
An Investigation of Policies for Caching Radio Propagation Calculations in
the Simulation of Wireless Networks

Progress Report

Michael Dippery
mdippery@bucknell.edu

Luiz Felipe Perrone (Faculty Mentor)

September 1, 2007

This past summer, I worked with Professor Per-
rone on his wireless networking simulator, SWAN.
The goal of my research was to investigate caching
policies for the radio propagation calculations in
SWAN, with the hopes of making the simulator oper-
ate more efficiently. My initial work grafted a cache
onto the the simulator. The cache stored frequently
used computations for quick lookup and retrieval.

Unfortunately, early tests showed that, while the
cache operated as designed, it did not increase the ef-
ficiency of SWAN, and in some cases even degraded it.
Analysis of test data showed that the speed gained in
looking up recently-used calculations was lost in the
actual lookup and retrieval of those calculations.

Fortunately, there were other avenues through
which we could approach the caching problem.
Schmitz and Wenig described a method of calculat-
ing radio propagation by using ray-tracing techniques
commonly found in computer graphics [4]. This tech-
nique measures the radio wave propagation from a
point Tx to another point Rx. These measurements
are collected in a file, which can then be retained
between simulation runs in files referred to as “prop-
agation maps”.

To enable this functionality, Schmitz and Wenig
used a data structure known as a k -dimensional bi-
nary search tree, or k -d tree for short [4]. This data
structure was first described by Jon Louis Bentley [1].
The primary benefit of using a k -d tree is that it has
excellent support for finding nearest neighbors; given
an arbitrary point, the k -d tree is uniquely suited
to finding the nearest data points to that arbitrary
point.

I contacted Schmitz and Wenig in an attempt to
obtain some sample ray-tracing data, as well as their
implementation of the k -d tree to use as a reference.
Unfortunately, they were uncooperative and uninter-
ested in a sharing of information, which forced me to

implement the k -d tree myself. This required read-
ing Bentley’s original paper on the subject, as well
as more papers by Bentley about the data structure
and nearest neighbor searches [3, 2]. The C++ im-
plementation of the k -d tree for SWAN took a few
weeks, but I completed that work by the end of July.

I then had to design a file format for the propa-
gation maps. I decided to use XML as the file for-
mat, since XML is useful in describing hierarchical
data, and can be parsed using open-source parsers.
I then developed a schema that ensures that XML-
based propagation map files are well-formed.

My next task was to integrate an XML parser into
SWAN. I used a C-based parser called Expat. Ex-
pat is released under the free-software MIT license,
and thus could be used in SWAN. Thanks to Ex-
pat, I did not have to write any XML parsing soft-
ware from scratch, and thus got this feature running
in SWAN in short order. Integrating Expat simply
required me to include the source code in SWAN’s,
and alter SWAN’s Makefile to build and link the Ex-
pat static library. Furthermore, the integration of an
XML parser into SWAN not only enables the use of
propagation maps, but may have benefits for other
parts of the simulator down the road, if other data is
defined using XML.

My final task was to assess the performance of my
new module that utilizes the ray-traced propagation
map, in order to assess whether or not the efficiency
of the module could be improved with another layer
of caching. To assess the performance, I used a tool
from Intel called “VTune” to track in which function
SWAN spent most of its execution time. I obtained
the shown below:

Method Runtime (%)
KDTree<T>::insertNode() ≈21%
KDTree<T>::findNearest() <2%1



The first method, insertNode(), is used when
building the tree from the XML file, and the second,
findNearest(), is used when retrieving data about
the propagation map from the k -d tree. The recov-
ery of data from the tree is thus fairly efficient, and
most likely, a cache would not be extremely benefi-
cial in the use of the propagation map. However, the
propagation map module itself is quite useful since it
allows a map to be created before execution time and
saved for future runs, and the data structure used to
model the map (viz. the k -d tree) is quite efficient in
its retrieval mechanism.

References

[1] Jon Louis Bentley. Multidimensional Binary
Search Trees Used for Associative Searching.

Communications of the ACM, 18(9):509–517,
September 1975.

[2] Jon Louis Bentley. K-d Trees for Semidynamic
Point Sets. Technical report, Association for
Computing Machinery (ACM), 1990.

[3] Jerome H. Friedman, Jon Louis Bentley, and
Raphael Ari Finkel. An Algorithm for Find-
ing Best Matches in Logarithmic Expected Time.
ACM Transactions on Mathematical Software,
3(3):209–226, September 1977.

[4] Arne Schmitz and Martin Wenig. The Effect of
the Radio Wave Propagation Model in Mobile Ad
Hoc Networks. In MSWiM ’06, pages 61–67. As-
sociation for Computing Machinery (ACM), Oc-
tober 2006.


