Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, 1. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

PERSPECTIVES ON LANGUAGES FOR SPECIFYING SIMULATION EXPERIMENTS

Johannes Schiitzel L. Felipe Perrone
Danhua Peng
Adelinde M. Uhrmacher Department of Computer Science
Bucknell University
Institute of Computer Science 1 Dent Drive
University of Rostock Lewisburg, PA 17837, USA

Albert-Einstein-Str. 22
18059 Rostock, GERMANY

ABSTRACT

Domain specific languages have been used in modeling and simulation as tools for model description. In
recent years, the efforts toward enabling simulation reproducibility have motivated the use of domain specific
languages also as the means with which to express experiment specifications. In simulation areas ranging
from computational biology to computer networks, the emerging trend is to treat the experimentation process
as a first class object. Domain specific languages serve to specify individual sub-tasks in this process,
such as configuration, observation, analysis, and evaluation of experimental results. Additionally, they can
be used in a broader scope, for instance, to describe formally the experiment’s goals. The research and
development of domain specific languages for experiment specification explores all of these and additional
possible applications. In this paper, we discuss various existing approaches for defining this type of domain
specific languages and present a critical analysis of our findings.

1 INTRODUCTION

The fidelity of computational models for simulation and the accuracy of the simulators that execute them
are determining factors for the quality of a simulation study. This motivates the rigorous practitioner to
make strong efforts to create models at the appropriate level of abstraction and faithfulness, to validate them
carefully, and to create corresponding verified computational implementations. Designing and executing
the simulation experiment, however, are tasks in the workflow of the simulation process that are just as
important and just as complex.

More often than not, the resulting product of the design of experiment (DOE) stage is a substantial
amount of descriptive data that is used to drive the execution of the simulation study. These data include
DOE entities such as factors (model parameters that are varied in the experiment design) and levels (specific
values assigned to factors in the execution of the experiment), the DOE methodology used, and possibly
resource identifiers for the computers involved in running the experiment, among other pieces of information.
The complete description of the experiment, however, comprises much more information than just the DOE
set up data. In general, it includes also a description of which data generated by the experiment are to be
recorded and possibly additional records on control actions related to execution.

Keeping an accurate and complete record of all the conditions that define the experiment is of utmost
importance to the reproducibility of the experiment. As observed by Pawlikowski, Jeong, and Lee (2002)
and Kurkowski, Camp, and Colagrosso (2005) in the scope of network simulation, and by Merali (2010)
and Joppa et al. (2013) in general scientific computing, having complete records of the experiment increases
the scientific rigor of the experiments and, consequently, also their credibility. In the Minimum Information
About a Simulation Experiment (MIASE) standard proposed by Koéhn and Novere (2008), the authors

Schiitzel, Peng, Perrone, and Uhrmacher

establish that in order for an experiment to be reproducible by third parties, the record of its execution must
contain: (1) the composition of the model that is simulated together with its configuration parameters, (2)
the simulation methods used (for instance, termination conditions), (3) the collection of tasks performed
in the experiment, and (4) the complete collection of outputs that is produced.

Rahmandad and Sterman (2012) identify distinct reporting requirements for model and simulation
experiment, which are divided into two levels: minimum and preferred. Their Minimum Model Reporting
Requirements (MMRR) include descriptions of the computational operations in the model, a list of model
default values and factors for experimentation, and information on the units of measure employed for all
the model’s default values and factors. The Preferred Model Reporting Requirements (PMRR) goes beyond
the MMRR to include also information on the sources of data for the model’s equations and algorithmic
rules, the definition of all variables used in the model, and source code for the model’s computational
implementation. The Minimum Simulation Reporting Requirements (MSRR) speaks to the experiment and
includes reporting of the simulation hardware and software platforms, the simulation algorithms used,
pre-processing used to generate input data for the experiment, all the levels applied to factors in the
simulation model, the number of iterations of the experiment, and all the post-processing performed on
the output data. The Preferred Simulation Reporting Requirements (PSRR) adds information on random
number generation and confidence levels used for estimation, among other requirements.

The evolution of these standards for enabling the reproducibility of simulation experiments sets a high
bar for reporting requirements. A considerably large volume of data interlinked by non-trivial relationships
is needed to provide a complete and accurate record of the simulation experiment. The challenges in dealing
with these complex and abundant data can be effectively addressed with the design and the use of special
purpose simulation experiment specification languages (ESL).

Although the concept of ESL is relatively new, modeling languages are well established in the field of
modeling and simulation dating back to the 60s, when GPSS, SIMSCRIPT, and SIMULA were notable
examples. Recent literature shows that this has been a very active area of research and development.
However, it is worth remarking that to a great extent, few of the efforts in language design have aimed to
reach comprehensively the goals enumerated in the MIASE, PMRR, and PSRR standards. In this paper, we
explore some interesting general approaches in ESL development and focus our attention on two languages
in which we have been directly involved.

