A FRAMEWORK FOR THE AUTOMATION OF
DISCRETE-EVENT SIMULATION EXPERIMENTS

by

Bryan C. Ward

A Thesis

Presented to the Faculty of
Bucknell University
in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering & Bachelor of Arts in
Mathematics with Honors in Computer Science and Engineering

May 11, 2011

Approved:

epheﬁ@ua»t/tery '
Chair, Department of Co ter Stience

11

Acknowledgments

This thesis would not have been possible without the support of many people in
my life. Before I begin, I would like to take this opportunity to thank these people
for their support through my Bucknell career:

e Dr. L. Felipe Perrone, for his help and guidance throughout my career at Buck-
nell. Felipe has mentored me in research and life since my freshman year. Thanks
for everything Felipe.

e Peg Cronin, for her excellent help and support during the writing process.
Through my regular meeting with Peg I have learned to think more critically
about my own writing. Thanks Peg for teaching me so much about writing, and
making the thesis writing process bearable, even fun at times.

e Andrew Hallagan ("11), for his collaboration on SAFE. Andrew’s project works
in harmony with my own and I have learned a great deal from Andrew through
our collaboration. Good luck after graduation Andy.

e Heather Burrell for her patience and support throughout the writing process,
particularly during times of elevated stress and/or frustration. Thanks for al-
ways being there for me.

e My family and friends who supported me throughout my thesis as well as my
career at Bucknell.

111

Contents

Abstract xi
I Introduction and Background 1
1 Introduction 2
1.1 Modeling 2
1.2 Computer Simulation 3
1.3 Discrete-Event Simulation 4
1.4 Simulation Workflow oo 5)
1.5 Common Problems in Simulation Studies 6
1.6 Enhancing Usability and Credibility 7
2 Design of Experiments 10
2.1 2F Factorial Experimental Design 10

2.2 mF Factorial Design 13

CONTENTS iv

2.3 mF P Fractional Factorial Design 13
2.4 Latin Hypercube and Orthogonal Sampling 15

3 Parallel Simulation Techniques 17
3.1 Fine-Grained Parallelism 17
3.2 Coarse-Grained Parallelism 18
3.3 Multiple Replications in Parallel 19

4 Previous Automation Tools 21
4.1 CostGlue. e 21
4.2 ns2measure & ANSWER L. 22
4.3 Akaroa 23
4.4 SWAN-Tools. 24
4.5 James Io 24
4.6 Lessons Learned o 25

II SAFE 26
5 Architecture 27
5.1 The Experiment Execution Manager 28
5.1.1 Asynchronous / Event-Driven Architecture 29

5.1.2 Dispatching Design Points 32

CONTENTS

5.1.3 Web Manager

5.2 simulation client

6 Languages

6.1 XML Technologies

6.2 Experiment Configuration

6.3 Experiment Description Language

6.4 Boolean Expression Objects

6.5 Design Point Generation
6.5.1 Backtracking Design Point Generation
6.5.2 Linear Design Point Generation . . .

6.5.3 Design Point Construction

7 Inter-Process Communication

7.1 IPC Mechanisms

7.2 EEM <« Simulation Client
7.3 Simulator < Simulation Client

7.4 EEM « Transient and Run Length Detector

8 Storing and Accessing Results

34

35

38

38

41

41

43

44

44

46

46

49

49

o1

o1

52

93

o6

57

8.1 Databases

8.1.2 Database Management Systems
8.2 SAFE’s Database Schema,

8.3 Querying For Results

III Applications and Conclusions

9 Applications
9.1 Case Study: A Custom Simulator
9.2 Case Study: ns-3
9.2.1 ns-8 Architecture

9.2.2 ns-8Simulation Client

10 Conclusions & Future Work

IV Appendices

A Polling Queues Example XML Configuration

B Example Experiment Configuration File

C Example Cheetah Template

vi

57

o7

59

60

62

66

67
67
70
70

71

73

80

81

83

85

List of Tables

2.1 23 Factorial Design example.

2.2 2%! Fractional Factorial Design example.

6.1 Application specific subsets of factorial designs.

vii

Viil

List of Figures

2.1

2.2

2.3

2.4

3.1

5.1

5.2

5.3

7.1

7.2

8.1

8.2

8.3

Examples of different response surfaces. 11
Example of the effect of granularity in experimental design. 14
An example of a Latin Square. 15
An example of Orthogonal Sampling. 16
Multi-processor speedup as a result of Amdahl’s law. 19
Overview of the architecture of SAFE. 28
Transient and run length detection processes interactions. 30
Benefits of the reactor design pattern. 32
SAFE IPC architecture 50
Protocol for EEM /simulation client communication. 54
An example of database normalization. 58
SAFE database schema. 61

A visual depiction of the function f. 64

9.1 An example of a polling queues system

1X

Code Listings

6.1

6.2

6.3

6.4

6.5

6.6

6.7

8.1

8.2

8.3

An example XML Element. 39
An example XML Element with an attribute. 39
Nesting XML elements. 39
An example HTML document. 40
An example boolean expression object. 44
Pseudocode for the backtracking design point generation algorithm. . 45
Pseudocode for the linear design point generation algorithm. 46
A simple SQL SELECT statement 59
Example of a SQL JOIN statement. 60
SQL to query for a specific design point. 63

x1

Abstract

Simulation is an important resource for researchers in diverse fields. However, many
researchers have found flaws in the methodology of published simulation studies and
have described the state of the simulation community as being in a crisis of credibility.
This work describes the project of the Simulation Automation Framework for Exper-
iments (SAFE), which addresses the issues that undermine credibility by automating
the workflow in the execution of simulation studies. Automation reduces the number
of opportunities for users to introduce error in the scientific process thereby improving
the credibility of the final results. Automation also eases the job of simulation users
and allows them to focus on the design of models and the analysis of results rather
than on the complexities of the workflow.

Part 1

Introduction and Background

Chapter 1

Introduction

Computer simulation is a valuable tool to people in many disciplines. This thesis
develops a framework which aids simulation users in conducting their simulation
studies to ensure their results are accurate and reported properly. This work is best
understood with a background in computer modeling and simulation, as well as proper
simulation methodology.

1.1 Modeling

In numerous applications ranging from engineering to the natural sciences to business
applications, people seek to quantify the behavior of different real world processes and
phenomena. When such a process or phenomenon is studied scientifically, it is called a
system. Assumptions are often made about the behavior of these systems which allow
for mathematical and scientific analysis. These assumptions comprise a model and
are composed of mathematical or logical descriptions of the behavior of the system.
[26]

Models are coupled with performance metrics which are used to quantify different
aspects of the behavior of a system. Models logically or mathematically relate metrics
with input parameters called factors. The specific value given to a factor is called a
level. For example, when investigating a vehicular traffic system, the rate with which
cars arrive at a traffic light is a factor, while the numeric value of 10 cars per minute is

CHAPTER 1. INTRODUCTION 3

a level. Additionally, a model can be composed of many different sub-models which
themselves describe the behavior of a smaller or simpler sub-system.

If a system or model is simple enough, mathematical analysis can be used to
explicitly solve for the value of different performance metrics. These solutions are
known as analytic solutions, and are the ideal way to quantify the behavior of the
system under investigation. Using an analytic solution, one can more easily isolate
effects of different factors and find optimal factor-level combinations. These results
can inform scientific developments as well as engineering and business decisions.

Solving for performance metrics analytically can be challenging, if not impossible,
for more sophisticated and complex models. In such cases, engineers often study the
system by simulating the behavior of the system using computers. In the absence
of an analytic solution, simulation can be employed to investigate the system under
many different sets of inputs.

1.2 Computer Simulation

Traditionally, real world experiments are conducted to test how systems behave under
different circumstances. Often times such experiments can be expensive, time con-
suming, dangerous, or hard to observe. With modern computers and software, these
systems can be evaluated using computer simulations. Simulation results, similar to
analytic solutions, can also be used to inform scientific advancements, engineering de-
sign decisions, or business strategies. Further, simulations can sometimes be executed
faster than real time, helping to provide insight into future events or phenomenon.

A discipline which enjoys extensive use of simulation is the field of computer net-
works. Take, for example, a researcher developing new wireless networking protocols
for vehicles traveling at high speeds on roads and interstates. After developing such
a protocol, the researcher would want to evaluate its performance. Testing such a
protocol can be very costly, particularly when investigating how the network will fare
with hundreds of vehicles traveling at high speeds over great geographic distances.
In such a case, testing these new protocols using computer simulation can reduce
the cost of testing and reduce development time. This is just one example of how
simulation allows for a more efficient engineering process.

Another application of computer simulation is in molecular biology. A project

CHAPTER 1. INTRODUCTION 4

called Folding@Home, uses computer simulation to investigate how proteins fold. The
Folding@Home project distributes simulation execution across volunteer computers
throughout the world to accelerate computationally expensive simulations. The results
of these simulations are used to understand the development of many diseases such
as Alzheimer’s, ALS, and many cancers. [14]

With advancements in computer hardware over the last 50 years, computer simu-
lation has become an increasingly powerful tool in science and engineering. Computer
simulation has aided researchers in developing many of the technologies and business
strategies that power our society today. As computer hardware continues to improve,
simulation will become an even more powerful tool for people in a wide array of dis-
ciplines and will play a critical role in future scientific developments, particularly as
engineered systems become increasingly complex.

1.3 Discrete-Event Simulation

There are many ways to create a model in computer software. One such paradigm
often used to investigate time-varied systems is called Discrete-Event Simulation.
In such simulations, the system is described and modeled through a chronological
sequence of events. These events drive the behavior of the simulated system.

In a discrete-event simulation, the simulator maintains a simulation clock which
keeps track of time in the simulated environment. Events which change the internal
state of the simulation are scheduled on the event list or event queue. During the
execution of an event, new events can be added to the events list. When an event is
finished processing, the simulation clock is advanced to the next event in simulated
time. [13]

Discrete-event simulation is often used to investigate systems with random behav-
ior, known as stochastic processes. The simulation of stochastic processes requires
the generation of random numbers using a Pseudo-Random Number Genera-
tor (PRNG), which produce a deterministic stream of numbers which appears to
be truly random. A PRNG must be seeded with a starting value, which is used in
a mathematical algorithm that produces the subsequent values sequence. The same
stream is recreated time after time with the same starting PRNG seed. Simulations
of stochastic processes which employ PRNGs to model their behavior are said to be
stochastic simulators. [26]

CHAPTER 1. INTRODUCTION)

A classic application of discrete-event simulation lies in queueing theory, which
is a well-established field of Operations Research. An example of an application of
queueing theory is the study of lines in a shopping mall store. Neither the rate with
which customers enter the queue nor the amount of time it takes for the cashier
to check a customer out are constant, or deterministic. One can, however, assume
that these times are described by random variables and construct a discrete-event
simulation to produce estimates of the average time a customer waits in line. In this
case, the probability distribution of arrivals is a factor, and distribution itself, say
Poisson, is a level. The parameter of the random distribution, in the case of Poisson,
A, is also a level. The simulation model uses these levels for the associated factors
to schedule events such as a new customer entering a line and a cashier finishing
checking someone out.

1.4 Simulation Workflow

Once a computer simulation has been built, simulations can be run on many different
inputs. Simulators can therefore be used to conduct simulation experiments, in
which the factors of the simulation are varied to investigate their effect on performance
metrics. Each unique input set of factors and associated levels in such an experiment
is called an experimental design point. For example, a design point in the context
of a shopping mall store line is a complete set of levels for all the factors in the model,
such as customer arrival rate and service rates.

A simulation experiment is composed of a set of design points to run. The act
of choosing the particular set of design points to explore is called experimental
design. There are many experimental design techniques which users can employ to
understand the effect of different factors on the performance metrics with less time
spent in simulation execution. These techniques seek to constrain the experimental
design space, or the set of design points which are executed during the experiment’s
execution. Several of these techniques are described in more detail in Section 2.

Once the experimental design space is defined, one can start to execute simulations
to collect data. When using a stochastic simulator, it is best to run many simula-
tions for each design point, each with a different PRNG seed and to compute averages,
which are point estimates of the metrics collected. This ensures that results are not
biased by a particular stream of random numbers. Using the samples of these metrics
and a chosen confidence level, one can compute confidence intervals, which give

CHAPTER 1. INTRODUCTION 6

a better estimate of the true value of the corresponding metrics.

The results obtained from the simulation runs may be saved in persistent storage
to be analyzed upon the completion of the simulation experiment. The analysis of this
body of data may test hypotheses or lead to conclusions about the system. Simulation
results are analyzed using many different statistical techniques.

There are many complexities associated with running an experimental simulation
study. The aforementioned steps must be followed very carefully, and furthermore,
one must take great care in reporting results. Just as in any other scientific process,
simulation results must be reproducible and independently verifiable. Simulation users
must therefore take precaution in reporting not only their results properly, but also
details of their experimental process so that an independent third party can replicate
their results. When proper simulation workflow is put in practice, and experimental
methodology and results are reported properly, a simulation study is credible.

1.5 Common Problems in Simulation Studies

Conducting a complete and thorough simulation experiment is an extensive process.
There are countless opportunities for a user to make a mistake in the proper simulation
workflow. Many researchers [25, 28] have shown that these mistakes in proper simula-
tion workflow lead to credibility issues. Furthermore, if the experimental methodology
is not reported accurately such that others can reproduce the experiment, the credi-
bility of the results are compromised even if a simulation study is conducted properly.

Once simulation results have been collected, proper statistical methods need to be
applied to ensure that the statistics for the experiment accurately portray the results.
Often times simulation users make naive assumptions in their statistical analysis and
methodology which can lead to biased results. For example, users often assume that
their results are Independent and Identically Distributed (IID), which allows
them to use simple, standard formulas to calculate the mean and variance. It is not
always the case though that the samples are IID, and consequently, the reported
results are often biased. [25]

Just as in any other statistical study, it is best to observe many observations in
a sample to estimate different values more accurately. Consequently, in simulation
experiments it is best to run many simulations with different PRNG seeds to collect

CHAPTER 1. INTRODUCTION 7

many observation. Managing the results from hundreds to thousands of simulations
can be a daunting task. Furthermore, particularly in large experiments, a great deal
of time can be spent running these simulations and managing their results. Only
running a single simulation run for each design point is a very common mistake in
simulation methodology seen in past and current literature [25].

