 <xs:element ref="tns:factor" maxOccurs="unbounded"/>

42 </xs:sequence>

43 </xs:complexType>

44

45 <xs:complexType name="FactorList">

46 <xs:sequence>

47 <xs:element ref="tns:factor" maxOccurs="unbounded"/>

48 </xs:sequence>

49 </xs:complexType>

50

51 <xs:complexType name="ExperimentSpace">

52 <xs:sequence>

53 <xs:element ref="tns:factorlist"/>

54 <xs:element ref="tns:conditions"/>

55 </xs:sequence>

56 </xs:complexType>

57

58 <xs:complexType name="PointComponent">

59 <xs:attribute name="factor" type="xs:string"/>

APPENDIX A. SCHEMAS 77

60 <xs:attribute name="level" type="xs:string"/>

61 </xs:complexType>

62

63 <xs:complexType name="MemberOf">

64 <xs:sequence>

65 <xs:element ref="tns:factor"/>

66 <xs:element ref="tns:listid"/>

67 </xs:sequence>

68 </xs:complexType>

69

70 <xs:complexType name="Conditions">

71 <xs:sequence>

72 <xs:element ref="tns:memberof"

73 maxOccurs="unbounded"

74 minOccurs="0"/>

75 <xs:element ref="tns:levellist"

76 maxOccurs="unbounded"

77 minOccurs="0"/>

78 <xs:element ref="tns:sequence"

79 maxOccurs="unbounded"

80 minOccurs="0"/>

81 <xs:element ref="tns:exclusionrestriction"

82 maxOccurs="unbounded"

83 minOccurs="0"/>

84 <xs:element ref="tns:linkingrestriction"

85 maxOccurs="unbounded"

86 minOccurs="0"/>

87 </xs:sequence>

88 </xs:complexType>

89

90 <xs:complexType name="Sequence">

91 <xs:sequence>

92 <xs:element ref="tns:factor"/>

93 <xs:element ref="tns:test"/>

94 <xs:choice>

95 <xs:element ref="tns:lexpr"/>

96 <xs:element ref="tns:lvar"/>

97 <xs:element ref="tns:lconst"/>

98 </xs:choice>

APPENDIX A. SCHEMAS 78

99 <xs:element ref="tns:op"/>

100 <xs:choice>

101 <xs:element ref="tns:rexpr"/>

102 <xs:element ref="tns:rvar"/>

103 <xs:element ref="tns:rconst"/>

104 </xs:choice>

105 <xs:element ref="tns:where"

106 maxOccurs="1"

107 minOccurs="0"/>

108 </xs:sequence>

109 </xs:complexType>

110

111 <xs:complexType name="Where">

112 <xs:sequence>

113 <xs:element ref="tns:range"/>

114 </xs:sequence>

115 </xs:complexType>

116

117 <xs:complexType name="RangeConstraint">

118 <xs:sequence>

119 <xs:element ref="tns:var"/>

120 <xs:element ref="tns:lo"/>

121 <xs:element ref="tns:hi"/>

122 <xs:element ref="tns:delta"/>

123 </xs:sequence>

124 </xs:complexType>

125

126 <xs:complexType name="Expression">

127 <xs:sequence>

128 <xs:element ref="tns:lexpr"

129 maxOccurs="1"

130 minOccurs="0"/>

131 <xs:element ref="tns:lvar"

132 maxOccurs="1"

133 minOccurs="0"/>

134 <xs:element ref="tns:lconst"

135 maxOccurs="1"

136 minOccurs="0"/>

137 <xs:element ref="tns:op"/>

APPENDIX A. SCHEMAS 79

138 <xs:element ref="tns:rexpr"

139 maxOccurs="1"

140 minOccurs="0"/>

141 <xs:element ref="tns:rvar"

142 maxOccurs="1"

143 minOccurs="0"/>

144 <xs:element ref="tns:rconst"

145 maxOccurs="1"