2 TYPES OF MODELING AND SIMULATION SUPPORT LANGUAGES
2.1 Workflow Languages

Rigorous simulation studies follow a general sequence of actions that is well established and broadly known
(Law 2007, Sargent 2013). There has been, however, a recent paradigm shift in understanding the modeling
and simulation processes as just another incarnation of scientific workflows, which is opportune. With the
fast evolution of computer support tools for empirical research in natural sciences (Altintas et al. 2003), the
modeling and simulation community is now able to capitalize on the lessons learned in a related field. The
use of workflow management systems in the modeling and simulation life-cycle enables a no-compromise,
sensible balance between supporting the user in creating rigorous experiments and creating simulation
systems that can be easily adapted to different scenarios. The workflow system can support the generation,
the documentation, and the reproduction of simulation experiments.

With the use of workflows, the process of experimentation can be built into the tools by the system
designer, as in (Reiter et al. 2012), or exposed to the simulationist as a series of templates to be completed,
as in (Rybacki et al. 2012). Other benefits, as shown by Rybacki et al. (2014), may include the interweaving
of modeling and experiment execution supported by an artifact-based approach and the ability to apply
constraints to guide the experimental process.

There exist several established languages to define the structure of workflows. Some of these have
a particular focus on business processes, such as BPEL/BPMN (Weidlich et al. 2008). Others were

Schiitzel, Peng, Perrone, and Uhrmacher

created to support general scientific processes, such as Karajan (von Laszewski et al. 2006). In comparison,
established domain-specific languages (DLSs) for experimenting with formal models (and possibly generating
the corresponding workflows) appear still missing.

2.2 Domain-Specific Languages

A domain-specific language (DSL) is a programming language that is tailored specifically for an application
domain. According to van Deursen, Klint, and Visser (2000), the DSL “offers, through appropriate notations
and abstractions, expressive power focused on, and usually restricted to, a particular problem domain.”
There are two basic types of DSLs: internally defined (or embedded) and externally defined. The internally
defined languages are implemented using constructs of a general-purpose programming language, which
is called its host language. For this reason, programmers who are already proficient in the host language
will likely find this type of DSL easy to learn. Another benefit is that they require minimal implementation
effort on the language designer. Most importantly, internally defined domain-specific languages can easily
be extended by users. In contrast, externally defined languages give their designer complete freedom to
construct it, even though they require new interpreters or compilers. Their major advantage is that since
they can be designed from the ground up, they may be more direct, compact and expressive, since they are
not encumbered by any host language. It is acknowledged that the directness and compactness of externally
defined DSLs can also make it easier to learn. Although most DSLs used in modeling and simulation can
be classified as externally defined, embedded DSLs for this purpose also exist (Miller et al. 2010).

2.3 Languages to Instrument Data Collection

If all the model state trajectories of all simulation runs in an experiment were to be recorded, the volume
of data accumulated could easily become overwhelming. For this reason, it is important to consider
strategies to reduce the volume of data. One way to achieve this goal is through targeted data extraction,
which is achieved by instrumenting the model according to the experiment’s goals defined by the user.
Many modeling and simulation software products offer mechanisms for specifying which data is to be
observed. The approaches we have identified include visual mechanisms, that is, selecting variables in a
GUI, extensions to the model description, and instrumenting observation via coding. In OSIF (Ribault et al.
2010), for example, support for aspect-oriented programming in the host language allows the weaving of
observation code into the models’ implementations. In contrast, Helms et al. (2012) present an external
domain-specific instrumentation language for the modeling language ML-Rules. What these two approaches
have in common is that they emphasize the importance of treating observation and instrumentation separately
from modeling, as a first class abstraction in the experimental process.

Within this context of separation between modeling and data collection code, the design goals of an
instrumentation language for data collection include the following. First, for the sake of effective data
analysis, there must be support for addressing specific parts, that is targets, within the model. Second,
there must be support for the application of functions to individual entities and/or groups of entities within
the model so that higher-level information such as metadata can be obtained and aggregated. Finally, there
must be support for the collection of data during specific instants and periods of simulation time, as well
as in specific phases of the state-space of the experiment.

Target Addressing: In order to collect data about a given model’s state, one needs to be able to identify or
to address the entities within the model that contain the data of interest. In dealing with structured models
that comprise entities characterized by attributes, addressing strategies may consider conditions on the
entity’s position within the structure, conditions on the values of attributes, conditions on a broader context,
or combinations of the aforementioned. The actual structure of the model determines what precisely needs
to be expressed in terms of structure-based and context-based addressing. In the following, we discuss
spatial structures and hierarchical structures.

Schiitzel, Peng, Perrone, and Uhrmacher

When dealing with entities in 2D or 3D space, as in an ML-Space model (Bittig et al. 2011), one might
address: areas or volumes of interest (Fig. 1a), entities identified by constraints on attributes (Fig. 1b), or
entities identified by conditions that constrain the context (Fig. 1c). How to address targets depends largely
on the spatial modeling language, whether space is discretized or continuous, and whether or not excluded
volumes and/or nesting are considered (Bittig and Uhrmacher 2010).

A 1

\\Z 7

(a) Position-based.

-

(b) Attribute-based.

"./ N Entjties
/ ‘ 7 Area o with
///// of in- Entities . =6 entities
; T terest with */ within
: I bindings ~ r=10p

-

(c) Context-based.

Figure 1: Addressing of entities in spatial models.