Another common oversight in the analysis of simulation results is the lack of
computed confidence intervals. Simulations are a means to estimate certain population
statistics for complex systems, and it is important in any statistical study to report
the confidence of computed results. This problem is compounded in the case in which
a single simulation is executed per design point, and there is a single statistical sample.
To ensure highly credible results, many simulation runs should be executed per design
point, and the associated confidence interval should be reported with any statistics.

Simulation users often also forget to consider the transient or “warm up period”
of a discrete-event simulation. Many of the initial results collected during the tran-
sient are biased as the system approaches its steady state, which is most often what
simulation users are most interested in studying. Therefore, the results collected dur-
ing the transient should be discarded. This process is called data deletion, and is
important to ensure that results are not biased. In network simulation, many stud-
ies do not include data deletion, and those which do rely on arbitrary choices for
the length of the transient. According to Kurkowski et al. [25], the vast majority of
the past and current literature using simulation to study Mobile Ad-Hoc Networks
(MANETS) do not include any discussion of data deletion.

These problems in simulation workflow and analysis are further compounded by
improper reporting of experimental results and methodology in many simulation stud-
ies. This has led Pawlikowski [29] to describe the current state of the network simu-
lation community as a “crisis of credibility.”

1.6 Enhancing Usability and Credibility

Kurkowski et al. [25] explained that many of the steps necessary in proper simulation
methodology and statistical analysis are often skipped or conducted carelessly, thereby
compromising the credibility of the results. Many of these steps in proper simulation
workflow can be automated through computer software automation tools to ensure
that results have a higher level of credibility. Perrone et al. [30] claimed that “The level

CHAPTER 1. INTRODUCTION 8

of complexity of rigorous simulation methodology requires more from [the simulation
user] than they are capable of handling without additional support from software tools.”

Mistakes in statistical analysis can be easily avoided through the use of software
tools. Statistically inclined simulation developers can develop tools which walk a
simulation user through all of the steps in proper statistical analysis. In this manner,
all statistical results which the tools help the user to discover are ensured to be correct.
For example, tools can ensure that confidence intervals are always provided for each
of the metric estimators. These tools can be extended to help users generate figures
ensuring all axes are labeled, and confidence intervals are plotted.

Large simulation studies can include thousands of simulations which need to be
executed. Such simulation studies can take thousands of processor hours to execute.
To accelerate this process, independent simulations can be executed concurrently on
many processors on different physical computers. While this can reduce the simula-
tion time, it also incurs more administrative overhead to partition the simulations
to run on many processors and aggregate results. Furthermore, this process intro-
duces opportunities for the human user to compromise the integrity of their results.
Automation tools can be used to manage the execution of simulation runs across a
network of computers to reduce simulation time.

Automation tools ensure the credibility of simulation results while easing the
simulation workflow. This allows users to focus their efforts on modeling the system or
understanding results instead of managing simulation execution. Computer simulation
automation tools make computer simulation more valuable to the research community.
My thesis is thus:

Thesis Statement

The current state of the simulation community has been described as
a crisis of credibility. Automation tools address this issue by automating
the processes in which common mistakes are made to ensure the credi-
bility of results. Furthermore, automation tools can ease the simulation
workflow for users to allow them to focus on their science instead of the
simulation workflow. I have developed a framework which can be used
to automate many of the requisite steps in proper simulation workflow,
thereby ensuring the credibility of collected results. This framework rep-
resents a significant contribution to the simulation community which will
help users produce more credible results.

CHAPTER 1. INTRODUCTION 9

This thesis is organized as follows. The remainder of Part I, discusses background
information relevant to my project. Part II describes the Simulation Automation
Framework for Experiments (SAFE), which represents my main contribution. Part 11,
looks at applications of SAFE and concludes the thesis.

Chapter Summary

Computer simulation is a valuable tool in many fields. To use a simulator properly
requires careful attention to detail when conducting a simulation experiment. When
users are not careful, their results can easily be compromised, leading to results which
are not credible. To fully realize the utility of computer simulations, automation tools
are required to guide a user through the steps in proper simulation workflow to
ensure credible results. Chapter 2 describes several ways in which experiments can be
designed to investigate relationships between performance metrics and factors.

10

Chapter 2

Design of Experiments

Simulation experiments are often conducted to evaluate relationships between factors
and performance metrics, sometimes called responses. The set of responses for many
design points is known as the response surface. Response surfaces can take on
many shapes and forms as can be seen, for example, in Figure 2.1. Experiments
can be designed to investigate relationships between factors and their effect on a
response surfaces. Many experimental design techniques exist to help users evaluate
the differences in responses from different factors. These techniques can reduce the
number of simulations needed to understand these relationships.

2.1 2F Factorial Experimental Design

A simple technique often used to evaluate which factors have the largest effect on
the response is the 2 factorial experimental design. In this design, a low and a high
level are chosen for each factor and permuted to compute all of the design points in
the experiment. These low and high values are often coded +1 and —1 respectively.
An example of a 2¥ factorial design with 3 factors can be seen in Table 2.1. In a 2*
factorial design, there are 2¥ design points in the experiment where k is the number
of factors under investigation.

Using this experimental design technique, one can isolate which factors play the
largest role in the response. For example, to calculate the effect of factor 1, denoted

CHAPTER 2. DESIGN OF EXPERIMENTS 11

=15

!
=
=)

I
o o
o
Response »

=~-0.5
=~-1.0
=-15

-

0.0
Facto,, 05

(a) An example response surface for two factors, and y with response

z=x+y.

I

o

S
Response »

-

0.0
FaCtOrZ_ 0.5

(b) An example response surface for two factors, x and y with response
z=(x+1)=—-1)y+1)y—1).

Figure 2.1: Examples of different response surfaces.

CHAPTER 2. DESIGN OF EXPERIMENTS 12

Design Point X; X, X3 Response
1 -1 -1 -1 Ry
+1 -1 -1 Ry
-1 +1 -1 Rs
+1 +1 -1 Ry
-1 -1 +1 Rs
+1 -1 +1 R
-1 +1 +1 Ry
+1 +1 41 Ry

O O Tt = Wi

Table 2.1: 22 Factorial Design example.

e1, in an 23 factorial experiment, we can compute the following function of responses

Ry,... Ry
(Ry — R1) + (R4 — R3) + (Rs — Rs) + (Rs — Ry)

€1 = .

4

Similar techniques can be applied to evaluate the effect of other factors on the re-
sponse. [206]

A 2F factorial design is best suited for models where the response can be well-fit
with a linear model. For example, in Figure 2.1a, there is a linear relationship between
the response, z, and each of the factors x and y. This response surface can be easily
investigated with a 2* factorial experiment. By contrast, the response surface in Figure
2.1b does not exhibit a linear relationship between the factors and the response. In
this case, a 2* factorial design can yield misleading results. For example, if the points
{(-1,-1),(=1,1),(1,—1),(1,1)} were chosen, the perceived effect of both x and y
would be 0 as can be seen in Figure 2.2a.

In a 2% factorial design, as the number of factors under consideration grows, the
experimental design space grows exponentially. For example, with only 10 factors,
there are over 1000 design points which would need to be run. If each simulation
takes a minute to run and 30 replications of each design point are executed, this
experiment could take three weeks.

CHAPTER 2. DESIGN OF EXPERIMENTS 13

2.2 m* Factorial Design

A natural extension to the 2% factorial design is what is known as an m* factorial
design. In this case, m levels are chosen for each factor, and all permutations of factor
level pairs are computed to determine the experimental design space. In such an
experiment, there are m* design points where again k is the number of factors under
investigation.

An mF factorial design is used to investigate relationships between factors and their
responses with a higher degree of granularity, or extent to which the response surface
is subdivided to be sampled in the experiment. This can mitigate the effects of poor
level value choices. An illustrative example of the benefits of increased granularity
can be seen in Figure 2.2.

While this experimental design can provide further insight into more complex
relationships between factors in the response surface, when the number of factors or
levels is increased, the amount of time spent in simulation can increase very quickly.
Extending the example in Section 2.1 where k£ = 10, if we use m = 10 instead of
m = 2, we would have 10'° design points. With 30 replications of each design point
each taking a minute, this experiment would take over 500 millennia.

2.3 m*? Fractional Factorial Design

Fractional factorial designs offer a way to prune larger experimental design spaces
to estimate more easily the effects of different factors and their interactions. These
fractional experimental designs are subsets of the full factorial designs. For example,
if we wish to prune a 2* factorial design, we could halve the number of design points,
and we would have a % = 2471 design points. As with our previous factorial designs,
there are again m* P design points in such an experimental design where m is the
degree of granularity, k£ is the number of factors, and # is the fraction of the full
factorial design investigated.

When using a fractional factorial design, there are many ways to choose the subset
of the full factorial design. Some choices of subsets are more useful than others. For
example, one could choose a subset of a 2% factorial design with a constant value for
factor 4, and then a full factorial design for the other 3 factors. This design provides

CHAPTER 2. DESIGN OF EXPERIMENTS 14

> < L0
- 05 &
-0.5 - = - ,bc,
0.0 - 0.0 S
0> 1.0 ’ _ 0.5 .
E . - —u.
ctor, 15

Response »

(a) An example response surface for two factors, and y with response
z=(x+1)(z—1)(y+1)(y — 1) as observed using a 2? factorial

design.

Response »

0.0

0.5
Factq. > 1.0

(b) An example response surface for two factors, « and y with response
z=(x+1)(z—1)(y+1)(y — 1) as observed using a 10? factorial

design.

Figure 2.2: Two examples demonstrating how more granularity can provide important
insight into the shape and form of the actual response surface.

CHAPTER 2. DESIGN OF EXPERIMENTS 15

no insight into the effect of factor 4. Generally, a variety of design points should be
chosen so as to have more data points to compute the effects of different factors and
their interactions. For example, see Table 2.2.

Design Point X1 X2 X3 X4
1 -1 -1 -1 -1

2 +1 -1 -1 +1
3 -1 +1 -1 +1
4 +1 +1 -1 -1
) -1 -1 +1 +1
6 +1 -1 41 -1
7 -1 +1 +1 -1
8 +1 +1 +1 +1

Table 2.2: 24~! Fractional Factorial Design example.

2.4 Latin Hypercube and Orthogonal Sampling

One of the more sophisticated experimental design techniques is called Latin hyper-
cube Sampling (LHS). This method is a special case of a fractional factorial design
where p = k — 1. Each of these techniques greatly reduce the number of design points
over a full factorial design but the choice of design points can help provide insight
into more complex interactions in the response surface with fewer design points to
investigate.

To understand a Latin hypercube, it is easiest to discuss first a Latin square. In
a Latin square, a point is chosen in each row and each column such that there is
only one point in each row and column. For an example of a Latin square, see Figure
2.3. A Latin hypercube is the logical extension of the Latin square as the number of
dimensions is increased beyond two.

X

X

X

Figure 2.3: An example of a Latin Square.

CHAPTER 2. DESIGN OF EXPERIMENTS 16

There are many possible Latin hypercube experiments for a given set of factors
and levels. One particular way to construct a Latin hypercube experiment is called
Orthogonal sampling. This particular design places additional restrictions on the
choices of design points in a Latin hypercube sampling. In Orthogonal sampling the
hypercube is divided into separate regions of equal size, and a design point placed in
each region. For an example of orthogonal sampling on a Latin square, see Figure 2.4.

X

X

X

X

Figure 2.4: An example of Orthogonal Sampling.

Chapter Summary

Executing large simulation experiments can be computationally expensive. There are
several experimental design techniques which can be used to investigate response
surfaces. A 2% factorial design can be used to investigate the effect of many factors,
while an m* factorial design can be used to investigate the shape and curvature of
a response surface. Fractional factorial designs can used to reduce the number of
the design points in an experiment while investigating a larger design space. There
are several ways to execute these simulations to speed up the computation of the
experiment which are discussed next in Chapter 3.

17

Chapter 3

Parallel Simulation Techniques

Simulation users often have access to computational resources such as servers, com-
puter clusters, and other high performance workstations. These systems can have
different architectures; most often they have multiple processing cores, allowing them
to run programs concurrently. This allows users to run tasks in parallel, and conse-
quently there are many ways to harness the computational power of these systems.
This chapter discusses how one might harness these computational resources to ac-
celerate the execution of large scale simulation experiments.

3.1 Fine-Grained Parallelism

One approach to utilize all of the processors available is to distribute a single simula-
tion across all of available processors. This is called fine-grained parallelism [27].
In this case, different parts of the execution of the simulation must be separated to
run on the individual processors.

There are many challenges associated with fine-grained parallelism. The developer
of the simulator must be very careful during implementation to distribute the work in
the simulation to each of the processors evenly. In many simulations, this is especially
challenging due to inherent data dependencies in the simulation execution, in which
one processor must wait on another processor’s result before it can proceed. There is
also overhead in communicating the result of some computation from one processor

CHAPTER 3. PARALLEL SIMULATION TECHNIQUES 18

to another.

The performance of a fine-grained parallel simulation does not scale linearly with
the number of processors. The maximum theoretical speedup gained by parallelizing
a process across n processors can be approximated by Amdahl’s law [21]. Let p be
the fraction of the process which can be parallelized and run on multiple processors,
then Amdahl’s law states that the maximum speedup with n processors goes as

1

speedup = m

The result of Amdahl’s law can be seen in Figure 3.1. For example, if p = 0.95, then
even using thousands of processors, there will only be a speedup of 20x. Fujimoto and
Nicol [18] discussed several techniques to increase the value of p such that simulations
can scale better with more processes.

3.2 Coarse-Grained Parallelism

An often simpler approach to balancing the work between many processors is called
coarse-grained parallelism [27]. Coarse-grained parallelism distributes the work
of the entire simulation experiment across many processors by assigning a single,
sequential simulation to each processor. This allows processors to work independently
of one another thereby eliminating overhead in synchronization and communication.

In coarse-grained parallelism, no processor ever needs to wait for the result of a
computation performed by another processor. Furthermore, the processes are inde-
pendent, which eliminates all synchronization overhead. This is therefore an embar-
rassingly parallel problem and thus p ~ 1 and by Amdahl’s law:

1 1
speedup ~ m =1=n

This result is only applicable where the number of simulations which need to be
run is a multiple of the number of processors available or greatly exceeds the number
of processors available.