146 minOccurs="0"/>

147 </xs:sequence>

148 </xs:complexType>

149

150 <xs:complexType name="ExclusionRestriction">

151 <xs:sequence>

152 <xs:element ref="tns:setting" maxOccurs="unbounded"/>

153 </xs:sequence>

154 </xs:complexType>

155

156 </xs:schema>

A.2 NSTL Schema

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema targetNamespace="http://www.bucknell.edu/safe/exp"

3 xmlns:tns="http://www.bucknell.edu/safe/exp"

4 xmlns:xs="http://www.w3.org/2001/XMLSchema">

5

6 <xs:element name="template" type="tns:Template"/>

7 <xs:element name="group" type="tns:Group"/>

8 <xs:element name="block" type="xs:string"/>

9

10 <xs:complexType name="Template" mixed="true">

11 <xs:sequence>

12 <xs:element ref="tns:group"

13 minOccurs="0"

14 maxOccurs="unbounded"/>

15 </xs:sequence>

APPENDIX A. SCHEMAS 80

16 </xs:complexType>

17

18 <xs:complexType name="Group">

19 <xs:sequence>

20 <xs:element ref="tns:block"

21 minOccurs="0"

22 maxOccurs="unbounded"/>

23 </xs:sequence>

24 <xs:attribute name="id"/>

25 </xs:complexType>

26

27 </xs:schema>

A.3 LevelList Schema

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema targetNamespace="http://www.bucknell.edu/safe/exp"

3 xmlns:tns="http://www.bucknell.edu/safe/exp"

4 xmlns:xs="http://www.w3.org/2001/XMLSchema">

5

6 <xs:element name="levellist" type="tns:LevelList"/>

7 <xs:element name="level" type="xs:string"/>

8

9 <xs:complexType name="LevelList">

10 <xs:sequence>

11 <xs:element ref="tns:level"

12 maxOccurs="unbounded"

13 minOccurs="0"/>

14 </xs:sequence>

15 <xs:attribute name="id" type="xs:string"/>

16 </xs:complexType>

17

18 </xs:schema>

81

References

[1] PyXB Python XML Schema Bindings. Available at http://pyxb.sourceforge.
net/index.html. [Accessed September 6, 2010].

[2] ISO Schematron. Available at http://www.schematron.com [Access September
6, 2010].

[3] Domain Modeling Language (DML) Reference Manual, 1999. Available at http:
//www.ssfnet.org/SSFdocs/dmlReference.html. [Accessed April 3, 2011].

[4] The ns-3 network simulator, 2011. Available at http://www.nsnam.org/index.
html. [Accessed March 29, 2011].

[5] Scalable simulation framework, 2002. Available at http://www.ssfnet.org/

homePage.html. [Accessed April 3, 2011].

[6] World wide web consortium (W3C). Available at http://www.w3.org/. [Ac-
cessed April 4, 2011].

[7] Michele Amoretti, Matteo Agosti, and Francesco Zanichelli. DEUS: a dis-
crete event universal simulator. In Proceedings of the 2nd International Con-
ference on Simulation Tools and Techniques, Simutools ’09, pages 58:1–58:9,
ICST, Brussels, Belgium, Belgium, 2009. ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering). ISBN 978-963-
9799-45-5. doi: http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5754. URL
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5754.

[8] Perakath Benjamin, Mukul Patki, and Richard Mayer. Using ontologies for
simulation modeling. In Proceedings of the 38th Winter Simulation Conference,
WSC ’06, pages 1151–1159. Winter Simulation Conference, 2006. ISBN 1-4244-
0501-7. URL http://portal.acm.org/citation.cfm?id=1218112.1218321.

http://pyxb.sourceforge.net/index.html
http://pyxb.sourceforge.net/index.html
http://www.schematron.com
http://www.ssfnet.org/SSFdocs/dmlReference.html
http://www.ssfnet.org/SSFdocs/dmlReference.html
http://www.nsnam.org/index.html
http://www.nsnam.org/index.html
http://www.ssfnet.org/homePage.html
http://www.ssfnet.org/homePage.html
http://www.w3.org/
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5754
http://portal.acm.org/citation.cfm?id=1218112.1218321