In models with a hierarchical structure, such as those in ML-Rules (Maus et al. 2011), DEVS (Zeigler
1984), and ns-3 (Riley and Henderson 2013), one might want to address entities by paths within a name
space. Addressing schemes may support the use of constraints on attributes and possibly also wildcards on
path elements, an approach similar to that of the XPath language for querying XML documents (W3C 1999).
XPath allows one to specify paths, where at each hierarchy level, the set of selected nodes can be constrained
by the nodes’ non-unique names and/or by predicates on the nodes’ attributes, or on contexts defined by other
XPath expressions. The definition of predicates may use boolean, arithmetic, and comparison operators,
as well as functions on strings and sets.

In hierarchical organizations such as those in DEVS models, patterns may be defined in terms of paths
along communication relations rather than on the hierarchy. For a DSL aimed at instrumenting structured
network models, query languages for graph-based databases may serve as a starting point (Wood 2012).
These languages, which support the expression of relations among paths, are of particular interest if the
network structure changes dynamically, e.g. address targets, A and B, such that the same sequence of edge
labels connects A and B as it connects C and B.

Data Collection: In addition to selecting the entities of interest in a model, the language must allow
one to select the values from the entities that are to be externalized in simulation output. In certain cases,
it may be sufficient to denote an entity’s attribute from which the value is to be collected. When one or
more attribute values need to be subjected to functions for transformation or aggregation, the language
should allow the expression of operations like f(val(attr)) or f(val(attry),...,val(attry)), respectively.
When a set of entities is addressed, multiple values may be selected, however, a plain list of values is often
not the desired output as provenance information may need to be recorded and/or values may need to be
grouped. In standard database queries, the extraction of information for identification or grouping and the
extraction of the “target value” are part of the projection function. A data collection language ought to
allow one to specify not only how groups of values are formed, but also the aggregation functions that
should be applied to the values within each group.

Phases and Frequency of Data Collection: In many circumstances, the simulationist is interested in
collecting data only from specific phases of the simulation, such as during transient or steady-state. For this
reason, languages should allow one to specify the start and the end times of phases in which data should
be collected. Another helpful language feature would be to allow the enabling and the disabling of data
collection based on conditions on model attributes, such as when((A.population<I100) && (B.rate>1.5).

Schiitzel, Peng, Perrone, and Uhrmacher

. ®
e Particles I | new Instrument {
O > | start at SimTime (100.0)
Vesicle 0 3 stop at SimEnd /I optional because SimEnd is default
2 Rab7 4 trigger atInterval 10.0 // short for SimTime(10.0)
V e N 5 filter accept (name is "Particle") &

compartment (name is "Endosome")
6 filter reject compartment (attrib(1l) is

@
@V@ Y Er@me

> 4 (late state) "late")
Babsv Endloscgnge v O Cell 7 extract (quantity as "g")
(early state) 8 aggregate (sum("g")) // implicit grouping (all in one)

9 }

(a) Modeling the endocytosis process of cells
requires a modeling approach that supports
dynamic hierarchical structures such as ML-
Rules as endosomes form at the membrane
and might fuse with lysosomes in the cytosol.

(b) Example of instrumentation. The language takes
into account that entities are named (name), located
in a hierarchy (compartment), and have attributes
(attrib), which are accessed by indices (1).

Figure 2: Specifying how a model with dynamic hierarchical structures can be instrumented (using a
Scala-based embedded DSL).

(Clearly, this type of feature requires the appropriate target addressing capability.) Finally, the language
may include mechanisms to request data collection in discrete instants of simulation time or according to
some pre-determined frequency.

2.4 Languages to Support Validation and Analysis

According to Cellier’s definition “A model M for a system S and an experiment E is anything to which E
can be applied to answer questions about S” (Cellier 1991). However, not all experiments are conducted
to answer questions about a system. Simulation experiments may be conducted to answer questions about
the model itself and often in relation to the system. The questions refer typically to behavioral properties
which are inferred from sequences of output values (that is, trajectories) produced in the experiment.
Languages that support validation and data analysis provide formalisms that allow for the automation of
model checking by verifying whether required properties of the model are satisfied during the simulation run.

What to express: The evaluation of whether models exhibit the desired behavioral properties involves
the analysis of the trajectories produced in the experiment. The questions asked of the model determine
whether multiple configurations of simulation experiments may be needed. Stochastic models, for example,
require multiple replications in order to enable sound output data analysis. In general, model validation
and data analysis may require a single replication, multiple replications for one configuration, or multiple
configurations. Within one replication, one variable or multiple variables may need to be checked as
in the example: prey should either not become extinct or its population should be larger than that of
predators. These kinds of properties form the basis of more complex temporal properties, which relate to
basic properties over time, as in the example: relatively short stimulations (5 minutes or less) by tumor
necrosis factor o can trigger sustained activation (60 minutes) of the NF-B pathway in IB-NF-B signaling
model (Prill et al. 2005). Temporal properties may refer to the dynamics of one or more variables, as in
the example of the prey-predator model: predators start increasing only after prey density grows beyond
a threshold. Another common property of interest is whether a simulation exhibits cyclic behavior, which
motivated the study of specific algorithms for detecting cycles in time series. Lastly, a property could be
stated to hold for a length of time or a specific bounded time interval, as in the example: after the removal
of the growth factors, the concentration of beta catenin should rise for 1 hour.