For example, assume we have one design point with 30 simulations to run on 4
processors, each of which takes time ¢ to run. Using coarse-grained parallelism, the

CHAPTER 3. PARALLEL SIMULATION TECHNIQUES 19

Figure 3.1: The theoretical maximum speedup possible using multiple processors as a
result of Amdahl’s law

first 4 simulations will take time ¢ to run, and then the next 4 simulations will start
and take time ¢ to run. The first 28 simulations will therefore finish in 7¢ time. At this
point, only 2 simulations are left for the remaining 4 processors to run, so 2 processors
are left idle and the experiment takes 8¢ time. In this case, we have have a speedup
of %O = 3.75 instead of 4.

3.3 Multiple Replications in Parallel

Another approach to parallelizing a simulation experiment used by Pawlikowski [28]
is called Multiple Replications in Parallel (MRIP). This paradigm builds upon
the assumption that the simulation user is following proper simulation methodology

CHAPTER 3. PARALLEL SIMULATION TECHNIQUES 20

and running multiple replications of each design point using different PRNG seeds.
A central server dispatches independent simulation runs of the same design point
with different seeds to be executed on different processors. During their execution,
observations of performance metrics are reported to the central server overseeing the
execution of the simulations. This process can determine when enough observations
have been made to estimate performance metrics to within some tolerance specified
by the user.

MRIP addresses the issue seen in coarse-grained parallelism when the number of
simulations which need to be run are not significantly greater than the number of
available processors. Extending the example from Section 3.2, instead of running 30
simulations on 4 processors, we instead run 4 simulations. Each of these simulations
simulates more virtual time, enough time to observe the minimum number of observa-
tions required to estimate the metric to within the desired level of confidence. There
is overhead both in running a separate server and communicating these observations
to the server. In comparison to coarse-grained parallelism however, the amount of
time spent in transient will be less, and all processors can be kept busy until the
experiment completes.

Chapter Summary

This chapter describes three techniques which can be used to speed up the compu-
tation of a simulation experiment using multiple processors. Fine-grained simulation
can be used to parallelize a single simulation run, while coarse-grained simulation
can be used to run many independent simulations. The MRIP technique is a variant
of coarse-grained simulation which can have better performance than coarse-grained
execution. Next, Chapter 4 will describe how previous automation tools have inte-
grated these experimental design and parallel simulation techniques to help users run
experiments efficiently.

21

Chapter 4

Previous Automation Tools

Several tools have been developed to automate one or more steps of the proper sim-
ulation workflow for different simulators. In this chapter we introduce some of these
tools, namely CostGlue, ns2measure, ANSWER, Akaroa, SWAN-Tools, and JAMES
II. The analysis of the features, strengths, and weaknesses of these tools helped us
to reach key design decisions in the construction of the framework we present in this
thesis.

4.1 CostGlue

A software package called CostGlue was developed to aid telecommunication simu-
lation users in storing and sharing their results. CostGlue provides an Application
Programming Interface (API), in the programming language Python, which helps
one to store and access simulation results. CostGlue also has a modular architecture
which allows for the development of plugins. These plugins can extend the original
functionality offered by CostGlue without becoming part of the project’s core source

code. [33]

The CostGlue API exposes all of the simulation results and meta-data to plugin
developers. This allows for the development of plugins which can be used to conduct
statistical analysis, generate figures, or export results into a format accessible by other
post-processing tools such as R [6], SciPy [7], Octave [4], or Matlab [3]. The CostGlue

CHAPTER 4. PREVIOUS AUTOMATION TOOLS 22

developers also discuss the possibility of developing external processes which could be
used to expose results stored in the CostGlue database via a publicly available web
application. [33]

CostGlue, however, does not automate the process of parsing the results in the
output from the simulation and therefore, does not prevent errors in this stage of
the simulation workflow. Similarly, CostGlue does not provide facilities to process the
results from the simulation to extract the metrics of interest. This introduces another
potential area for errors to be made in the simulation workflow. Finally, users must
import their results into CostGlue using custom developed scripts, which can again
introduce opportunities for errors to be made in the simulation workflow. All three
of these issues can lead to results which are not credible.

The CostGlue project demonstrates several desirable capabilities for handling sim-
ulation data. Though the project is no longer under active development, these lessons
can be applied to future projects. The modular architecture for accessing simulation
results allows developers to easily extend the tool for their needs. Users can then
share the tools they have developed to help other users in the simulation community.

4.2 ns2measure & ANSWER

While the CostGlue framework provides means for storing and accessing simulation
results it does not provide any facilities for collecting statistics from a simulator.
Cicconetti et al. [15] has a project called ns2measure which addresses this issues and
eases the process of extracting simulation metrics. Andreozzi et al. [12] also developed
a tool called ANSWER which builds upon the functionality provided in ns2measure
to help users automate large simulation experiments.

The ns2measure project aims to ease the process of collecting statistics during
simulation execution using the network simulator ns-2. Ordinarily, when using ns-2,
a trace of the network activity is written out to the file system for posterior analy-
sis. Users must then carefully process these trace files to extract the statistics they
are interested in studying. Processing these results is often conducted with unveri-
fied scripts which can produce biased or erroneous results. The ns2measure project
provides a framework to collect statistics during the execution of the simulation it-
self. Furthermore, it provides statistical analysis tools which help users conduct more
statistically sound simulation experiments. [15]

CHAPTER 4. PREVIOUS AUTOMATION TOOLS 23

A project called ANSWER, developed by the same research group at the Uni-
versity of Pisa, Italy, works in harmony with ns2measure. While ns2measure aids
a user in gathering accurate statistics for a single design point, ANSWER helps to
automate running large scale simulation experiments with hundreds or thousands of
design points. This process is accelerated by distributing independent simulations
across multiple available processors using coarse-grained parallelism. ANSWER also
provides web-based tools for interfacing with collected results.

These two software tools, ns2measure and ANSWER, offer many important fea-
tures to simulation users. First, ns2measure provides mechanisms to extract observa-
tions of performance metrics directly during simulation execution. When ns2measure
is used in conjunction with ANSWER, simulation users can easily conduct a simple,

credible simulation experiment using ns-2. One major shortcoming of ns2measure and
ANSWER is that they can only be used with ns-2.

4.3 Akaroa

In contrast to ANSWER, the Akaroa project developed by Pawlikowski [28] used
MRIP as described in Section 3.3 to accelerate running a single design point instead
of an entire experiment. The Akaroa project was originally developed for use with
ns-2, but it has since been ported to work with other simulators such as OPNET++-.
Pawlikowski [28] believes it can be adapted for use with other stochastic network
simulators as well.

While Akaroa demonstrates important functionality in software automation tools,
it has a few shortcomings. Akaroa can only be used to execute a single design point.
This requires users to manage each of the design points in their experiment manu-
ally. Because users can make mistakes when managing the execution of these design
points, we would like future tools to use MRIP to automate the entire experiment.
Furthermore, Akaroa does not integrate with other tools such as ANSWER which
can help users manage their simulation experiments. Finally, the Akaroa project re-
quires permission from the authors to use for any application outside of teaching and
non-profit research activities.

CHAPTER 4. PREVIOUS AUTOMATION TOOLS 24

4.4 SWAN-Tools

One of the first software projects which attempted to automate running an entire
simulation experiment to ensure the credibility of results was the SWAN-Tools project
developed at Bucknell University by Kenna [23], and Perrone et al. [31]. SWAN-Tools
was developed for use with the Simulator for Wireless Ad Hoc Networks (SWAN).
The tool guides the user through all the steps of a proper simulation experiment, and
demonstrates many important functions in the automation of simulation experiments.

SWAN-Tools helps the user to create valid experiments and run independent sim-
ulations in parallel across many physical computers. Also, the tool aids the user in
data analysis by presenting results to be viewed in a web browser, to be downloaded
and used with a statistics package, or to be graphically presented using proper plot-
ting techniques via a web based interface. Lastly, the tool makes the results available
via a website to which any scholarly article can be linked.

The lack of flexibility in this tool is its major shortcoming. It was built exclusively
for use with SWAN, and used a simulation model which was hard-coded into the tool.
These constraints limit the potential uses for the tool. However, the aforementioned
features which guide the user through all steps of a proper simulation experiment can
be applied to future automation frameworks.

4.5 James 11

The James II project takes a different approach to automating elements of proper
simulation workflow. Instead of building tools which work in tandem with a specific
simulator, JAMES II provides a framework upon which simulators can be built. It has
a modular architecture with plugins for problem domains ranging from Computational
Biology to Computer Networks. [22]

Once a simulation model has been defined using the JAMES II framework, there
are tools available to help run simulation experiments. Also, there are plugins which
help users use both coarse- and fine-grained parallel simulations. Furthermore, JAMES
IT provides facilities for storing and analyzing results.

The simulation must use the JAMES II core framework in order to take advan-

CHAPTER 4. PREVIOUS AUTOMATION TOOLS 25

tage of the several available plugins. Additionally, since the JAMES II framework is
Java-based, all JAMES II simulators must be written in Java. While JAMES II has
an interesting architecture and feature set, many of the features for automating simu-
lation experiments are not compatible with simulators which are not specifically built
for this framework. The modular architecture of JAMES II, like CostGlue, allows it
to be more widely applicable to different problem domains.

4.6 Lessons Learned

These tools have demonstrated several features and functions which are important
for future automation tools to incorporate.

A plugin system to allow users to customize the tool to their needs.

A guiding user interface to help inexperienced users along.

Parallel simulation techniques such as MRIP.

e A web interface to view the experiment configuration and results.

These ideas will be incorporated into my framework, SAFE, described next in
Part II.

Chapter Summary

Several tools have been developed which automate different aspects of the proper
simulation workflow. These tools demonstrate important functionality: output pro-
cessing, output storage, distributed execution, rigorous statistical methods, and a
guiding user interface. Lessons learned from these tools will be incorporated into my
framework described next in Part II.

Part 11

The Simulation Automation
Framework for Experiments

26

27

Chapter 5

Architecture

The Simulation Automation Framework for Experiments (SAFE) addresses
many of the aforementioned problems in both simulation usability and credibility.
This chapter discusses SAFE’s architecture and feature set which has been designed
to address the following general goals. The framework should:

e Be flexible and extensible.

e Automate the simulation workflow so as to ensure the credibility of the experi-
mental process.

e Use the MRIP methodology to accelerate the execution of experiments.

e Include a web-based component to allow for the visualization of experimental
results.

e Present differentiated interfaces which meet the needs of novice and experienced
simulation users.

e The framework should be flexible such that it can be extended to work with
other simulators. This is not to say that SAFE can be extended to work with
every possible simulator. Although existing simulators only available in binary
format would be challenging to integrate with SAFE, it should be relatively
straightforward to modify open source simulators to work with the framework.

CHAPTER 5. ARCHITECTURE 28

SAFE consists of various components which automate different processes in the
proper simulation workflow. It employs a client-server model in which the central
server called the Experiment Execution Manager (EEM) coordinates the actions
of numerous simulation clients. Each simulation client controls the execution of
a single design point by a simulator. A broad overview of SAFE’s architecture is
presented in Figure 5.1.

5.1 The Experiment Execution Manager

The EEM coordinates the behavior of the entire simulation experiment. It handles all
of the data in the experiment including, but not limited to, how it is processed, how
it is stored, and how the framework responds to it. The EEM itself does not conduct
complex, computationally expensive simulations or analyses, but instead coordinates
and communicates with other processes which handle these tasks. All data in the
experiment flows through the EEM at some point.

Database

Experiment
Execution
Manager

Simulation
Client

Simulator Simulator Simulator

Simulation
Client

Figure 5.1: Overview of the architecture of SAFE.

CHAPTER 5. ARCHITECTURE 29

The EEM accepts several input files which specify options in the EEM and define
the experiment to run. The languages which describe these inputs are described later
in Chapter 6. Using the information gathered from these input files, the EEM com-
putes all of the design points in the experiment. The EEM then manages dispatching
the necessary simulations to the available machines to be executed using an MRIP
style parallelization technique. The Simulation Client, as described in more detail in
Section 5.2, reports results back from the simulator to the EEM. The EEM must also
coordinate how these results are handled after they are received from the simulation
client.

One of the EEM’s primary responsibilities is handling all interactions with the
database where SAFE stores all of its data. (The database itself will be discussed in
Chapter 8.) All results from the simulator are sent to the EEM which processes the
data and stores the results in the database. When the experiment is complete and
users need to conduct posterior analysis of their results, they must access their results
through the EEM which helps to ensure that the results are accessed and processed

properly.

The EEM is also responsible for conducting proper statistical analyses. In SAFE,
the transient and the end of the design point’s execution are both detected by external
processes. Within this design, the EEM is responsible for forwarding the intermediate
results to each of these processes in addition to the database. The EEM monitors
these processes to know when the transient has passed and later when the design
point should be terminated. This architecture can be seen in Figure 5.2.

SAFE has support for plugins, which extend its functionality, much like Cost-
Glue and JAMES II. The plugins and any of their associated options are configured
through the experiment configuration language described in more detail in Section
6.2. Currently, there are plugins for parsing the experiment description file, as well as
generating all of the design points. There is also a hook to allow users to incorporate
other plugins which manipulate data. The plugin system allows SAFE to be adapted
to current and future needs of the simulation user.

5.1.1 Asynchronous / Event-Driven Architecture

Two of the major requirements of the EEM are responsiveness and availability: the
EEM must respond or react quickly to different actions and events so as to be ready
for the next event. By design, the tasks which the EEM executes are seldom ever

CHAPTER 5. ARCHITECTURE 30

Transient
Detector

Run-Length
Detector

Transient
Detector

e —
Database

Experiment
Execution
Manager

Transient
Detector

Run-Length
Detector

Transient
Detector

Figure 5.2: Architecture of the interactions between the EEM and transient and run length
detection processes.

CHAPTER 5. ARCHITECTURE 31

computationally expensive or long-running, so that the EEM can react quickly to all
inputs.

This type of application is often implemented using the reactor design pattern
[34]. This design pattern yields an event-driven programming model in which the
application waits for an event to happen, and a method known as a callback is called
to respond to the event and any associated data. After a callback is processed, the
reactor drops back into the main loop where it waits for the next event to occur.
There are many algorithms to decide when an event happens, but for networked
applications such the EEM, the most common mechanism is to use the select()
system call, which returns when a file descriptor is ready to be read from or written
to.

An example of the benefits of this event-driven programming paradigm is querying
a database. In most synchronous programming models, when a query is made to
the database, the execution of the program blocks, or waits until the result of the
query is made accessible. This can simplify the programming model because one is
assured that when the query returns, all of the results are available. In an application
which strives to achieve high availability however, this programming model is rather
restrictive, because the server is unresponsive while the program waits for the result
from the database. This time can be used to respond to other events, which otherwise
would have to wait until after the database has returned.