REFERENCES 82

[9] M. Bertoli, G. Casale, and G. Serazzi. The JMT simulator for performance
evaluation of non-product-form queueing networks. In Proceedings of the 40th
Annual Simulation Symposium, pages 3–10, Washington, DC, USA, 2007. IEEE
Computer Society. ISBN 0-7695-2814-7. doi: 10.1109/ANSS.2007.41. URL
http://portal.acm.org/citation.cfm?id=1249253.1250388.

[10] James M. Brase and David L. Brown. Modeling, simulation and analysis of
complex networked systems. Technical report, Lawrence Livermore National
Laboratory, May 2009.

[11] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, and Eve Maler. XML Version
1.0, 2008. Available at http://www.w3.org/TR/2008/REC-xml-20081126/.

[12] Don Brutzman. XMSF: Extensible modeling and simulation framework, 2004.
Available at https://www.movesinstitute.org/xmsf/xmsf.html. [Accessed
March 29, 2011].

[13] R. Canonico, D. Emma, and G. Ventre. An XML description language for web-
based network simulation. In Distributed Simulation and Real-Time Applications,
2003. Proceedings. Seventh IEEE International Symposium on, pages 76–81, Oct.
2003.

[14] D Carlisle, P. Ion, R. Miner, and N. Poppelier. MathML Version 2.0, 2003.
Available at http://www.w3.org/TR/MathML2/.

[15] J. Clark. XML Transformations (XSLT) version 1.0, 1999. Available at http:

//www.w3.org/TR/xslt.

[16] J. Clark and M. Murata. RELAX NG Specification, 2001. Available at http:

//www.oasis-open.org/committees/relax-ng/spec-20011203.html.

[17] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques and applications. Available
on: http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th
2007.

[18] Andrea D’Ambrogio. A model transformation framework for the automated
building of performance models from UML models. In Proceedings of the 5th
international workshop on Software and performance, WOSP ’05, pages 75–86,
New York, NY, USA, 2005. ACM. ISBN 1-59593-087-6. doi: http://doi.acm.
org/10.1145/1071021.1071029. URL http://doi.acm.org/10.1145/1071021.

1071029.

http://portal.acm.org/citation.cfm?id=1249253.1250388
http://www.w3.org/TR/2008/REC-xml-20081126/
https://www.movesinstitute.org/xmsf/xmsf.html
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.grappa.univ-lille3.fr/tata
http://doi.acm.org/10.1145/1071021.1071029
http://doi.acm.org/10.1145/1071021.1071029

REFERENCES 83

[19] Andrea D’Ambrogio. A model-driven WSDL extension for describing the QoS
of web services. In Proceedings of the IEEE International Conference on Web
Services, pages 789–796, Washington, DC, USA, 2006. IEEE Computer Society.
ISBN 0-7695-2669-1. doi: 10.1109/ICWS.2006.10. URL http://portal.acm.

org/citation.cfm?id=1172963.1173139.

[20] Paul A. Fishwick and John A. Miller. Ontologies for modeling and simulation:
issues and approaches. In Proceedings of the 36th Winter Simulation Conference,
WSC ’04, pages 259–264. Winter Simulation Conference, 2004. ISBN 0-7803-
8786-4. URL http://portal.acm.org/citation.cfm?id=1161734.1161788.

[21] Steve Franklin. Xml parsers: DOM and SAX put to the test. http://www.devx.
com/xml/Article/16922/1954.

[22] John Grundy, Yuhong Cai, and Anna Liu. SoftArch/MTE: Generating dis-
tributed system test-beds from high-level software architecture descriptions. Au-
tomated Software Engg., 12:5–39, January 2005. ISSN 0928-8910. doi: 10.1023/
B:AUSE.0000049207.62380.74. URL http://portal.acm.org/citation.cfm?

id=1035394.1035410.