For stochastic models, it is important to represent the probability that the experiment’s results meet a
certain property. One may define the probabilities with which properties should hold at discrete points or
intervals of time over one same trajectory and across different replications of a single configuration. For

Schiitzel, Peng, Perrone, and Uhrmacher

example, “some properties hold at least 80% of the time in a certain interval” or “some properties hold in
more than 8 replications out of 10”. There could also be nested probabilities to express complex properties,
such as “in more than 8 replications out of 10, some properties hold at least 80% of the time in a certain
interval”. It would also be interesting to express properties that span different experiment configurations,
as in the example: the so called ratio-dependent theory states that if an ecosystem has richer resources,
there should be higher equilibrium abundances on all trophic levels, in comparison to an ecosystem with
less resources (Ginzburg and Akcakaya 1992). Finally, experiments focused on sensitivity analysis and
robustness depend on comparing the results of different configurations, so single configuration experiments
are not sufficient to provide adequate information on a model’s behavior.

Approaches to express properties: In the verification and model checking, there are typically
three approaches to express properties which need to be satisfied by a model: logic-based approach,
automata-based approach and the hybrid approach of logic and automata (Bouajjani and Lakhnech 1996).

The logic-based approach uses languages to specify properties. For time related properties, various
temporal logics exist, such as Linear Temporal Logic (LTL) and Computational Tree Logic (CTL). LTL
provides the “next” and “until” operators from which the temporal connectives “sometimes” and “always”
in the future can be derived, in addition to the standard logic connectives. CTL allows one to express
non-determinism in future behavior and provides two additional path qualifers: “existential” and “universal”.
Although LTL and CTL support deterministic models, Probabilistic Computation Tree Logic (PCTL) and
Continuous Stochastic Logic (CSL) extend CTL to support discrete- and continuous-time stochastic models,
respectively. In PCTL and CSL, the probabilistic path quantifier P is introduced in place of the universal
path quantifier A (for all paths) and the existential path quantifier E (there exists a path such that) (Tomita
et al. 2011).

Automata are often used as an alternative to temporal logic for specifying properties, e.g., Biichi automata
(Alpern and Schneider 1989). Regular expressions and their extensions are also useful formalisms (Barringer
et al. 2004). It has been shown that automata and regular expressions have at least the same power of
expression as temporal logics. The advantages and disadvantages of these approaches are difficult to
judge without knowledge of the type of properties to be described. However, in general, automata and
regular expressions are perceived as too procedural and low-level to be attractive specification formalisms
(De Giacomo and Vardi 2013).

Consequently, logic-based approaches tend to prevail in specifying properties for (statistical) model
checking. For example, in (Rizk et al. 2009) to ensure the robustness of a synthetic genetic network, the
expected property, i.e., that the fluorescence remains below 103 for at least 150 min, exceeds 10° after at
most 450 min, and needs for switching from low to high levels at most 150 min, by a temporal formula:
o(t1,t —2) = G(time < t; — X < 103) AG(time >t — X > 10°) At; < 150 Aty <450 Aty —t; < 150. The
approach is based on deterministic execution of models. For stochastic models, in (Peng et al. 2014),
the property ¢ that the prey die out first and then the predators die out, has been expressed in LTL
((#Prey=0) R (#Predator > 0)) NF (#Predator = 0) and to take the probability into account, the property
tested was denoted as Pr>¢ g(¢). Using the Simulation Experiment Specification via a Scala Layer (SESSL),
which is discussed in the next section, this property was expressed as:

assume (Pr(((Negation(variable ("Prey") > 0)) R (variable ("Predator") > 0))
and (Negation (G(variable ("Predator") > 0)))) >= 0.8)

Finally, up to the level of replications, properties can be and have been frequently expressed by
standard temporal logic. However, comparing the result of different configurations, which is central for
many experiments, requires the definition of additional operators that work on different paths with different
starting points.

Schiitzel, Peng, Perrone, and Uhrmacher

3 EXPERIMENT SPECIFICATION LANGUAGES

A special purpose language for specifying simulation experiments may share several aspects in common
with the other types of languages that support modeling and simulation. First, it may borrow concepts and
elements from the workflow languages discussed in section 2.1. An experiment may consist of a collection
of components that encapsulate the tasks that need to be performed. The ESL should allow hierarchical
compositions so that new components may be constructed as aggregations of existing ones. Additionally,
the ESL should include mechanisms that allow the simulationist to express how components share data
with one another. If every component may consume and produce data, the structure of the experiment is
defined by a dataflow graph, which should be described by the ESL’s syntactic elements.

Second, it stands to reason that the design of ESLs should be driven by the needs and the peculiarities
of specific application domains, rather than aim to support all types of models and simulations. It is less
important whether they are designed as internally or externally defined DSLs and more important that
they support well the targeted application domain. Since the ESL should be easy to learn and to use, as
discussed in section 2.2, the closer the language’s affinity to the application domain, the more intuitive it
will feel for the simulationist.

Third, because the goal of experiments is to generate data, it is important that the ESL provides
mechanisms to define answers to various questions related to data collection: which data to collect, how
much of them to collect, how often to collect, and what pre-processing to apply to data. As discussed
in section 2.3, in order to support data collection activities, the language must include mechanisms to
identify the elements within the model that contain the data of interest, to aggregate data from potentially
multiple sources, to determine at which periods in simulation time to actively record data, and to specify
the frequency of data collection.