This behavior can be seen in Figure 5.3. Let the blue sections represent the time
spent processing a database request, the orange is a response to a request for another
design point, and the green is another database request. At some time as in Figure
5.3, the request for the next design point is received. In the asynchronous case, the
process is idle and can respond to the request immediately. In the synchronous case,
the process is busy, and cannot begin to service the request until it has processed
the results from the database. Similarly, the database request in green is dispatched
before a request has been received for the blue database request. The reply from the
green database request can be handled while the process waits for the result of the
green database query. Consequently, the asynchronous programming model allows for
the process to handle different events in the system while it waits for other events to
occur.

The EEM is implemented in the programming language Python [5] and relies
heavily on the asynchronous, event-driven library called Twisted [8] which implements
the reactor design pattern. Using this library, callbacks can be defined to handle
results from the simulation client, query results from the database, handle messages

CHAPTER 5. ARCHITECTURE 32

Sync

Async

time

Figure 5.3: A visual depiction of the benefit of an asynchronous vs. a synchronous pro-
gramming model

from external processes used to detect transients, and many other types of events.

5.1.2 Dispatching Design Points

In coordinating the execution an experiment, the EEM dispatches to different comput-
ers the simulations which correspond to various design points. We can estimate how
the distributed execution of the experiment affects the time to completion. In total,
we will assume N samples must be generated for each design point such that metrics
can be estimated to within the desired confidence level. When these N samples have
been generated, the design point’s execution can be terminated. The simulation of
each design point includes a number of independent replications, each of which must

CHAPTER 5. ARCHITECTURE 33

incur the cost of “warming up” to the end of its transient. We say that ¢ samples are
collected during this period. The data deletion method requires that none of these
first t samples be used in estimating the desired metrics.

If we have r independent simulations replicating the same design point, which
combined will generate the required N samples, on average, each replication needs to
generate % post-transient samples. Then on average, each simulation will run until
is has generated t + % samples. In total, across all r replications, the total number
of samples collected is then r(t + %) = rt + N. While the work to produce the N
samples is needed, the generation of the rt samples is only productive in the sense
that it allows replications to move beyond their transient.

To put this in perspective, consider the following example in which each simulation
executes to 1000s of simulated time, the transient is 100s, and we have r = 30
replications of the design point. We see that 30 x 1,000s = 30,000s of simulated
time are executed, but only 30 x (1,000 —100) s = 27,000 s of simulated time produce
statistically useful samples. This means 3,000s, or 10% of simulated time is used to
produce data which is disregarded in rigorous statistical analyses.

Although this analysis makes some simplifying, unrealistic assumptions, it demon-
strates the overhead of simulating the transient. A better model would assume the
transient and run length are random variables. There exist several techniques to dis-
patch simulations to utilize efficiently the computational resources in light of the
overhead of the transient.

One dispatching algorithm is to dispatch a single design point at a time to all p
available processors. Each processor continues simulating the same design point until
the EEM has determined that enough observations of the metrics of interest have been
collected. At this point, all of the remote hosts terminate the active simulation, and
the next design point can begin execution. This is how one would conduct a simulation
experiment using MRIP in the Akaroa 2 project [28]. Using this algorithm, we would
simulate approximately pt units of simulated time in transient.

In a simulation experiment we have many design points which can be processed
concurrently across our computational resources. Consequently, if each design point
is dispatched to at most n processors where n < p, there will be multiple design
points running concurrently. Each design point will simulate approximately nt units
of simulated time in transient in comparison to pt in the previous algorithm.

I developed a design point dispatching algorithm for SAFE which is a variant

CHAPTER 5. ARCHITECTURE 34

on these existing algorithms. In this algorithm, the design point which has seen the
fewest results is dispatched first. This algorithm seeks to minimize the number of
independent simulations which are executed for each design point (in essence, n for
each design point) so as to minimize the time spent in transient. This method can be
further adapted to set a minimum number of independent simulation runs n so as to
reduce any bias from the choice of PRNG seed.

5.1.3 Web Manager

As a result of using an asynchronous programming model, the EEM can respond to
a vast array of different types of events by installing new callbacks. This allows the
EEM to expose data and parts of its state via a web-based interface, called the web
manager. Furthermore, because the EEM and the web manager are all contained in
a single process, users can control aspects of the experiments execution from the web
interface.

As previously stated, one of the principal goals of SAFE is to provide a framework
which both novice and experienced simulations users can employ to automate their
simulation experiments. While more experienced users may gain more power through
using command line oriented tools, a novice simulation user may feel more comfortable
using a web browser to control their experiment. The web manager allows for this
use case by allowing a user to create an experiment by uploading the necessary input
files (described in more detail in Chapter 6), and using the web manager to start or
stop the execution of the experiment.

Another use case for the web manager is to allow users to view their results via the
web. Again, this allows the novice simulation user to analyze results without requiring
more sophisticated scripts or command line oriented tools. More importantly, the web
manager exposes the complete experiment setup coupled with results. This allows
users to publish their results to the web such that people around the world can view
them, and link back to those results from any publication. These users can also repeat
the same experiment by downloading the input files for the specific experiment. This
type of functionality was demonstrated by Perrone et al. [31] to significantly enhance
the credibility of published results by ensuring repeatability.

A feature to be incorporated in the web manager in the future is a plotting tool.
Such a tool would guide the user through the generation of a plot. This type of
functionality is available in both SWAN-Tools [31], and ANSWER [12]. This not only

CHAPTER 5. ARCHITECTURE 35

provides an intuitive interface to the simulation user, but also to others interested in
analyzing the data after the results have been published. The web manager is a major
area of future work under the continued funding of the NSF [20].

A common architecture for exposing data to clients on the web is called Rep-
resentational State Transfer (REST); this model was first defined by Fielding
[17] in his doctoral dissertation. REST defines how web applications can be queried
for different resources. This allows developers to interact with web-based applications
by querying for specific information. Furthermore, it allows for external applications
to be developed which can access the information made accessible through this web-
based API. This architecture is applied in the web manager which allows for external
developers to interface with the web manager to query for results and control other as-
pects of the behavior of the EEM through both the web browser as well as customized
scripts.

5.2 simulation client

The EEM is responsible for orchestrating how different processors contribute to the
execution of the experiment. It does so by communicating with a process called the
simulation client running on each computer (local or remote) participating in the
execution of the experiment. The simulation client manages how simulations are ex-
ecuted, and how results are reported back to the EEM.

The first role of the simulation client is to connect to the EEM and register as
an available host for the execution of simulations. In so doing, the simulation client
transmits important details about its local environment such as the operating system
version, architecture, etc. (e.g. GNU/Linux Kernel 2.6.33 Intel x86_64). If for any
reason problems are found which can be correlated with the collected data, then
having this information can be useful in detecting any problems, or disregarding any
results.

The next step in the execution of the simulation client is to request a design point
to run. The EEM replies with a design point and any information required to start
the simulation running (e.g. the PRNG seed). The simulation client then spawns a
new process for the simulator itself. While the simulator is processing, the simulation
client still has several responsibilities.

CHAPTER 5. ARCHITECTURE 36

The simulation client must continue to listen for instructions from the EEM. At
any point, the EEM can send a message informing the simulation client that the
experiment is complete and it should terminate the simulator and gracefully shut
down the process. The EEM can also inform the simulation client that the active
design point is complete, in which case the simulation client should terminate the
active simulation, and then request the next design point to simulate.

The simulation client must also listen for results from the simulator itself. If the
simulator can output intermediate results during execution, the simulation client can
forward these results to the EEM for storage and post-processing. If the simulator
cannot forward intermediate results, these results must be sent to the EEM upon the
termination of the simulation.

The simulation client, unlike the EEM, is not simulator specific. The simulation
client abstracts the details of the simulator away from the EEM allowing for the pos-
sibility of using the EEM with different simulators. The simulation client decouples
the EEM from the simulator itself allowing the EEM to be more general. Also, the
functionality needed in a simulation client is largely the same between different sim-
ulators, and therefore the development of a new simulation client for a new simulator
can be streamlined by following the example of previous code.

The requirement of the simulation client to be listening and acting upon data from
a few data sources lends itself to the reactor design pattern described in Section 5.1.1.
Currently, my simulation client implementations are all implemented in Python using
the Twisted Library just as the EEM is, but it is possible to develop a simulation
client in another language such as C or C++. In the development of the simulation
client, one must take care to avoid busy-waiting and using processors cycles to stall
and wait for data from a data source. The simulation client should be as light a
process as possible to leave the systems resources available to the simulator itself.

Current simulation client implementations are rather simplistic. A future devel-
opment which would likely provide greater performance is to develop a simulation
client which is capable of managing many simultaneous simulators on a single host.
This could provide slightly better performance for systems with a large number of
processors which could run a single simulation client instead of a simulation client for
each processor.

CHAPTER 5. ARCHITECTURE 37

Chapter Summary

The SAFE project uses a client-server programming model. By abstracting the im-
plementation details associated with integrating SAFE with a specific simulator, the
SAFE framework gains flexibility. This allows for the possibility of integrating SAFE
with other simulators. SAFE also defines a new way to dispatch design point to sim-
ulation clients in such a way as to minimize the aggregate amount of time spent
in transient. The EEM architecture allows for the integration of external tools and
libraries through other processes as well, such as through the use of the plugin sys-
tem. Next, Chapter 6 describes the languages used to configure the experiment for
execution.

38

Chapter 6

Languages

SAFE’s architecture allows it to be flexible and adapt to a user’s many needs in their
simulation experiments. It achieves this flexibility using a modular architecture, and
exposes many options to users via configuration files. These configuration files are
required to specify basic options for the EEM, plugins and plugin options, the design
of the experiment, and the simulation model itself. These options are provided to the
EEM as documents written according to configuration languages, which are defined
by Andrew Hallagan in his Honors Thesis [19]. The languages are extensions from
XML (eXtensible Markup Language), which provides mechanisms for encoding infor-
mation in formats that can be easily manipulated by computers. To fully understand
the benefits of using XML, it is necessary to first describe its structure.

6.1 XML Technologies

The XML language defines a text-based document format which is designed to be
simple and easy to parse/interpret with a computer program. The World Wide Web
Consortium which defined the XML language standard through a set of simple rules
which define how a valid XML document is formed and structured. [9] The simple
nature of these rules allow XML to be widely applicable in many different problem
domains.

CHAPTER 6. LANGUAGES 39

An XML document is composed of three main types of content. The basic building
block of XML is called an element which encodes some piece of data, or even a
conglomeration of data. An element is separated from other pieces of the document
using opening and closing tags. A tag is a piece of text often called a tag-name
surrounded with “<” and “>” characters. A closing tag has the same tag name as the
opening tag, but instead begins with “</”. An example of a valid XML element is
seen in Listing 6.1.

<tagname>contents of the element</tagname>

Listing 6.1: An example XML Element.

The third type of content in an XML document is called an attribute. Attributes
can be used to specify meta-data for an element. Attributes are specified inside of
the tag surrounded by quotation marks. For example, we can add an attribute to the
preceding example as in Listing 6.2.

<tagname some_attr="attribute value'">element contents</tagname>

Listing 6.2: An example XML Element with an attribute.

In an XML document, elements are often nested to encode the relationships be-
tween the different pieces of data being encoded. Furthermore, the XML standard
requires there to be a single root element within which all elements are nested. For
example, if we wanted to encode a probability distribution and its parameters, we
could nest the parameters in their own sub-elements as seen in Listing 6.3.

<factor distribution="Gaussian">
<mean>5.0</mean>
<variance>2.0</variance>
</factor>

Listing 6.3: An example of how elements can be nested in XML document.

The rules which define the XML language specification are very basic. They do
not define the context or meaning of any of the tags or attributes in the documents
themselves. This allows for the development of XML-based languages which further
restricts the XML language by specifying what types of tags can be used and how they
can be composed to form elements. In application, the specific tags and attributes are
given context so that data can be easily encoded and transmitted between systems.

CHAPTER 6. LANGUAGES 40

For example, XML based languages are one of the primary means of encoding data on
the World Wide Web. The Hyper Text Markup Language (HTML) which is used to
encode most of the web content viewed in web browsers is an XML-based language.
The HTML specification defines a set of valid tags which web pages are encoded
in. Modern web browsers understand the meaning of these tags and render the page
appropriately. For a brief example of HTML see Listing 6.4.

<html lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>A Sample Page Title</title>
</head>
<body>
<h1>The Heading on the Page</h1>
<p>A paragraph of text. This sentence is all bold.</p>
</body>
</html>

Listing 6.4: An example HTML document.

These specifications for the newly created language can be defined in an XML
Schema. There exist languages for defining schemas including the Document Type
Definition (DTD), XML Schema (XSD), and REgular LAnguage for XML Next Gen-
eration (RELAX NG). Each of these languages has a different syntax.

Such a schema file can be used to validate a document. This functionality can act
as a security measure to ensure that the document is well formed before a program
tries to process its contents. In the context of simulation automation tools, inputs
can be validated against the associated schema to ensure that the design point or
model is valid. For example, a design point can be checked to ensure a level is given
for each factor. Furthermore, it can check that all levels are valid (e.g. number of
wireless devices in the simulation is positive). Validation will enhance the credibility
of the final results by ensuring that all simulated models contain valid inputs to the
simulator.

CHAPTER 6. LANGUAGES 41

6.2 Experiment Configuration

The first language which SAFE uses to define an input file is the Experiment Config-
uration Language. This language is used to define specific options and behaviors of
the EEM for a specific simulator. This includes defining plugins and options specific
to each of these plugins like CostGlue and JAMES II.

An important option in the execution of the simulation experiment is that every
simulator used to collect results in the experiment needs to be running the same ver-
sion of the simulator. The experiment configuration language provides a mechanism
to specify which version of the simulator the clients should be using. This version
is checked against the host specific information which each simulation client trans-
mits to register as an available simulation client. This can be used to ensure that the
version matches that which is specified in the experiment configuration language.

There exist several different algorithms to detect the end of the transient. While
the technical details of these algorithms are outside the scope of this thesis, we expect
users will want to be able to apply these different algorithms to different experiments.
The SAFE architecture allows developers to create their own transient detection
algorithms in a separate script. SAFE then manages communicating all results to
these external processes. This process is managed through the plugin system, and the
experiment configuration language is used to specify options to the transient detection
algorithm, and setup how the communication between the two processes is handled.
An analogous plugin system exists to communicate with external processes which
estimate when a simulation experiment can be terminated.