[23] Koichi Hayashi and Riichiro Mizoguchi. Document exchange model for augment-
ing added value of B2B collaboration. In Proceedings of the 5th International
Conference on Electronic Commerce, ICEC ’03, pages 458–464, New York, NY,
USA, 2003. ACM. ISBN 1-58113-788-5. doi: http://doi.acm.org/10.1145/948005.
948064. URL http://doi.acm.org/10.1145/948005.948064.

[24] Cody Henthorne and Eli Tilevich. Code generation on steroids: Enhancing COTS
code generators via generative aspects. In Proceedings of the Second Interna-
tional Workshop on Incorporating COTS Software into Software Systems: Tools
and Techniques, IWICSS ’07, Washington, DC, USA, 2007. IEEE Computer So-
ciety. ISBN 0-7695-2966-6. doi: http://dx.doi.org/10.1109/IWICSS.2007.4. URL
http://dx.doi.org/10.1109/IWICSS.2007.4.

[25] C. Kiddle, R. Simmonds, D.K. Wilson, and B. Unger. ANML: A language
for describing networks. In Proceedings of the Ninth Internation Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS 2001), pages 135 –141, 2001. doi: 10.1109/MASCOT.2001.948862.

[26] Dagmar Köhn and Nicolas Novère. SED-ML – an XML format for the im-
plementation of the MIASE guidelines. In Proceedings of the 6th Interna-
tional Conference on Computational Methods in Systems Biology, CMSB ’08,

http://portal.acm.org/citation.cfm?id=1172963.1173139
http://portal.acm.org/citation.cfm?id=1172963.1173139
http://portal.acm.org/citation.cfm?id=1161734.1161788
http://www.devx.com/xml/Article/16922/1954
http://www.devx.com/xml/Article/16922/1954
http://portal.acm.org/citation.cfm?id=1035394.1035410
http://portal.acm.org/citation.cfm?id=1035394.1035410
http://doi.acm.org/10.1145/948005.948064
http://dx.doi.org/10.1109/IWICSS.2007.4

REFERENCES 84

pages 176–190, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-
88561-0. doi: http://dx.doi.org/10.1007/978-3-540-88562-7 15. URL http:

//dx.doi.org/10.1007/978-3-540-88562-7_15.

[27] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. MANET simulation
studies: the incredibles. SIGMOBILE Mob. Comput. Commun. Rev., 9(4):50–61,
2005. ISSN 1559-1662. doi: http://doi.acm.org/10.1145/1096166.1096174.

[28] Ivan Kurtev and Klaas van den Berg. Building adaptable and reusable XML
applications with model transformations. In Proceedings of the 14th international
conference on World Wide Web, WWW ’05, pages 160–169, New York, NY, USA,
2005. ACM. ISBN 1-59593-046-9. doi: http://doi.acm.org/10.1145/1060745.
1060772. URL http://doi.acm.org/10.1145/1060745.1060772.

[29] Averill M. Law. Simulation Modeling and Analysis. McGraw-Hill, 4th edition,
2007. ISBN 0072988436.

[30] Jason Liu, L. Felipe Perrone, David M. Nicol, Michael Liljenstam, Chip Elliot,
and David Pearson. Simulation modeling of large-scale ad-hoc sensor networks.
In Proceedings of the 2001 European Simulation Interoperability Workshop, Lon-
don, England, 2001.

[31] John A. Miller, Gregory T. Baramidze, Amit P. Sheth, and Paul A. Fish-
wick. Investigating ontologies for simulation modeling. In Proceedings of
the 37th Annual Symposium on Simulation, ANSS ’04, pages 55–, Washing-
ton, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2110-X. URL
http://portal.acm.org/citation.cfm?id=987679.987721.

[32] Max D. Morris. Design of Experiments: An Introduction Based on Linear Models.
Chapman & Hall/CRC, 2011.