Finally, ESL design should aim to support experimentation in two different stages of the M&S process:
during model validation and after production runs with the model. Section 2.4 showed that in order to
support validation, the ESL should be able to express properties of the model with respect to time, value
constraints, and randomness.

The remainder of this section focuses on a few examples of ESLs. The first one, Simulation Experiment
Specification via a Scala Layer (SESSL) is a general purpose language defined as an internally defined
DSL. The next two, ns-3 Experiment Description Language (NEDL) and SAFE Language for Experiment
Description (SLED) are specific to network simulation.

3.1 SESSL

We illustrate the features of SESSL (Ewald and Uhrmacher 2014) with an experiment from (Ewald et al.
2010). In this example, shown in Fig. 3, we use optimization to estimate the kinetic reaction constants (r;
and ry) of two reactions in a rather simple reaction species model. SESSL is system agnostic and facilitates
experiment reuse across different simulation systems. Therefore, SESSL consists of two layers: sessl.._
refers to basic definitions and sessl. james._ contains the bindings for the software system.

The specification example contains a reference to the model, defines the number of replications, the
stop condition for executing the model, the goal, range, and method of optimization, data collection and
storage, random number generator, and execution algorithm. A comparison with the solution shown in
(Ewald et al. 2010) which has been realized in the experimental frame layer of JAMES II shows the benefit
of a domain language in terms of succinctness of the needed code to generate an experiment.

The example also shows how SESSL can easily be extended by additional experiment facets. Therefore,
Scala offers traits which are interfaces that may also contain method definitions and member variables,
and therefore can implement own functionality. In the example the Experiment is enriched with fea-
tures for observing, for parallel execution (in the example we are using the default setting, by adding
parallelThreads = -1 to the specification, we would have used all threads but one), for data sinks and
for optimization. Here we use the optimization methods that are provided in JAMES II. Methods of other

Schiitzel, Peng, Perrone, and Uhrmacher

1 import sessl._
2 | import sessl.james._

4 | new Experiment with Observation with ParallelExecution with DataSink with Optimization {
5 model = "file-sr:/./SimpleModel.sr"

6 replications = 10; stopTime = 100000

7 optimizeFor ("x" ~ "A") (result => result.max("x"))
8 optStopCondition =

9 OptMaxAssignments (100) or OptMaxTime (hours = 1)
10 optimize {

11 "synthRate" ~ "rl1", range (1.0, 10.0),

12 "degradRate" ~ "r2", range (5.0, 15.0)}

13 startOptimizationWith {

14 "synthRate" <~ 1.0,

15 "degradRate" <~ 5.0}

16 optimizer = HillClimbing()*

17 observeAt (10000, 20000, 99900)*

18 dataSink = MySQLDataSink (schema = "test2")*

19 rng = MersenneTwister ()

20 simulator = DirectMethod ()

*

Figure 3: A SESSL experiment using JAMES II. (Scala keywords are shown in blue.)

software can be integrated. In (Ewald and Uhrmacher 2014) it is shown how different software systems
can be linked into SESSL, i.e., how via import sessl.ssj._ and new Experiment ...with
SSJOutputAnalysis specific methods provided by the SSJ library for stochastic simulation can be
used and how SESSL can serve as a unified interface for other tasks, such as simulation-based optimization
(integrating the Opt4J framework for meta-heuristic optimization). As embedded language SESSL contains
Scala constructs, e.g., (result => result.max ("x")) defines an anonymous function. Clearly, the
definition in SESSL is more compact and closer to our understanding of an experiment and thus can more
easily be understood. However, to specify an experiment in SESSL requires also some knowledge about
Scala, its syntax and semantics.

SESSL contains rudimentary constructs to collect data, i.e., defining the variables to be observed ("A")
and the frequency of observing them, (ocbserveAt (10000, 20000, 99900)), other constructs refer
to evaluating the results, e.g., result.max ("x"). Thus, possibilities to include more sophisticated
means for observation and analysis should be included. However, this can easily be realized by integrating
specialized languages as additional traits, as has already been done in a first approach to support statistical
model checking experiments in SESSL (Peng, Ewald, and Uhrmacher 2014).

It should be noted, that SESSL is a language for specifying and generating rather than for describing
experiments. This is in contrast to community approaches such as the SED-ML Simulation Experiment
Description Markup Language, which has been developed for exchanging, encoding, and documenting
(Waltemath et al. 2011) experiments. Both languages however have in common that they are declarative and
that they are not constrained to one specific simulation system. In contrast, the experimentation language
NEDL has been developed for ns-3.

3.2 NEDL and SLED

In the development of the Simulation Automation Framework for Experiments (SAFE) (Perrone, Main, and
Ward 2012), it became immediately clear that standardizing experiment descriptions was necessary in order
to document scenarios and enable reproducibility. The ns-3 Experiment Description Language (NEDL)
(Hallagan 2010) was created to meet the demand for a language capable of capturing all the information
that defined the scenario of an experiment. The design goals of this language were threefold: it had to be
expressive, compact, and intuitive to the simulationist. The information contained in a NEDL file specifies
a design of experiment space in terms of factors, levels, and constraints that aim to prune away design

Schiitzel, Peng, Perrone, and Uhrmacher

points that are beyond the interest of the simulationist. Since NEDL is based on XML, the language defines
a collection of “elements,” which may be either compulsory or optional in the description of an experiment.
With NEDL syntax, the simulationist enumerates the factors of interest in the experiment and associates
lists of levels to each one. The language provides various mechanisms to simplify the definition of lists of
levels and also to constrain the range of valid levels for each factor.