Another application of plugins in SAFE is in results handling. SAFE defines de-
fault behavior for how results are handled and stored, but additional plugins can
be implemented to allow for additional callbacks to be executed when results are
received. This can be useful for users with more sophisticated usage patterns.

6.3 Experiment Description Language

The next language which we have developed for use with SAFE is the Experiment
Description Language. This language encodes the experimental design and offers users
a flexible yet succinct language with which to define their experiment. The Experiment

CHAPTER 6. LANGUAGES 42

Description Language is also an XML-based language.

The Experiment Description Language is broken into two primary sections. The
first section encodes each factor, and all of the levels which it can be associated with
in the given experiment. This section alone defines a complete factorial experimental
design.

The second section defines constraints on the full factorial design. It provides many
mechanisms with which full factorial experiments can be pruned. For example, design
points can be individually excluded from the full factorial experimental design. More
useful though in application is the ability to tie specific levels for different factors
together, such that any combination which does not include both (or all), of the
levels will not be included in the experiment.

Parameters to random distributions form an illustrative example of this feature of
the Experiment Description Language. For example, if some process can be modeled
with either a Gaussian or an Exponential distribution, then the factors u and o2 must
be coupled with the Gaussian distribution while the factor A must be coupled with
the Exponential Distribution. If we use the factors and levels described in Table 6.1a,
there are a total of 2x 3 x 3 x 3 = 54 design points in the full factorial design. However,
the vast majority of these design points are not valid based on the aforementioned
constraints regarding the parameters to each distribution. The six valid design points
can be seen in Table 6.1b.

Distribution — p o? A
Factor Valid Levels Gaussian 5 0 N/A
Distribution | Gaussian, Exponential Gaussian 5 1 N/A
1 N/A, 5, 10 Gaussian 10 0 N/A
o? N/A, 0, 1 Gaussian 10 1 NJ/A

A N/A, 10, 20 Exponential N/A N/A 10

(a) A list of factors and levels. Exponential N/A N/A 20

(b) The set of valid design points.

Table 6.1: The full factorial design in Table (a) yields many design points with invalid
parameter values. The set of valid design points is seen in Table (b).

The Experiment Description Language can be used to construct any experimental
design space. This allows users to customize their experiment specifically to investi-
gate certain qualities or quantities in the system while reducing the number of design
points which needs to be executed. It also allows for users to describe experimental

CHAPTER 6. LANGUAGES 43

designs such as fractional factorial designs and Latin hypercubes or any arbitrary
experimental design space.

6.4 Boolean Expression Objects

The Experiment Description Language is parsed by a SAFE plugin, thereby allowing
others in the simulation community to extend the language, and adapt the parser
plugin for the new language. The parser plugin must communicate the factors and
levels as well as the restrictions to SAFE which in turn generates the design points
through the design point generator plugin.

I have developed a standard data structure, which I have named the Boolean
Expression Object, for encoding the constraints on the full factorial design. This data
structure encodes a boolean expression which can be applied to a design point to
determine if it is contained within the experiment. In the example in Table 6.1, we
can encode the boolean expression:

Distribution is Gaussian and p is not “N/A”, and 02 is not “N/A” and
is “N/A” or Distribution is Exponential and p is “N/A”, and % is “N/A”
and g is not “N/A.”

This expression is stored in a tree-like object which can be traversed to evaluate
whether a design point is contained in an experiment or not. Using the Boolean Ex-
pression module which I have developed for SAFE, this expression would be encoded
as in Listing 6.5.

The resulting expression object, can then evaluate a design point, dp with
expression.evaluate(dp). These boolean expression objects can be automatically
constructed during the parsing of the Experiment Description Language and then
applied during design point generation to determine which design points in the full
factorial design are included in the user’s experiment.

CHAPTER 6. LANGUAGES 44

from safe.boolean import Term as T

na = "N/A"
t_gauss = T("Distribution", "Gaussian")
t_gauss_params = !T("mu",na) & !T("sigma",na) & T("lambda",na)

t_exp = T("Distribution", "Exponential")
t_exp_params = T("mu",na) & T("sigma",na) & !T("lambda",na)

expression = (t_gauss & t_gauss_params) | (t_exp & t_exp_params)
Listing 6.5: An example boolean expression object.

6.5 Design Point Generation

The experiment description language is used to encode all of the design points in an
experiment at a high level. This language can then be compiled down to a boolean
expression object which encodes this information and can be used to check if a spe-
cific design point is contained within an experiment. The next step is to use this
information to compute all of the design points in an experiment.

We have developed two different algorithms which can be used to construct these
design points. Each of these algorithms has pros and cons depending on the size of the
experimental design space relative to the full factorial design space. We have therefore
designed SAFE to compute design points in a plugin, thereby allowing users to decide
which algorithm is best suited to their needs. Furthermore, this architecture allows
other developers to create their own design point generation algorithms.

6.5.1 Backtracking Design Point Generation

The first design point generation algorithm which was developed for SAFE we have
called the backtracking design point generation algorithm. It uses a backtracking algo-
rithm with constraint propagation to build design points included in the experimental
design space.

This algorithm is best described recursively. The algorithm begins with a design
point without any levels assigned to factors. The next factor chosen to which to apply
the next level is the factor which has the fewest valid levels given the previous factor-

CHAPTER 6. LANGUAGES 45

level assignments. The algorithm picks one of these valid levels, applies it, and recurs
down to the next most constrained factor. The set of valid levels for all remaining
factors is updated based on the boolean expression object. The algorithm recurs down
until all factors have had levels assigned, at which point a valid design point has been
constructed. From there, the algorithm backtracks and chooses other level choices so
as to construct all of the valid design points in the experiment. Pseudocode for this
algorithm is found in Listing 6.6.

Require: The backtrack function is called initially with:
o cxperiment «— ().
e remaining as all factors in the simulation model.
e current < ().

e [evels as a mapping from each factor to all associated levels.

function BACKTRACK (experiment, remaining, current, levels)
if remaining = () then
add current to experiment
return experiment
else
nextFactor < most constrained factor in levels
for level € levels[nextFactor] do
current[next Factor] « level
remove nextFactor from remaining
newlevels «— updated levels for remaining factors
backtrack(experiment, remaining, current, newlevels)
add nextFactor to remaining
current[next Factor] <« null
end for
end if
end function

Listing 6.6: Pseudocode for the backtracking design point generation algorithm.

The benefit of this design point generation algorithm is that it only explores design
points which are included in the experimental design space. For experiments which
are a small subset of the full factorial design, this is particularly efficient. The price of
this time efficiency is memory space. The recursive nature of the algorithm, whether
it is implemented recursively or iteratively using a stack, takes additional memory.
The most memory is used in cases when the experiment is a large subset of the full

CHAPTER 6. LANGUAGES 46

factorial design.

6.5.2 Linear Design Point Generation

To address the weaknesses of the backtracking algorithm, we have developed an-
other design point generation algorithm we call the Linear Design Point Generation
algorithm. Instead of only considering valid design points the linear design point gen-
eration algorithm considers all design points in a full factorial design and evaluates
whether they are included in the actual experiment.

The linear design point generation algorithm iterates through all design points.
(This can be done efficiently using the inverse of the design point id function described
later in Section 8.3.) Each design point, design point, is evaluated using the boolean
expression object bool_exp by calling bool_exp.evaluate(design _point).

When the experimental design space is a large subset of the full factorial design,
there are relatively few design points considered which are not included in the experi-
ment. In this case, there is little overhead associated with iterating through all of the
possible design points. If instead the experiment is only a small fraction of the full
factorial design, then there is significant overhead iterating through the full factorial
design space. Another advantage of the linear design point generation algorithm is
that it requires constant space.

experiment «— ()
for designPoint in factorial Design do
if designPoint is valid then
add designPoint to experiment
end if
end for
return experiment

Listing 6.7: Pseudocode for the linear design point generation algorithm.

6.5.3 Design Point Construction

These two design point generation algorithms compute a set of design points encoded
as Python dictionaries where the factor is the key and the level is the value. Each of

CHAPTER 6. LANGUAGES 47

these dictionaries representing a design point must be encoded into a simulation model
which can be passed to the simulation client for execution. SAFE uses templates to
accomplish this task.

A template provides the structure of the simulation model, leaving placeholders
for specific factor’s levels to be inserted into the model. The most simple simulation
template only requires a direct string substitution to construct the model. Some
models require more structure, and structure which is dependent upon the levels in
the design point. This requires a more powerful template system. For this purpose,
SAFE uses the template engine Cheetah which is based in Python. An example of
a Cheetah template can be found in Appendix C. Cheetah allows for conditional
statements to be inserted into the template which can be executed to construct parts
of the simulation model. Furthermore, Cheetah can execute loops to generate parts
of models. Cheetah can, in fact, generate any text-based format and can therefore
generate any simulation model. [2]

Once the simulation model has been generated using the template engine, the
design point can be saved to the database. This allows results which are collected by
simulation clients to be linked to the appropriate design points. The design point is
then ready to be dispatched to the next available simulation client.

To speed up the startup time of the EEM, SAFE generates design points one at
a time, as needed, when requests are made for the next design point from simulation
clients. Design points are then generated one at a time, as needed. The design point
generator class is itself an iterator, and as such, the next design point can be generated
with a simple call to next (). By constructing the next design point on an as needed
basis, SAFE is able to accelerate the startup process, and accept incoming simulation
client connections for faster computation. This architecture can reduce the overall
time a simulation experiment takes to execute.

Chapter Summary

Libraries and utilities for validating, generating and parsing XML based languages
are ubiquitous across most modern programming languages. Languages based in XML
can be developed to describe input and output data necessary to conduct simulation
experiments. By building these language in XML, common tools can be adapted for
our uses, and different components of a larger project can easily be written in different

CHAPTER 6. LANGUAGES 48

languages, or be executed in different environments sharing only the specification for
the XML based language. We have developed languages based in XML which are
used to encode the experiment and its configuration to the EEM. These languages
can then be parsed to generate all of the design points in the experiment. Next,
Chapter 7 describes how these design points can be communicated to simulation
clients running on remote hosts.

49

Chapter 7

Inter-Process Communication

The architecture of SAFE defines many separate processes, many of which can run
on remote computers. While this architecture allows for many features and greater
flexibility, it requires careful attention to how these separate processes communicate.
In SAFE there are many types of inter-process communication (IPC) mecha-
nisms which are used for different applications. A broad overview of the types of IPC
mechanisms used in SAFE can be seen in Figure 7.1

The SAFE project provides MRIP functionality which requires communication
between simulations on networked machines and the central server. In SAFE, the
communication between the simulator itself and the EEM is broken into two sepa-
rate steps. The first step is to communicate results from the simulator itself to the
simulation client, and the second is to communicate the results from the simulation

client to the EEM.

7.1 IPC Mechanisms

The SAFE project is designed to be run on a UNIX platform. On such platforms there
are several different mechanisms available to communicate data from one process to
another. Each of these mechanisms has advantages and disadvantages for different
applications. In this section I provide a brief description of pipes and socket based
IPC mechanisms which are employed in SAFE as seen in Figure 7.1. There exist

CHAPTER 7. INTER-PROCESS COMMUNICATION

Design Point

Pipe

! [simulation
; Client ;

Transient
Detector

Transient
Detector

Run-Length
Detector

Pipe

! | simulation
; Client ;

TCP
Sockets

Host

Design Point

Pipe

! [simulation
; Client ;

TCP
Sockets

Experiment
Execution
Manager

J Pipes

Transient
Detector

Transient
Detector

Run-Length
Detector

SQL

Database

! | simulation
; Client ;

Pipe

50

Figure 7.1: Architecture of the framework with respect to inter-process communication.

CHAPTER 7. INTER-PROCESS COMMUNICATION 51

other IPC mechanisms such as fifos, UNIX sockets, shared memory, but these
mechanisms are not used in SAFE.

7.1.1 Pipes

One of the most simple forms of IPC available on UNIX based systems is called a
pipe. Pipes are implemented in the operating system itself, and therefore can only
be used for communication between processes on the same physical machine. The
operating system is able to synchronize the reading and writing from the pipe’s buffer
to ensure the consistency of the data. Pipes are also unidirectional, but two pipes, one
for reading and one for writing, allow for bidirectional communication. Pipes expose
data to the receiving process as a stream. [35]

Pipes are created by a single process which then calls fork() to spawn a child
process. The child process shares the open file table, and the thus file descriptor
of the pipe to the parent process is available. The parent and child processes can then
communicate on this pipe using the standard system calls read() and write().

7.1.2 Network Sockets

Pipes are a useful IPC mechanism, but they are restrictive in that they can only be
used between related processes on the same host. Computer networks have been built
to facilitate the passing of information from one computer to another. There are many
layers of complexity in the network stack, which handle sending the electrical signal
and routing the messages to the appropriate network node, but these technologies lie
outside of the scope of this thesis. These lower layers in the network stack allow for the
abstraction in the transport layer of end-to-end communication between nodes
on the network via what are called network sockets. [32]

Application developers can interact with these network sockets to communicate
with other processes on other computers. Two common transport protocols are used
with sockets: the User Datagram Protocol (UDP), and the Transmission Con-
trol Protocol (TCP). Since each of these protocols offers a different kind of com-
munication model, the specific needs of applications dictate which one is preferable.

UDP is a minimalist protocol in which data is encapsulated in discrete packets

CHAPTER 7. INTER-PROCESS COMMUNICATION 52

or datagrams. A UDP packet carries a few pieces of metadata in its header, including
the identification of source and destination ports to allow the multiplexing of packet
flows to different applications. The UDP protocol is connectionless because it does
not rely on the creation of a virtual circuit between sender and receiver before pack-
ets begin to flow. Additionally, UDP promises only a best-effort in packet delivery,
without hard guarantees of reliability. Finally, UDP is not order-preserving, that
is, packets can arrive at the destination in order different from that in which they
were sent. [32, 37|

On the other hand, TCP implements a channel which is both reliable and order
preserving. Even though TCP requires the creation of a virtual circuit from sender to
receiver, it provides the abstraction of a continuous stream of bytes, delivered reliably
and in-order [32, 37]. To provide this communication model, TCP incurs significant
overhead and therefore it is not always the best protocol for every application. Time-
sensitive applications, such as streaming audio or video, can tolerate packet loss much
better than it can tolerate higher end-to-end delays between sender and receiver; for
those applications UDP is a better choice. On the other hand, there exists another
class of applications which benefit from the communication model of TCP, which is
straightforward to use.