[33] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Tax-
onomy of XML schema languages using formal language theory. ACM Trans.
Internet Technol., 5(4):660–704, 2005. ISSN 1533-5399. doi: http://doi.acm.org/
10.1145/1111627.1111631.

[34] Peter Murray-Rust and Henry S. Rzepa. Chemical Markup Language. A Po-
sition Paper, 2001. Available at http://cml.sourceforge.net/historical/

position.html. [Accessed March 9, 2011].

[35] David M. Nicol, Michael Liljenstam, and Jason Liu. Advanced concepts
in large-scale network simulation. In Proceedings of the 37th Winter Simu-
lation Conference, WSC ’05, pages 153–166. Winter Simulation Conference,

http://dx.doi.org/10.1007/978-3-540-88562-7_15
http://dx.doi.org/10.1007/978-3-540-88562-7_15
http://doi.acm.org/10.1145/1060745.1060772
http://portal.acm.org/citation.cfm?id=987679.987721
http://cml.sourceforge.net/historical/position.html
http://cml.sourceforge.net/historical/position.html

REFERENCES 85

2005. ISBN 0-7803-9519-0. URL http://portal.acm.org/citation.cfm?id=

1162708.1162740.

[36] Matthias Nicola and Jasmi John. XML parsing: a threat to database perfor-
mance. In Proceedings of the twelfth international conference on Information and
knowledge management, CIKM ’03, pages 175–178, New York, NY, USA, 2003.
ACM. ISBN 1-58113-723-0. doi: http://doi.acm.org/10.1145/956863.956898.
URL http://doi.acm.org/10.1145/956863.956898.

[37] The ns-3 network simulator. ns-3. Available at http://www.nsnam.org/.

[38] Daisuke Okajima and Kohsuke Kawaguchi. RelaxNGCC (RelaxNG Compiler
Compiler). Available at http://relaxngcc.sourceforge.net/en/index.htm.
[Accessed March 18, 2011].

[39] Kara A. Olson, C. Michael Overstreet, and E. Joseph Derrick. Code analysis and
CS-XML. In Proceedings of the 39th Winter Simulation Conference, WSC ’07,
pages 756–761, Piscataway, NJ, USA, 2007. IEEE Press. ISBN 1-4244-1306-0.
URL http://portal.acm.org/citation.cfm?id=1351542.1351681.

[40] L. Felipe Perrone, Christopher J. Kenna, and Bryan C. Ward. Enhancing
the credibility of wireless network simulations with experiment automation. In
WIMOB ’08: Proceedings of the 2008 IEEE International Conference on Wire-
less & Mobile Computing, Networking & Communication, pages 631–637, Wash-
ington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3393-3. doi:
http://dx.doi.org/10.1109/WiMob.2008.53.

[41] L. Felipe Perrone, Claudio Cicconetti, Giovanni Stea, and Bryan C. Ward. On
the automation of computer network simulators. In Simutools ’09: Proceedings
of the 2nd International Conference on Simulation Tools and Techniques, pages
1–10, ICST, Brussels, Belgium, Belgium, 2009. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering). ISBN 978-
963-9799-45-5. doi: http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5684.

[42] Luiz Felipe Perrone and David M. Nicol. A scalable simulator for TinyOS appli-
cations. In Proceedings of the 34th Winter Simulation Conference (WSC ’02),
pages 679–687. Winter Simulation Conference, 2002. ISBN 0-7803-7615-3.

[43] Steven W. Reichenthal. Srml case study: simple self-describing process modeling
and simulation. In Proceedings of the 36th Winter Simulation Conference, WSC
’04, pages 1461–1466. Winter Simulation Conference, 2004. ISBN 0-7803-8786-4.
URL http://portal.acm.org/citation.cfm?id=1161734.1162004.

http://portal.acm.org/citation.cfm?id=1162708.1162740
http://portal.acm.org/citation.cfm?id=1162708.1162740
http://doi.acm.org/10.1145/956863.956898
http://www.nsnam.org/
http://relaxngcc.sourceforge.net/en/index.htm
http://portal.acm.org/citation.cfm?id=1351542.1351681
http://portal.acm.org/citation.cfm?id=1161734.1162004

REFERENCES 86

[44] F. Rioux, F. Bernier, and D. Laurendeau. Design and implementation of an
XML-based, technology-unified data pipeline for interactive simulation. In Sim-
ulation Conference, 2008. WSC 2008. Winter, pages 1130–1138, Dec. 2008. doi:
10.1109/WSC.2008.4736182.