Because NEDL is an externally defined DSL, it must be processed by special-purpose tools for parsing
and document validation. A parsed NEDL document results in an unmarshalled XML object that is accessed
by another tool (embedded in SAFE) that generates the set of points in the design of experiment space.
This allows SAFE to process each design point sequentially and dispatch simulation runs to a collection
of machines that collaborate on implementing the multiple replications in paralell execution paradigm.

The development of NEDL and its supporting tools showed promise in meeting the design goals of
the language. Its practical application, however, turned out to be somewhat problematic. Although the
language met the expressiveness objective, it turned out to be overly verbose (as XML-based languages
tend to be). We addressed this shortcoming by developing form-like interfaces that collect information
from the user and generate NEDL syntax automatically. This reduces the pressure on the simulationist
and, at the same time, guarantees the well-formedness and the validity of the experiment description file.

NEDL documents, however, turned out to be complex and tricky to process, which complicated the
development of a robust parser. Its sequence element for encoding arbitrary mathematical expressions to
generate lists of factor levels serves to illustrate the problem. An expression as simple as 7= 10 x i, for 10 <
T <100 canbe written T = [10+1 for 1 in range (1, 11)] as a Python list comprehension. In NEDL
syntax, this list turns into the code snippet shown in Fig. 4.

The lessons learned with NEDL motivated the creation of a replacement language called SAFE Language
for Experiment Description (SLED). This new language, which is based on the JSON format, is simpler,
smaller, and substantially more compact. Fig. 5 shows the syntactical elements in SLED, which are used
to create files that contain the design of experiment space and also information on the experiment’s code
base installation, the name of the file containing the source code of the corresponding ns-3 script. This
syntax allows one to associate with each factor some descriptive text, a default level, a range of valid levels,
and also the visible annotation which configuration interfaces can inspect to determine which factors
should be exposed to the user.

Even though SLED is also an externally defined DSL, the use of the JSON format makes it much easier
to parse. Ongoing work on the development of SLED is exploring options to use Python list comprehensions
directly, expressing relationships between experimental factors, and creating syntax for design of experiment
space pruning that is more powerful than what is provided in NEDL. Additional developments in SLED
will explore a connection to the ns-3 data collection framework presented by Perrone et al. (2013). This
will enable the type of functionality discussed in section 2.3. In particular, it will record in the experiment
specification file the periods in simulation time in which data collection takes place and the frequency of
sample collection.

<sequence>
<factor>T</factor>
<test>EQUALS</test>
<lvar>i</lvar>
<op>MULT</op>
<rconst>10</rconst>
<where>
<range>
<var>i</var>
<lo>1</lo> <hi>10</hi> <delta>1</delta>
</range> </where>
</sequence>

Figure 4: A list comprehension for generating factor levels in NEDL.

Schiitzel, Peng, Perrone, and Uhrmacher

{ "name": "ExpDescription Name",
"description": "This is an example description",
"script": "script name",
"public": false,
"factors": [{ "name": "First Factor",
"help": "factor description goes here",
"type": "float",
"visible": true,
"default": 1.4,
"min": O,
"max": 100},
{ "name": "Second Factor",
"help": "more factor description",
"type": "boolean",
"visible": false,

"default": false}]

Figure 5: Elements of a SLED file.

4 CONCLUSION

In this paper, we explore some, though not all, of the current uses and possibilities for domain specific
languages in simulation. Languages to support experimentation are becoming more important in the
area because they allow compactness and expressivity in experiment description, thereby facilitating the
experiments’ execution and enabling their dissemination and reproduction. Each different task of the
simulation workflow, such as experiment specification and data collection, may call for its own different
specialized language. Subcomponents of these tasks may call for yet other specialized languages. Looking
forward, we realize that it will be important that simulation frameworks provide the means of a hierarchical
integration of these support languages into a cohesive whole. We also expect that it will be crucial to allow
for flexibility and language extensibility in order to address the changing needs of applications.

ACKNOWLEDGMENTS

Johannes Schiitzel is supported by the German Research Foundation (Research Training Group 1424
“MuSAMA”). Danhua Peng is supported by the China Scholarship Council (CSC) and the National
Natural Science Foundation of China (Grant No. 61374185). L. Felipe Perrone is supported by the U.S.
National Science Foundation (NSF) under Grant Nos. CNS-0958139, CNS-0958142, and CNS-0958015.
Any opinions, findings, and conclusions or recommendations expressed in this material are the authors’
alone and do not necessarily reflect the views of the NSF. Felipe thanks William S. Stratton and Andrew W.
Hallagan (Computer Science & Engineering students at Bucknell University) for contributing the material
on SLED and NEDL used in this paper.

REFERENCES

Alpern, B., and F. B. Schneider. 1989, January. “Verifying Temporal Properties Without Temporal Logic”.
ACM Transactions on Programming Languages and Systems 11 (1): 147-167.

Altintas, 1., S. Bhagwanani, D. Buttler, S. Chandra, Z. Cheng, M. Coleman, T. Critchlow, A. Gupta, W. Han,
L. Liu, B. Ludascher, C. Pu, R. Moore, A. Shoshani, and M. Vouk. 2003. “A modeling and execution
environment for distributed scientific workflows”. In Proceedings of the 15th International Conference
on Scientific and Statistical Database Management, 247-250.