7.2 EEM < Simulation Client

The first IPC mechanism used in SAFE allows for the EEM to communicate with each
individual simulation client. To allow simulations to be distributed on local or remote
hosts connected by a network, a network based IPC mechanism must be employed.
This requires that the IPC mechanism chosen for this application be a network based
IPC mechanism. For this reason, a socket based IPC mechanism has been chosen for
the communication between the EEM and the simulation client.

Several types of messages must be exchanged by the EEM and the simulation
client; most of these are simulation results being reported. These are small messages
which contain an individual result, a double precision floating point number, and a
few pieces of metadata describing the result. These results reflect the execution of a
simulation run and they must be captured and stored for posterior analysis. So that
none of the results would go unrecorded due to packet loss between the simulation
client and the EEM, we elected to use TCP to interconnect the two processes.

CHAPTER 7. INTER-PROCESS COMMUNICATION 53

The communication between the EEM and the simulation client follows a protocol
with message types described as follows. Figure 7.2 illustrates how these message types
are used in the course of a simulation experiment.

e Register Message: Sent by the simulation client to the EEM when it first
connects. It provides information about the local simulation environment.

e Next Simulation Request: Sent by the simulation client to the EEM after the
simulation of a design point terminates, or immediately following a Register
message. Represents the simulation clients asking the EEM for a new design
point to run.

e Next Request Reply: Sent by the EEM to the simulation client as response to
a Next Simulation Request message. Carries an XML document describing
the simulation model for a design point. The simulation client uses the XML
document to setup the simulation run, which is then executed.

e Result: Sent by the simulation client to the EEM upon receipt of a result
from the simulator. This message carries a sample of a metric generated by
the simulator, which is used by detectors for transient and run-length and also
stored in the database along with all data pertaining to the same experiment.

e Finished: Sent by the EEM to every simulation client which has been selected
to collaborate in the simulation of a given design point. This message indicates
that, for this design point, enough samples of the results have been collected so
that the desired metric can be estimated within the user-specified confidence in-
terval. Upon receiving this message, the simulation client terminates the current
run and issues a Next Simulation Request.

e Terminate: Sent by the EEM to all simulation clients when all design points
for the experiment have been completed. Upon receiving this message, the sim-
ulation client processes themselves terminate.

7.3 Simulator < Simulation Client

The simulation client uses the information communicated from the EEM in the afore-
mentioned protocol to control the initialization and communication with the simulator

CHAPTER 7. INTER-PROCESS COMMUNICATION

Simulation
EEM Client

Register Message

A

Next Simulation Request

Next Simulation Reply (design point)

Y

Result

A

Result Simulation
of design point

A

Result

A

Next Simulation Request

A

Next Simulation Reply (design point)

P Result
: Simulation
- Result of design point
Finished o
P Next Simulation Request
Terminate Simulation Client

>0 terminates

Figure 7.2: Communication protocol used by EEM and simulation client.

CHAPTER 7. INTER-PROCESS COMMUNICATION 55

itself. The simulator and the simulation client are necessarily both run on the same
machine. This eliminates the need to use a network based communication mecha-
nism, but it does not rule out network based IPC mechanisms as a viable solution for
this communication channel. There are two primary applications for communication
between these two processes: communicating intermediate results from the simula-
tor to the simulation client, and informing the simulator to terminate gracefully at
the instruction of the EEM. For these two applications, I have chosen different IPC
mechanisms.

To decide which TPC mechanism to use to pass results, I conducted several infor-
mal tests. I found pipes to be an order of magnitude faster than socket-based IPC
mechanisms. The simulation client spawns a child process for the simulation itself, so
pipes can be used for this form of communication. For the simulation clients I have
developed, I have implemented the IPC between the simulation client and simulator
itself using pipes. While this is a fast and easy form of IPC, simulation clients for
other simulators could choose to use alternative IPC mechanisms. The simulation
specific details of this design are described in more detail in Chapter 9.

Most simulators are not designed to be actively listening for data coming from
external processes through pipes or other file descriptors. Consequently, it could be
challenging to integrate the communication from the simulation client to the sim-
ulation itself using pipes. The only type of information which the simulation client
needs to send to the simulator is a message to gracefully terminate the simulation. An
alternative to using pipes to communicate this one simple message is to instead use a
signal. The simulator executes the signal handler when the simulation client sends
the specific signal. This method terminates the execution of the simulation gracefully.

Using a combination of pipes and signals, SAFE can interoperate with many dif-
ferent simulators, particularly those which are open source and can be easily modified
for use with SAFE. For simulators in which the source code cannot be easily modified,
the simulation client must be developed to interact with the simulation to extract the
relevant information. In the worst case scenario, the simulation client cannot commu-
nicate directly with the simulator during its execution. In this case, the simulator can
write results to the file system and the simulation client can parse all of the results to
extract individual results to send to the EEM. This eliminates many of the benefits
of the MRIP architecture, but still allows the simulator to integrate with SAFE to
use all of its additional automation features.

CHAPTER 7. INTER-PROCESS COMMUNICATION 56

7.4 EEM < Transient and Run Length Detector

One of the plugins provided by SAFE allows for the computation of the transient
detection and the run length detection to be offloaded to an external process. By
offloading this computation to a separate process, a few things are gained. First,
the EEM is made more responsive because it spends less time blocking on statistical
calculations. Second, it allows SAFE to integrate with other external tools and utilities
which can be used to estimate the transient and the run-length.

Much like the communication between the simulation client and the simulator,
the communication between the EEM and the transient and run length detection
processes can be restricted to the local machine. Furthermore, the EEM is responsible
for spawning the detection processes, and therefore pipes are a natural IPC mechanism
to use to communicate results to these processes. Additionally, they are a fast IPC
mechanism.

The plugin which is responsible for interacting with the detection algorithm could
however choose to use a different IPC mechanism. For example, one could implement
a socket based solution and offload the computation of the transient and the run
length to a remote host. This type of solution could be explored further by users who
experience high EEM latency or find the process to be unresponsive running on a
single machine.

Chapter Summary

There are several types of IPC which can be used to coordinate and communicate be-
tween many components of SAFE. This chapter explores three main IPC mechanisms:
pipes, TCP sockets and UDP sockets. It is determined that a TCP based protocol is
the best solution to communicate between the EEM and the simulation client. Pipes
are then used to communicate both between the simulation client and the simulator,
as well as between the EEM and transient and run length detection processes. These
collected results which are communicated between the simulator, simulation client,
and the EEM are eventually stored as described next Chapter 8.

57

Chapter 8

Storing and Accessing Results

Chapters 5, 6 and 7 focused on the architecture of SAFE which allows for the design
and configuration of a simulation experiment, and later how the experiment is actually
executed across all of the components of the SAFE framework. This architecture exists
to collect data which can be stored and accessed for further analysis. This chapter
focuses on the design considerations associated with storing and accessing the type
and quantity of data collected during a large simulation experiment.

8.1 Databases

SAFE employs a Relational Database System (RDBS) to store and access all
of the simulation data, as well as any associated meta-data. Before explaining how
SAFE interacts with the database itself, it is best to provide a brief introduction to
relational databases.

8.1.1 Theory

A relational database is composed of a set of relations where a relation is defined as
a set of tuples over a fixed set of attributes. Each tuple represents a real-world object
that is described through a unique assignment of values on the attributes. Each rela-

CHAPTER 8. STORING AND ACCESSING RESULTS 58

tion has a key used to identify the row. Most often, relations are organized as tables,
where each tuple is stored in a row, and each column represents an attribute. [24]

For example, consider a table containing users for a web-based application. For
every user in the system, there is a row in the table. This row stores information such
as id, username, first, last, etc. My row in this database would be (1, bcw006,
Bryan, Ward). This row is a single element in the set of all rows in the table. For an
example of such a relation see Table 8.1b.

In larger, more complex systems, there are often many tables in the database.
There can be complex relationships between rows in different tables [16]. These rela-
tionships are encoded through foreign keys which are used to relate one tuple with
another. For an example of a simple relationship between two tables see Figures 8.1b
and 8.1c. In this example, the foreign key user_id is used to reference the Users
table from the Purchases table. In more sophisticated systems there can be tens
or hundreds of tables which are used to store different kinds of data and complex
relationships between such data.

UsersTransactions
id | username | first last price
1 | bew006 Bryan | Ward $10.00
2 | bew006 Bryan | Ward $20.00
3 | perrone Felipe Perrone

4 | awh009 Andrew | Hallagan | $30.00

(a) A database schema which has not been normalized.

Users Purchases
id | username | first last id | user_id | price
1 | bew006 Bryan | Ward 1 |1 $10.00
2 | perrone Felipe Perrone 2 |1 $20.00
3 | awh009 Andrew | Hallagan 3 13 $30.00
(b) An example relation which encodes users (c) An example table of sev-
in my research group. eral monetary purchases.

Figure 8.1: An example of database normalization. Redundant data in (a) can be extracted
into a separate table as seen in (b) and (c). Furthermore, the database can be
queried to JOIN the two tables to recover the data in the schema in (a).

CHAPTER 8. STORING AND ACCESSING RESULTS 59

A relational database schema is a formal description of the tables in the database.
Database schemas are designed to store the information of a specific application. Many
schemas however, require redundant data. This is problematic in that additional space
is required to store the table on the physical disk, but worse yet, updates to the table
must update all of the redundant data elements. The process of breaking such a
schema into separate tables so as to minimize redundancy is called normalization.
There exist several normal forms defined in normalization theory, which can be
used to encode many typical types of relationships between data elements. [24]

For example, the table in Figure 8.1a contains redundant data. There are two
rows for the user with username bcw006, one for each Purchase. If such a table were
updated to change this user’s username, this change would have to be applied to both
rows 1 and 2. This schema additionally requires more storage space because the user
information for bew006 is stored twice. The process of normalizing this database would
result in two separate tables as seen in Figures 8.1b and 8.1c. With this schema, a
user’s username can be updated, and it will automatically be applied to all purchases.

8.1.2 Database Management Systems

The mathematical theory of database organization has been implemented in many
Database Management Systems (DBMS). These systems facilitate all interac-
tions with the database. Popular Relational Database Systems (RDBS) include
the open source projects MySQL, PostgreSQL, and several commercial systems such
as Microsoft SQL Server, and Oracal Database. These systems provide many capa-
bilities above and beyond simply interfacing with data stored in relations.

One of the most important features of RDBS is the ability to interface with the
system using the standard Structured Query Language (SQL). This language al-
lows users and programs to create and interface with tables controlled by the DBMS.
SQL is a standard language which is implemented by all four of the previously men-
tioned RDBSs (with slight variations). A simple SQL query to find the row in the
Users table from for my user by my username bcw(006 can be seen in Listing 8.1.

SELECT * FROM users WHERE username = "bcw006";

Listing 8.1: A simple SQL SELECT statement used to query for a specific user in the Users
table described in Figure 8.1b.

CHAPTER 8. STORING AND ACCESSING RESULTS 60

The SQL language has many additional powerful query features. For example,
data can be queried from multiple tables as seen in Listing 8.2. Other features include
sub-SELECT statements, UNION statements and Common Table Expressions (CTE).
Details of such advanced features can be found in [16, 24] or standard texts specific
to particular database engines.

SELECT u.*, p.*
FROM users AS u
LEFT JOIN purchases AS p ON p.user_id = u.id

Listing 8.2: A database query which when executed on the tables in Figure 8.1b and 8.1c
would result in data formated as in Figure 8.1a.

DBMS provide a number of additional features which result in greater usability.
Many SQL based RDBS include permissions systems and allow different users to query
their contents. Furthermore, they allow for such users to connect to the database over
a network and query the database. This can be used to help applications scale in that
the database computations can be isolated on dedicated servers. Many enterprise
SQL databases such as MySQL allow a cluster of computers to act as a database for
applications with heavily database workloads.

Many DBMS also handle concurrency issues when multiple queries are simultane-
ously submitted to the database server. This allows multiple applications to interface
with the database simultaneously which can be important in many use cases. Fur-
thermore, an application can submit multiple queries to the database simultaneously,
and the database will handle the queries properly.

8.2 SAFE’s Database Schema

There are many data elements which must be stored in the SAFE database to allow for
all of the functionality and credibility that we desire from SAFE. All of the experiment
configuration information as well as the results are stored in the database such that
an independent third party could replicate all aspects of the experiment. The schema
used to store this information is illustrated in Figure 8.2.

Configurations

id
configuration

Descriptions
id

Experiments

CHAPTER 8. STORING AND ACCESSING RESULTS

id

DesignPoints

FactorsLevels

name

id

id

experiment_id

design_point_id

61

configurations_id

descriptions - design_point_identifier factor
template_id - -
— - simulation_xml level
descriptions_id = Results
Templates \ -
: : i
id Hosts Simulations i ___
- - simulation_id
template id id -
- -~ - — <+—— | timestamp
ip design_point_id -
- object
kernel host_id -
metric
value

Figure 8.2: SAFE database schema.

The contents of the tables shown in this schema are as follows:

e Configurations: This table stores the experiment configuration files.

e Descriptions: This table stores the contents of experiment description lan-
guages.

e Templates: This table stores the contents of the templates used to generate
the simulation model.

e Hosts: The hosts table is populated when a new simulation client registers as
an available simulation host. This table stores information about each host’s
local environment.

e Experiments: This table contains information about specific experiments. It
has foreign keys to Configurations, Descriptions, and Templates such that
these files can be used for multiple experiments without data duplication.

e DesignPoints: An experiment is by definition composed of a set of design
points. This table contains all of the design points, a unique design point_id
for each experiment described later in 8.3, and the XML model for the design
point.

e FactorsLevels: A design point can have many factors, each with of which must
be associated with a level. The FactorsLevels table stores these assignments.

CHAPTER 8. STORING AND ACCESSING RESULTS 62

e Simulations: For each design point in the experiment, many simulations are
executed. This association is modeled with a foreign key to the DesignPoints
table. Because each of these simulations are run on a single host, the Simulations
table has a foreign key to the hosts table to model this association.

e Results: Each observation of a metric is stored in the Results table as a
single row. For each result, we record the simulated timestamp of the result, the
simulated object for which the result was gathered (e.g. which network node
received a packet), the metric, and the value of that metric. Each result is then
associated with the Simulation it was gathered from using the simulation_id
foreign key.