[45] M. Röhl and A.M. Uhrmacher. Composing simulations from XML-specified
model components. In Simulation Conference, 2006. WSC 06. Proceedings of
the Winter, pages 1083–1090, Dec. 2006. doi: 10.1109/WSC.2006.323198.

[46] Susan M. Sanchez. Work smarter, not harder: guidelines for designing simulation
experiments. In WSC ’06: Proceedings of the 38th Winter Simulation Confer-
ence, pages 47–57. Winter Simulation Conference, 2006. ISBN 1-4244-0501-7.

[47] C.M. Sperberg-McQueen and Henry Thompson. W3C XML Schema. W3C,
2007. Available at http://www.w3.org/XML/Schema.

[48] Galen S. Swint, Calton Pu, Gueyoung Jung, Wenchang Yan, Younggyun Koh,
Qinyi Wu, Charles Consel, Akhil Sahai, and Koichi Moriyama. Clearwa-
ter: extensible, flexible, modular code generation. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering, ASE
’05, pages 144–153, New York, NY, USA, 2005. ACM. ISBN 1-58113-993-4. doi:
http://doi.acm.org/10.1145/1101908.1101931. URL http://doi.acm.org/10.

1145/1101908.1101931.

[49] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn.
XML Schema Part 1: Structures, 2001. Available at http://www.w3.org/TR/

xmlschema-1/.

[50] James R. Wilson. Conduct, misconduct, and cargo cult science (doctoral collo-
quium keynote address). In Proceedings of the 29th Winter Simulation Confer-
ence, WSC ’97, pages 1405–1413, Washington, DC, USA, 1997. IEEE Computer
Society. ISBN 0-7803-4278-X. doi: http://dx.doi.org/10.1145/268437.268790.
URL http://dx.doi.org/10.1145/268437.268790.

http://www.w3.org/XML/Schema
http://doi.acm.org/10.1145/1101908.1101931
http://doi.acm.org/10.1145/1101908.1101931
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://dx.doi.org/10.1145/268437.268790

	Abstract
	Introduction and Background
	Related Work
	XML, Simulation and Model Description
	XML, Simulation and Experiment Description
	Alternative Model Description Languages
	XML, Simulation and Ontologies

	Conceptual Design
	Roles of NEDL and NSTL
	Language Goals
	Description with XML
	NEDL and NSTL in Practice

	NEDL and NSTL Details
	NEDL Syntax
	The experimentspace element
	The factorlist element
	The conditions element
	The memberof element
	The levellist element
	The sequence element
	The exclusionrestriction element
	The linkingrestriction element

	Details on the sequence element
	Details on the exclusionrestriction element
	Details on the linkingrestriction element
	A Full Example
	The Experiment Design Matrix

	NSTL Syntax
	The template element
	The group element
	The block element

	Parsing NEDL and NSTL Documents
	Document Object Model
	Simple API for XML
	Data Binding
	Advantages to Data Binding
	Alternative Parsing Methods

	Validating NEDL and NSTL Documents
	Introduction
	XML and Tree Grammars
	Implementation
	NEDL Checking
	Checking memberof elements
	Checking sequence elements
	Checking linkingrestriction elements
	Checking exclusionrestriction elements

	Chapter Summary

	Code Generation
	Introduction
	Working with Design Points
	XML Transformations
	Using XSLT
	An Alternative Approach: Groups and Blocks
	How it Works

	Chapter Summary

	Conclusions and Future Work
	Schemas
	NEDL Schema
	NSTL Schema
	LevelList Schema