Barringer, H., A. Goldberg, K. Havelund, and K. Sen. 2004. “Rule-Based Runtime Verification”. In
Verification, Model Checking, and Abstract Interpretation, edited by B. Steffen and G. Levi, Volume
2937 of Lecture Notes in Computer Science, 44-57. Springer Berlin Heidelberg.

Schiitzel, Peng, Perrone, and Uhrmacher

Bittig, A. T., F. Haack, C. Maus, and A. M. Uhrmacher. 2011. “Adapting Rule-based Model Descriptions
for Simulating in Continuous and Hybrid Space”. In Proc. of the 9th International Conference on
Computational Methods in Systems Biology, CMSB ’11, 161-170. New York, NY, USA: ACM.

Bittig, A. T., and A. M. Uhrmacher. 2010. “Spatial modeling in cell biology at multiple levels”. In Proc. of
the 2010 Winter Simulation Conference, edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan,
and E. Yiicesan, 608-619. Piscataway, New Jersey: IEEE.

Bouajjani, A., and Y. Lakhnech. 1996. “Logics vs. automata: The hybrid case”. In Hybrid Systems III,
edited by R. Alur, T. Henzinger, and E. Sontag, Volume 1066 of Lecture Notes in Computer Science,
531-542. Springer Berlin Heidelberg.

Cellier, F. 1991. Continuous System Modeling. Springer.

De Giacomo, G., and M. Y. Vardi. 2013. “Linear Temporal Logic and Linear Dynamic Logic on Finite
Traces”. In Proc. of the 23rd Int. Joint Conference on Artificial Intelligence, 854—-860: AAAI Press.

Ewald, R., J. Himmelspach, M. Jeschke, S. Leye, and A. M. Uhrmacher. 2010, May. “Flexible experimen-
tation in the modeling and simulation framework JAMES II-implications for computational systems
biology”. Briefings in Bioinformatics 11 (3): 290-300.

Ewald, R., and A. M. Uhrmacher. 2014. “SESSL: A Domain-Specific Language for Simulation Experiments”.
ACM Transactions on Modeling and Computer Simulation 24 (2).

Ginzburg, L., and H. Akcakaya. 1992. “Consequences of ratio-dependent predation for steady-state properties
of ecosystems”. Ecology 73 (5): 1536-1543.

Hallagan, Andrew W. 2010. “The Design of XML-Based Model and Experiment Description Languages
for Network Simulation”. Honors Thesis, Bucknell University.

Helms, T., J. Himmelspach, C. Maus, O. Rower, J. Schiitzel, and A. M. Uhrmacher. 2012. “Toward a language
for the flexible observation of simulations”. In Proceedings of the 2012 Winter Simulation Conference,
edited by C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. Uhrmacher. Piscataway, New
Jersey: IEEE.

Joppa, L. N., G. Mclnerny, R. Harper, L. Salido, K. Takeda, K. O’Hara, D. Gavaghan, and S. Emmott.
2013, May. “Troubling Trends in Scientific Software Use”. Science 340 (6134): 814-815.

Kohn, D., and N. Novere. 2008. “SED-ML - an XML formate for the implementation of the MIASE
guidelienes”. In Proc. of the 6th International Conference on Computational Methods in Systems
Biology, edited by M. Heiner and A. Uhrmacher, 176-190: Springer.

Kurkowski, S., T. Camp, and M. Colagrosso. 2005. “MANET Simulation Studies: The Incredibles”. ACM
SIGMOBILE Mobile Computing and Communications Review 9 (4): 50-61.

Law, A. 2007. Simulation Modeling and Analysis. 4th ed. New York: McGraw-Hill.

Maus, C., S. Rybacki, and A. M. Uhrmacher. 2011. “Rule-based multi-level modeling of cell biological
systems”. BMC Systems Biology 5 (166).

Merali, Z. 2010, October. “Computational science: ...Error”. Nature (467): 775-7717.

Miller, J., J. Han, and M. Hybinette. 2010. “Using Domain Specific Language for modeling and simulation:
ScalaTion as a case study”. In Proceedings of the 2010 Winter Simulation Conference, edited by
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yiicesan. Piscataway, New Jersey: IEEE.

Pawlikowski, K., H. Jeong, and J. Lee. 2002. “On credibility of simulation studies of telecommunication
networks”. IEEE Communications Magazine 40 (1): 132-139.

Peng, D., R. Ewald, and A. M. Uhrmacher. 2014. “Towards Semantic Model Composition via Experiments”.
In Conf. on Principles of Advanced and Distributed Simulation (PADS): ACM.

Perrone, L. F., T. R. Henderson, Felizardo, V. D., and M. J. Watrous. 2013. “The Design of an Output Data
Collection Framework for ns-3”. In Proceedings of the 2013 Winter Simulation Conference, edited by
R. Pasupathy, S.-H.Kim, A. Tolk, R. Hill, and M. Kuhl. Piscataway, New Jersey: IEEE.