The most important result of this database schema is its ability to store and access
different types of simulation models. The SWAN-Tools project described in Section
4.4 hard-coded a single simulation model into both the database schema and the user
interface. By normalizing the database schema and separating the factors and levels
from the design points table, SAFE can be used with many simulation models.

8.3 Querying For Results

While the aforementioned database schema provides great flexibility in storing dif-
ferent types of models, it can also make querying for specific design points and their
associated results challenging. The primary challenge is that for each factor for which
a specific level is chosen, the FactorsLevels table must be JOINed. An example of
such a query can be found in Listing 8.3. Each JOIN requires O(n) time, and the
product of all of these O(n?) JOINs where n is the number of rows and j is the to-
tal number of joins. Thus this query can be slow when there are many factors and
levels which are specified. Unfortunately, this is a common use case when analyzing
simulation results.

One solution to this problem which was temporarily considered was to search the
XML of the simulation model stored in DesignPoints table for specific factor’s level
values. While this approach does not require the query to JOIN the FactorsLevels
table n times, it requires a full text search of every design point’s XML in the ex-
periment. Furthermore, the database engine cannot apply indices to accelerate such
queries.

CHAPTER 8. STORING AND ACCESSING RESULTS 63

SELECT dp.*, r.x*

FROM DesignPoints AS dp

LEFT JOIN Simulations AS s ON (s.design_point_id = dp.id)
LEFT JOIN Results AS r ON (s.id = r.simulation_id)

LEFT JOIN FactorsLevels AS f1 ON (dp.id = f1.design_point_id)
LEFT JOIN FactorsLevels AS f2 ON (dp.id = f2.design_point_id)

LEFT JOIN FactorsLevels AS fn ON (dp.id = fn.design_point_id)
WHERE dp.experiment_id = 1234 /* Some arbitrary experiment’s id */
AND f1.factor = "param_1" /* Some arbitrary factor to filter by*/
AND f2.level = "123" /* Some arbitrary level value */

AND f2.factor = "param_2" /* Another arbitary factor */

AND f2.level = "456" /* Another arbitary level */

AND fn.factor = "param_n"
AND f2.level = "789";

Listing 8.3: An example of a query which returns results for a design point based on n
levels.

The solution which I have developed for querying for results builds upon many of
the ideas presented in the Design Point Generation Section, Section 6.5. The same
algorithms used to prune the full factorial design to generate the appropriate design
points can be applied to prune the full factorial design to find the specific design
points to investigate further. These same algorithms can therefore return a set of
design points for which to query the database for explicitly. One consequence of this
approach is that more computation is required of the EEM. The computation of the
specific design points in the result set therefore cannot be conducted by the database
engine.

For this approach to be efficient, a mechanism is required to query for a specific
design point. There is a unique id associated with each row in the database, but these
values are determined by the database engine. The DesignPoints table therefore has
another column which encodes a unique integer, the design point_id, within the
experiment which can be calculated based on the factors and levels in a specific
design point. This integer can be computed for each design point in the set of design
points for which to query. An efficient database query can then be easily constructed
which returns the proper design points.

CHAPTER 8. STORING AND ACCESSING RESULTS 64

To describe further how the design point_id is computed, it is necessary to
establish a solid mathematical framework within which to work. Let Fi,..., F, be
factors of the model. Each of these factors has a set of levels denoted Lq,...,L,.
Then the set of design points simulated, D, is a subset of the cross product of the
levels, D C Lp, X ... X Lp,. Notationally, let d € D be a design point, and d; be the
level associated with factor 7 in the design point. The design point_id is then the
product of an injective function f: Lp X ... x Lp, — N.

To construct this function, first we define the bijective function g; : Ly, — Nojr,. |
which maps a level to the index of the level in the sorted list of levels. This function
is then used in the definition of f:

n

Fd)y=>"(g(di) T T 1Zxl)

=1

As it turns out, this function is bijective. The inverse of this function can be applied
in the design point generation algorithm described in Section 6.5.2 to iterate through
all design points easily.

This function is best understood through an example. In a 2* factorial design there
are 16 design points. The function f assigns an ordering to these design points. A
visual representation of how f orders design points can be seen in Figure 8.3. In this
figure, each cell represents a design point with a unique level assignment for each of
Factor 1 and Factor 2.

When the design points are generated and stored in the database, this function is
computed and also stored. The database is setup with an index on this column, and
the constraint that the unique id for the table and this design point_id in tandem
are unique. This allows for quick lookups. When querying for results, the design points
of interest can be computed from L4, ..., L,, and then f can be applied to each tuple
d. The database engine can then easily search for each of these design points.

Factor 1
|1 2 3 4
5516|783
SS9 [10/11 12
~I13714 | 15 | 16

Figure 8.3: A visual explanation of how the function f maps design points down to N.

CHAPTER 8. STORING AND ACCESSING RESULTS 65

Chapter Summary

This chapter briefly provides a background of relational databases, and demonstrates
how they can be used. These relational databases offer many capabilities which make
them very useful for storing simulation results. For these reasons, SAFE uses a re-
lational database to store experiment configurations along with simulation results.
This chapter also describes SAFE’s database schema, as well as how the database
can be queried to access the simulation results. Next, in Part III, we see how the
SAFE architecture developed in Part II can be used in two case studies.

Part 111

Applications and Conclusions

66

67

Chapter 9

Applications

Integrating SAFE with a specific simulator requires the development of a simula-
tion client. As previously mentioned in Section 5.2, the simulation client has several
important tasks which it must carry out to manage a simulation properly:

e Communicate with the EEM.

Setup the simulation.

Start simulator.

Listen for results from the simulator.

Terminate the simulator.

Depending upon the simulator being used, these tasks can be simple or complex. This
chapter discusses how a simulation client can be developed to service two different
simulators.

9.1 Case Study: A Custom Simulator

I developed a simple polling queues simulator which I then used to test of archi-
tecture and basic implementation of SAFE. Polling queues are a classic problem in

CHAPTER 9. APPLICATIONS 68

queuing theory. In such a system, there is a single server, and multiple queues each
waiting to be processed by the server. There are many policies which can be used to
determine which queue to service next, and for how long. There are many variations
on this problem as well, such as queues of bounded or unbounded length, jobs or
queues with different priorities, etc. [36]. Furthermore, different policies can be used
in different applications to achieve different goals. For a visual depiction of a polling
queues system, see Figure 9.1. Many polling queue configurations can be analyzed
analytically, but this becomes increasingly difficult for complex service policies. Con-
sequently, discrete-event simulation can be employed to more easily understand the
behavior of such systems. I designed a simulator to integrate easily with SAFE, and
consequently, the job of the simulation client is rather simple.

Similar to the EEM, the simulation client I developed for this language was written
in Python [5] using the asynchronous, event-driven framework, Twisted [8] framework.
This allowed for code reuse between the EEM and the simulation client in a few python
modules. Additionally, it allows the simulation client to easily multiplex and respond
to data from both the simulator and the EEM. The simulation client could have been
developed in another language such as C, but Python and Twisted allowed for a faster
development cycle.

Queue 1
A —_—

Queue 2
A —_—
A —_—

Queue n

Figure 9.1: An example of a polling queues system.

The simulation client is responsible for configuring the simulator to run the de-
sired design point. I designed my simulator to be configured through an XML based
language. An example of this language can be found in Appendix A. This design

CHAPTER 9. APPLICATIONS 69

allows for the EEM to generate the XML model for the simulation, and pass it to the
simulation client which can run it directly.

The simulation client must next spawn the simulation itself. In Twisted there is a
method called spawnProcess () which is a wrapper around the necessary system calls
to spawn a new process. This can be used to spawn a new process from an executable
in the file system, such as the simulator. At a lower level in the Twisted library, this
is implemented by calling fork() to spawn the new process, and exec() to replace
the process with the simulator. Once this has been done, the simulator can begin
execution and the simulation client returns to it’s select () loop to wait for the next
event to occur.

The spawnProcess() method also creates three standard pipes to the simula-
tion client: Standard Input (STDIN), Standard Output (STDOUT), and Standard Error
(STDERR). In the spawnProcess () library, this is done with the system calls pipe () to
create these pipes and dup() to move them to file descriptors 0, 1 and 2 respectively.
Either STDOUT or STDERR would be sufficient to pass results from the simulator to the
simulation client; however, I created a new pipe on file descriptor 3 specifically for
results from the simulator such that logging messages do not get misinterpreted as
results. The simulator can then open this pipe using fdopen(3) and write to it with
write(Q).

The simulation client can then communicate with the simulator itself over these
pipes. A callback in the simulation client is installed to run whenever there is data
ready to be read from the pipes from the simulator. In the simulator, when a job is
serviced, its total wait time is computed, and that statistic is written to the pipe on
file descriptor 3. The simulation client can then send that result to the EEM using a
Result message.

The last responsibility of the simulation client is to properly terminate the simula-
tion when notified by the EEM. This is done by sending a signal, which the simulator
can handle to terminate the simulation. In Twisted, this can be easily done by calling
sendSignal() on the object abstracting the simulator process.

The simulation client developed to integrate with my simple polling queues sim-
ulator demonstrates the basic functionalities that are required of a simulation client.
Furthermore, when the simulator can be easily controlled by an external process than
a simulation client can be developed relatively easily to allow the simulator to be
used with SAFE. The development of a simulation client is made easier for future
simulators in that they can follow the example set forward by this simulation client

CHAPTER 9. APPLICATIONS 70

implementation.

9.2 Case Study: ns-3

The previous simulation client demonstrates the simplest case of how a simulator can
be integrated with SAFE. However, not all discrete-event simulation engines can be
integrated this easily though with SAFE. This section describes the basics of how one
uses the popular network simulator ns-3 and the challenges associated with building
a compatible simulation client.

9.2.1 ns-3 Architecture

Simulation models in ns-3 are encoded in C++ or Python scripts. These scripts rely
heavily on the ns-3 core libraries and allow the simulation user to model the system at
a high level. On the other hand, a simulation model cannot be encoded in a text-based
configuration file which the simulator accepts as input.

There is an additional module in ns-3 called ConfigStore which allows a static
ns-3 simulation model to be configured through an XML based language. For ex-
ample, the frequency at which wireless network nodes operate may be able to be
configured through ConfigStore, but not the number of nodes in the simulation. For
experiments which only vary attributes to simulation objects such as wireless fre-
quency, ConfigStore can be used in conjunction with a constant simulation model.
When the experiment must vary the simulation model, such as the number of nodes
in the simulation, a new simulation script must be generated for each design point. At
the Fall 2010 ns-3 developer’s meeting [11], there was discussion of possibly extending
ConfigStore such that ns-3 models could be described in XML.

Another feature of ns-3 is that most tasks are executed using a software system
called waf [10], which claims to be similar to automake [1]. This helps the user in
compiling and running simulation scripts in the right environment. To an automation
tool like SAFE, this adds an additional level of complexity in that waf spawns a new
process for the simulation process itself.

Most ns-3 users gather statistics from simulations by processing packet traces

CHAPTER 9. APPLICATIONS 71

which the simulator saves after execution. Another project under development, called
the Data Collection Framework (DCF), funded under the same NSF grant as SAFE
[20] seeks to ease the process of collecting data and statistics from within ns-3 simu-
lation. The DCF should ease the process of gathering statistics from ns-3.

9.2.2 ns-3 Simulation Client

The ns-8 simulation client receives the simulation model from the EEM just as the
previous simulation client does. The challenge with ns-3 is that the simulator cannot
always be configured through XML. This introduces two use cases, one in which the
ns-3 simulation model must be generated in C++ or Python, and another in which
the simulation can be configured using XML and ConfigStore. If the only levels being
varied in the simulation model are attributes to different objects in the simulation
(e.g. bandwidth) then the XML model generated by the EEM can simply be fed into
ConfigStore and executed. In cases in which this is not sufficient, a C++ or Python
based simulation script can be generated from a template and executed [19].

The ns-8 simulation is spawned similarly to my previous simulator using the
spawnProcess () method. The difference between the two simulators is that in ns-
JIspawnProcess () is called on waf which in turn spawns ns-3. Because ns-3 is a child
process of waf, it shares the open file table with waf, and thus has access to the same
pipes from the simulation client. This allows statistics to be computed, particularly
in the DCF, and written to the pipe on file descriptor 3. The DCF will also provide
mechanisms to tag results for different metrics, which will be sent along with the
result to the EEM for storage in the database.

The last complication of using SAFE with ns-% is that calling signalProcess()
sends a signal to the waf process, not the simulator itself. The simulation client must
therefore terminate not only the waf process, but also all child processes of waf. Once
all of these processes have been terminated, the simulation client can request the next
simulation.

CHAPTER 9. APPLICATIONS 72

Chapter Summary

This chapter discusses how SAFE can be used with two simulators. The first simulator
discussed is a polling queues simulator which I developed to easily integrate with
SAFE. The second simulator was ns-8 which posed several challenges to integrate
with SAFE. The investigation of these two cases demonstrates the considerations one
must make to integrate with SAFE. Furthermore, they demonstrate the flexibility of
the SAFE architecture in that it can be adapted for use with a few types of simulators.
The next chapter concludes my thesis and describes areas for future work.

73

Chapter 10

Conclusions & Future Work

The complexity of the execution of proper simulation methodology has led to an over-
all lack of credibility observed in recently published simulation articles. This problem
can be addressed through the automation of proper simulation workflow. SAFE builds
upon many of the features seen in previous automation tools to provide a framework
with which simulation users can conduct rigorous scientific simulation experiments.

Simulation automation enhances the usability of a simulator as well as the credi-
bility of the simulation results. Users can configure their simulation through the XML
based languages and execute their experiment with the assurance that the proper sim-
ulation workflow will be applied. The execution of the simulations themselves require
no user interaction. Researchers can therefore focus on their science instead of their
simulations.

SAFE’s extensible architecture loosely couples the EEM and the specifics of the
implementation of the simulator. SAFE can be made compatible with other discrete-
event simulators by customizing a simulation client to the needs of the specific simu-
lator. This gives SAFE a broad scope of application allowing simulation users in many
problem domains to reap the benefits of the framework. It is important to note that
SAFE cannot necessarily be integrated with all discrete-event simulators due to the
challenges associated with setting up a design point and collecting results program-
matically. For example, some proprietary simulators may be configured exclusively
through a Graphical User Interface (GUI) which cannot be easily controlled in the
simulation client. Simulators which can be easily configured through software using,
for example, a configuration file can be more easily integrated with SAFE. Finally,

CHAPTER 10. CONCLUSIONS & FUTURE WORK 74

if a simulator is designed from the ground up to be used with SAFE, the challenges
associated with integrating with SAFE can be minimized as seen in Section 9.1.