Perrone, L. F., C. S. Main, and B. C. Ward. 2012. “SAFE: Simulation Automation Framework for
Experiments”. In Proceedings of the 2012 Winter Simulation Conference, edited by C. Laroque,
J. Himmelspach, R. Pasupathy, O. Rose, and A. Uhrmacher. Piscataway, New Jersey: IEEE.

Schiitzel, Peng, Perrone, and Uhrmacher

Prill, R. J., P. A. Iglesias, and A. Levchenko. 2005, October. “Dynamic Properties of Network Motifs
Contribute to Biological Network Organization”. PLOS Biology 3 (11): e343.

Rahmandad, H., and J. D. Sterman. 2012. “Reporting guidelines for simulation-based research in social
sciences”. System Dynamics Review 28 (4): 396—411.

Reiter, M., U. Breitenbucher, O. Kopp, and D. Karastoyanova. 2012. “Quality of data driven simulation
workflows”. In Conf. on E-Science (e-Science): 1EEE.

Ribault, J., O. Dalle, D. Conan, and S. Leriche. 2010. “OSIF: A Framework to Instrument, Validate, and
Analyze Simulations”. In Proc. of the 3rd International ICST Conference on Simulation Tools and
Techniques (SIMUTools 2010): 1CST.

Riley, G., and T. Henderson. 2013. Modeling and Tools for Network Simulation, Chapter The ns-3 Network
Simulator, 15-34. Springer.

Rizk, A., G. Batt, F. Fages, and S. Soliman. 2009. “A general computational method for robustness analysis
with applications to synthetic gene networks”. Bioinformatics 25 (12): i1169-i178.

Rybacki, S., F. Haack, K. Wolf, and A. M. Uhrmacher. 2014. “Developing simulation models - from
conceptual to executable model and back - an artifact-based workflow approach”. In Proc. of the 7th
International ICST Conference on Simulation Tools and Techniques (SIMUTools 2014): ICST.

Rybacki, S., J. Himmelspach, and A. M. Uhrmacher. 2012. “Using Workflows to Control the Experiment
Execution in Modeling and Simulation Software”. In Proc. of the 5th International ICST Conference
on Simulation Tools and Techniques (SIMUTools 2012), 93-102: ICST.

Sargent, R. G. 2013. “Verification and validation of simulation models”. Journal of Simulation 7 (1): 12-24.

Tomita, T., S. Hagihara, and N. Yonezaki. 2011. “A Probabilistic Temporal Logic with Frequency Operators
and Its Model Checking”. In Proc. of the 13th International Workshop on Verification of Infinite-State
Systems, Taipei, Taiwan, 10th October 2011, edited by F. Yu and C. Wang, Volume 73 of Electronic
Proceedings in Theoretical Computer Science, 79-93: Open Publishing Association.

van Deursen, A., P. Klint, and J. Visser. 2000, June. “Domain-specific languages: an annotated bibliography™.
SIGPLAN Notices 35 (6): 26-36.

von Laszewski, G., M. Hategan, and D. Kodeboyina. 2006. Workflows for e-Science, Chapter Java CoG
Kit Workflow, 320-339. Springer.

W3C 1999. “XML Path Language (XPath) Version 1.0”. http://www.w3.org/TR/xpath/.

Waltemath, D., R. Adams, F. Bergmann, M. Hucka, F. Kolpakov, A. Miller, I. Moraru, D. Nickerson,
S. Sahle, J. Snoep, and N. Le Novere. 2011. “Reproducible computational biology experiments with
SED-ML - The Simulation Experiment Description Markup Language”. BMC Systems Biology 5:198.

Weidlich, M., G. Decker, A. GroBBkopf, and M. Weske. 2008. “BPEL to BPMN: The Myth of a Straight-
Forward Mapping”. In On the Move to Meaningful Internet Systems: OTM 2008, edited by R. Meersman
and Z. Tari, Volume 5331 of Lecture Notes in Computer Science, 265-282. Berlin, Heidelberg: Springer.

Wood, P. T. 2012, April. “Query Languages for Graph Databases”. SIGMOD Rec. 41 (1): 50-60.

Zeigler, B. P. 1984. Multifacetted Modelling and Discrete Event Simulation. 1st ed. Academic Press.

AUTHOR BIOGRAPHIES

JOHANNES SCHUTZEL and DANHUA PENG pursue Ph.D. degrees in the Modeling and Simulation
Group at the University of Rostock. Their email addresses are johannes.schuetzel @uni-rostock.de and
danhua.peng2 @uni-rostock.de.

ADELINDE UHRMACHER is Professor at the Institute of Computer Science and head of the Modeling and
Simulation Group at the University of Rostock. Her email address is adelinde.uhrmacher @uni-rostock.de.

L. FELIPE PERRONE is Associate Professor of Computer Science at Bucknell University. His email
address is perrone @bucknell.edu.

mailto://johannes.schuetzel@uni-rostock.de
mailto://danhua.peng2@uni-rostock.de
mailto://adelinde.uhrmacher@uni-rostock.de
mailto://perrone@bucknell.edu

	INTRODUCTION
	TYPES OF MODELING AND SIMULATION SUPPORT LANGUAGES
	Workflow Languages
	Domain-Specific Languages
	Languages to Instrument Data Collection
	Languages to Support Validation and Analysis

	EXPERIMENT SPECIFICATION LANGUAGES
	SESSL
	NEDL and SLED

	CONCLUSION