SAFE has been released as open source software under a General Public License
(GPL), and it will be packaged with ns-3 in future releases as part of the work con-
ducted under Dr. Perrone’s recent NSF grant [20]. This will give the project visibility
to ns-3 users around the world and allow for the continued development of the soft-
ware. Additionally, this visibility will hopefully promote the use of my framework
with other simulators.

My work on SAFE focuses primarily on its architecture and the execution of sim-
ulation experiments. This work provides a framework upon which many new features
and capabilities can be built. The follow are a few proposals for future research.

The user interfaces currently provided by SAFE demonstrate the possibilities of
the architecture and the project, though they are rather simplistic. Future work could
be done to enhance the usability of these user interfaces, or expose new features of
the framework through these interfaces. For example, the web manager could be
extended to provide more sophisticated analysis tools. Another project could be to
develop graphical user interfaces to help novice or intermediate users design their
simulation experiments without needing to write XML.

For the entirety of this thesis, it has been assumed that individual simulation
runs are run on a single processor. Many simulators, however, such as SWAN and
ns-3 can be run in parallel using MPI. An interesting area of future research is to
develop algorithms to determine how many of the available processors on a machine
should be employed per simulation run. For example, if a system has eight cores, it
can run eight simultaneous simulations, or it can run a single simulation across all
eight processing cores. A future area of research could investigate how to allocate
computational resources either by the EEM or the simulation client to speed up the
simulation experiment.

SAFE’s EEM is currently only capable of managing a single simulation at a time.
There are many applications in which it could be useful for the EEM to manage
multiple experiments. For example, in the classroom it could be useful for a professor
to setup a single EEM and allow students to create and execute their own simula-
tion experiments. This introduces additional complexity in the EEM to determine
which simulation in which experiment to dispatch. There could be many algorithms
to determine how and when to dispatch design points to simulation clients to achieve
better performance.

CHAPTER 10. CONCLUSIONS & FUTURE WORK 75

An interesting application of this functionality is the classroom. A single EEM
could be run by an instructor and every student could be allowed to create their own
experiments. In an educational setting this streamlined workflow can make simulation
more accessible particularly in an undergraduate course. Furthermore, the computa-
tional resources available for running simulations could be more evenly distributed
by the EEM to students in the course.

As the SAFE project evolves, I expect that new applications will spur the devel-
opment of additional plugins so that the framework’s functionalities are expanded
to meet the needs of its users. This will allow SAFE to facilitate scientific achieve-
ments, in addition to being the subject of future scientific advancements in simulation
automation, credibility and usability.

76

References

[10]

[11]

[12]

Automake. Available at <http://www.gnu.org/software/automake/> [Ac-
cessed April 8, 2011].

Cheetah - the Python-powered template engine. Available at
<http://www.cheetahtemplate.org> [Accessed March 29, 2011].
MATLAB - the language of technical computing. Available at

<http://www.mathworks.com/products/matlab/> [Accessed April 17, 2011].

GNU octave. Available at <http://www.gnu.org/software/octave/> [Ac-
cessed April 17, 2011].

Python. Available at <http://python.org> [Accessed September 1, 2010].

The R project for statistical computing. Available at
<http://www.r-project.org/> [Accessed April 17, 2011].

SciPy: Scientfic tools for Python. Available at <http://www.scipy.org/> [Ac-
cessed April 17, 2011].

Twisted. Available at <http://twistedmatrix.com/> [Accessed April 8, 2011].

XML Technologies, World Wide Web Consortium. Available at
<http://www.w3.org/standards/xml/> [Accessed April 17, 2011].

waf: The meta build system. Available at <http://code.google.com/p/waf/>
[Accessed April 8, 2011].

ns-8 developers meeting, November 2010. Washington D.C., U.S.A.

Matteo Maria Andreozzi, Giovanni Stea, and Carlo Vallati. A framework for

large-scale simulations and output result analysis with ns-2. In Proc. of the 2nd
Intl. Conf. on Simulation Tools and Techniques (SIMUTools '09), 2009.

http://www.gnu.org/software/automake/
http://www.cheetahtemplate.org
http://www.mathworks.com/products/matlab/
http://www.gnu.org/software/octave/
http://python.org
http://www.r-project.org/
http://www.scipy.org/
http://twistedmatrix.com/
http://www.w3.org/standards/xml/
http://code.google.com/p/waf/

REFERENCES 7

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Jerry Banks, John S. Carson, Barry L. Nelson, and David M. Nicol. Discrete-
Fvent System Simulation. Prentice Hall, fourth edition, 2004.

Adam L. Beberg, Daniel L. Ensign, Guha Jayachandran, Siraj Khaliq, and Vi-
jay S. Pande. Folding@Home: Lessons from eight years of volunteer distributed
computing. In Proceedings of the 2009 IEEFE International Symposium on Paral-
lelés Distributed Processing, pages 1-8, Washington, DC, USA, 2009. IEEE Com-
puter Society. ISBN 978-1-4244-3751-1. doi: 10.1109/TPDPS.2009.5160922. URL
http://portal.acm.org/citation.cfm?id=1586640.1587707.

Claudio Cicconetti, Enzo Mingozzi, and Giovanni Stea. An integrated frame-
work for enabling effective data collection and statistical analysis with ns-2. In
Proceedings of the 2006 workshop on ns-2: the IP network simulator, WNS2 ’06,
2006.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems.
Addison Wesley, fifth edition, March 2006.

Roy Thomas Fielding. Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, University of California, Irvine, 2000.

Richard Fujimoto and David Nicol. State of the art in parallel simulation. In
Proceedings of the 24th Winter Simulation Conference, WSC 92, pages 246254,
New York, NY, USA, 1992. ACM. ISBN 0-7803-0798-4.

Andrew H. Hallagan. The design of an XML-based model description language
for wireless ad-hoc networks simulations. Undergraduate Honors Thesis, Bucknell
University, Lewisburg, PA, 2011.

Thomas Henderson, L. Felipe Perrone, and George Ri-
ley. Frameworks for ns-3, 2010. Available at
<http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0958142>
[Accessed September 1, 2010].

John L. Hennessy and David A. Patterson. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann, 4th edition, 2006.

J. Himmelspach, R. Ewald, and A.M. Uhrmacher. In Proceedings of the 40th
Winter Simulation Conference.

Christopher J. Kenna. An experiment design framework for the Simulator of
Wireless Ad Hoc Networks. Undergraduate Honors Thesis, Bucknell University,
Lewisburg, PA, 2008.

http://portal.acm.org/citation.cfm?id=1586640.1587707
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0958142

REFERENCES 78

[24]

[25]

[20]

[27]

28]

[29]

[32]

[33]

[34]

Michael Kifer, Arthur Bernstein, and Philip M. Lewis. Database Systems: An
Application-Oriented Approach. Addison Wesley, 2nd edition, March 2005.

Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. MANET simulation
studies: the incredibles. SIGMOBILE Mob. Comput. Commun. Rev., 9(4):50-61,
2005.

Averill M. Law. Simulation Modeling and Analysis. McGraw-Hill, 3rd edition,
2000.

S. Leye, J. Himmelspach, M. Jeschke, R. Ewald, and A.M. Uhrmacher. A grid-
inspired mechanism for coarse-grained experiment execution. In Distributed Sim-
ulation and Real-Time Applications, 2008. DS-RT 2008. 12th IEEE/ACM Inter-
national Symposium on, pages 7 —16, oct. 2008. doi: 10.1109/DS-RT.2008.33.

Krzysztof Pawlikowski. Akaroa2: Exploiting network computing by distributing
stochastic simulation. In Proc. of the 1999 European Simulation Multiconference,
pages 175-181, Warsaw, Poland, 1999.

Krzysztof Pawlikowski. Do not trust all simulation studies of telecommunication
networks. In Proceedings of the International Conference on Information Net-
working, Networking Technologies for Enhanced Internet Services, pages 899—
908, 2003.

L. Felipe Perrone, Claudio Cicconetti, Giovanni Stea, and Bryan C. Ward. On
the automation of computer network simulators. In Proceedings of the 2nd In-
ternational Conference on Simulation Tools and Techniques.

L.F. Perrone, C.J. Kenna, and B.C. Ward. Enhancing the credibility of wireless
network simulations with experiment automation. In Proc. of the 2008 IEEE In-

ternational Conference on Wireless €9 Mobile Computing, Networking and Com-
munications, WiMob ’08), pages 631-637, 2008.

Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach.
Morgan Kaufmann, 3rd edition, 2003.

Dragan Savi¢, Matevz Pustisek, and Francesco Potorti. A tool for packaging and
exchanging simulation results. In Proc. of the First International Conference
on Performance Fvaluation Methodologies and Tools, VALUETOOLS ’06, Pisa,
Italy, 2006. ACM.

Douglas C. Schmidt. Reactor: an object behavioral pattern for concurrent
event demultiplering and event handler dispatching, pages 529-545. ACM

REFERENCES 79

Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995. ISBN 0-201-
60734-4. URL http://portal.acm.org/citation.cfm?id=218662.218705.

[35] Abraham Silverschatz, Peter B. Galvin, and Greg Gagne. Operating System
Concepts with Java. Wiley, 7th edition, 2006.

[36] Hideaki Takagi. Queuing analysis of polling models. ACM Comput. Surv., 20:
5-28, March 1988. ISSN 0360-0300.

[37] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, fourth edition, 2002.

http://portal.acm.org/citation.cfm?id=218662.218705

Part 1V

Appendices

30

Appendix A

Polling Queues Example XML
Configuration

<simulation>
<manager>
<seed>1027</seed>
<transient>10</transient>
<termination>
<time>100</time>
<response>2</response>
<min_samples>20</min_samples>
</termination>
</manager>
<server>
<service>
<random_variable>
<distribution>gauss</distribution>
<mean>5</mean>
<stdev>1</stdev>
</random_variable>
</service>
<switch_queue>
<random_variable>
<distribution>gauss</distribution>
<mean>1</mean>

81

APPENDIX A. POLLING QUEUES EXAMPLE XML CONFIGURATION 82

<stdev>0.1</stdev>
</random_variable>
</switch_queue>
<next_job_time>
<random_variable>
<distribution>gauss</distribution>
<mean>1</mean>
<stdev>0.5</stdev>
</random_variable>
</next_job_time>
<policy><model>longest</model></policy>
</server>
<queues>
<count>5</count>
<iat>
<random_variable>
<distribution>exponential</distribution>
<lambda>0.166666</lambda>
</random_variable>
</iat>
<length>10</length>
</queues>
</simulation>

83

Appendix B

Example Experiment
Configuration File

<?xml version="1.0" encoding="UTF-8"7>
<configuration xmlns="http://www.bucknell.edu/safe/exp">

<transient>
<module name="simple">
<metric>y</metric>
<metric>z</metric>
<samplelimit>234</samplelimit>
</module>
</transient>

<runlength>
<module name="simple">
<metric>y</metric>
<metric>z</metric>
<samplelimit>234</samplelimit>
</module>

<!-- possibly multiple module elements -->
<module name="simple">
<metric>y</metric>

APPENDIX B. EXAMPLE EXPERIMENT CONFIGURATION FILE

<metric>z</metric>
<samplelimit>234</samplelimit>
</module>
</runlength>

<parser>
<expparser>expparser.py</expparser>
<modelparser>modparse.py</modelparser>
</parser>

<options>
<simulator>ns3</simulator>
<version>3.9</version>
</options>

</configuration>

84

Appendix C

Example Cheetah Template

<simulation>
<manager>
<seed>1027</seed>
<transient>10</transient>
<termination>
<time>100</time>
<response>2</response>
<min_samples>20</min_samples>
</termination>
</manager>
<server>
<service>
<random_variable>
<distribution>gauss</distribution>
<mean>$service_mean</mean>
<stdev>$service_stder</stdev>
</random_variable>
</service>
<switch_queue>
<random_variable>
<distribution>gauss</distribution>
<mean>0</mean>
<stdev>0</stdev>
</random_variable>

APPENDIX C. EXAMPLE CHEETAH TEMPLATE

</switch_queue>
<next_job_time>
<random_variable>
<distribution>gauss</distribution>
<mean>2</mean>
<stdev>0.5</stdev>
</random_variable>
</next_job_time>
<policy>
<model>longest</model>
</policy>
</server>
<queues>
<count>$queue_counts</count>
<iat>
<random_variable>
<distribution>exponential</distribution>
<lambda>0.166666</lambda>
</random_variable>
</iat>
<length>$queue_length</length>
</queues>
</simulation>

86

	Abstract
	I Introduction and Background
	Introduction
	Modeling
	Computer Simulation
	Discrete-Event Simulation
	Simulation Workflow
	Common Problems in Simulation Studies
	Enhancing Usability and Credibility

	Design of Experiments
	2k Factorial Experimental Design
	mk Factorial Design
	mk-p Fractional Factorial Design
	Latin Hypercube and Orthogonal Sampling

	Parallel Simulation Techniques
	Fine-Grained Parallelism
	Coarse-Grained Parallelism
	Multiple Replications in Parallel

	Previous Automation Tools
	CostGlue
	ns2measure & ANSWER
	Akaroa
	SWAN-Tools
	James II
	Lessons Learned

	II SAFE
	Architecture
	The Experiment Execution Manager
	Asynchronous / Event-Driven Architecture
	Dispatching Design Points
	Web Manager

	simulation client

	Languages
	XML Technologies
	Experiment Configuration
	Experiment Description Language
	Boolean Expression Objects
	Design Point Generation
	Backtracking Design Point Generation
	Linear Design Point Generation
	Design Point Construction

	Inter-Process Communication
	IPC Mechanisms
	Pipes
	Network Sockets

	EEM Simulation Client
	Simulator Simulation Client
	EEM Transient and Run Length Detector

	Storing and Accessing Results
	Databases
	Theory
	Database Management Systems

	SAFE's Database Schema
	Querying For Results

	III Applications and Conclusions
	Applications
	Case Study: A Custom Simulator
	Case Study: ns-3
	ns-3 Architecture
	ns-3 Simulation Client

	Conclusions & Future Work

	IV Appendices
	Polling Queues Example XML Configuration
	Example Experiment Configuration File
	Example Cheetah Template

