
FlyLoop: A Micro Framework for Rapid Development of
Physiological Computing Systems

Evan M. Peck, Eleanor Easse, Nick Marshall, William Stratton, L. Felipe Perrone
Bucknell University, Department of Computer Science

Lewisburg, PA. USA
{evan.peck, ele008, nam021, wss012, perrone}@bucknell.edu

ABSTRACT
With the advent of wearable computing, cheap, commercial-
grade sensors have broadened the accessibility to real-time
physiological sensing. While there is considerable research
that explores leveraging this information to drive intelligent
interfaces, the construction of such systems have largely been
limited to those with significant technical expertise. Even sea-
soned programmers are forced to tackle serious engineering
challenges such as merging data from multiple sensors, ap-
plying signal processing algorithms, and modeling user state
in real-time. These hurdles limit the accessibility and replica-
bility of physiological computing systems, and more broadly
intelligent interfaces. In this paper, we present FlyLoop - a
small, lightweight Java framework that enables programmers
to rapidly develop, and experiment with intelligent systems.
By focusing on simplicity and modularity rather than device
compatibility or software dependencies, we believe that Fly-
Loop can broaden the participation in next-generation user
interfaces, and encourage systems that can be communicated
and reproduced.

Author Keywords
software engineering; brain-computer interface;
physiological computing system; intelligent user interface

ACM Classification Keywords
H.5.2. User Interfaces: Prototyping

INTRODUCTION
Over the last decade, physiological sensors have slowly tran-
sitioned from the exclusive use of researchers and research
labs to the commercial sector. For example, commercial
brain sensors such as Neurosky, Emotiv, and Muse, have
emerged as low-cost, widely-advertised inputs for biofeed-
back systems or brain-computer interfaces. Extending be-
yond the brain, the number of sensors on or around our bodies
have increased over last decade, whether it through heart-rate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EICS’15, June 23 - June 26, 2015, Dusiburg, Germany.
© 2015 ACM. ISBN 978-1-4503-3646-8/15/06 $15.00
DOI: http://dx.doi.org/10.1145/2774225.2775071

monitors embedded in watches or accelerometers in smart-
phones. However, despite this advancement of technology
into the public’s hands, the application of physiological sig-
nals is largely limited to simple biofeedback or health appli-
cations.

In a recent post, Steven Fairclough, a leading researcher in
physiological computing systems (PCS), wrote the following:
“[research on adaptive systems] place enormous emphasis on
the capacity of the machine to monitor and make accurate
inferences about the psychological state of the user. As im-
portant as this is, it is only half of the story ... The process of
linking the detection of user states to the adaptive repertoire
of a machine remains the great unspoken and unexplored area
of research in the area of physiological computing” [5].

In this paper, we claim that the lack of usable, flexible
programming tools is a significant hurdle to the develop-
ment of systems that are driven by sensor input. Given
the difficulty of examining adaptive responses without state
detection, building an architecture for mapping physiologi-
cal responses to meaningful output becomes a prerequisite
for exploring adaptive mechanisms. Yet when discussing
the relationship between programmers and adaptive appli-
cations, Magnaudet and Chatty write, “The mappings be-
tween sources and actions are where the intrinsic program-
ming complexity resides” [6]. As a direct consequence, build-
ing the basic functionality of an intelligent system has be-
come a filter for advancing the expressiveness of adaptive ap-
plications.

It is not surprising then that the creation of adaptive systems is
difficult. The fundamental architecture behind physiological
computing systems, the biocybernetic loop, involves the input
and integration of sensor information, a training or calibration
period, filters to reduce noise and extract relevant features, a
mapping of data to user state, and the real-time output of a
state predictions [4]. Each of these phases relies on technical
expertise and involves design decisions that could bind the
developer to a rigid, single-purpose system.

As a result, developers and researchers often construct
custom-built systems that serve the short term goals of their
creators. More often than not, these systems turn out to be so
inflexible that the creators themselves find it cumbersome to
adapt them to different scenarios. This effort comes at a cost.
Systems that make assumptions about incoming data sources
(either in terms of velocity or modality), for example, make it

difficult to add additional sources without significant refactor-
ing efforts. Systems that follow a specific data pipeline can be
inflexible due to the coupling between components, slowing
the incremental design process.

The complexity of these systems has broader consequences
as well. Because systems are intricate, the distribution, repli-
cation, and validation of physiological computing systems
is difficult. In addition, inflexibility has a negative impact
on developers’ abilities to rapidly construct new prototypes.
Taken together, these issues can slow progress in a field that
is quickly advancing new sensor technology.

In the tradition of data-flow architectures, we created a
programing micro framework for building physiological
computing systems - FlyLoop - that focuses on simplic-
ity, flexibility, and reuse. Because it is written in Java, it has
no inherent hardware restrictions, software dependencies (be-
yond the Java language), or OS requirements. At the system
level, FlyLoop makes no assumptions about the flow of data
between sensors, signal filtering algorithms, feature extrac-
tion, and machine learning models. To aid developers, we in-
clude default behaviors that hide challenging aspects of build-
ing physiological computing systems - sensor fusion and the
training/testing phase of model building and use. Finally, Fly-
Loop focuses on usability for the programmer during module
creation, minimizing necessary template code and allowing
developers to focus on the underlying algorithms.

We believe that a framework like this can:

1. Lower the existing technological barrier for building
sensor-driven intelligent systems, making them accessible
to a more broad population of developers.

2. Increase the clarity of existing systems to encourage repli-
cation and validation.

3. Reduce coupling within systems to encourage extensibility
and innovation.

BACKGROUND: ACCESSIBLE PCS
In the past, it required significant technical acuity to build a
functioning physiological computing system (PCS) or brain-
computer interface (BCI). Aside from the challenge of trans-
lating systems to real-time environments, assigning meaning
to physiological input required access to expensive sensors,
expertise in data acquisition, signal processing, and data mod-
eling [4]. More recently, innovations have reduced the need
for expensive equipment or expertise at varying stages of de-
velopment.

BITalino, for example, is a ‘DIY biosignals’ kit that increases
accessibility at the acquisition and output levels by provid-
ing users with a board of built-in inputs designed for in-
terfacing with electrocardiography (ECG), electromyograph
(EMG), and electrodermal activity (EDA) [1]. It also includes
an associated software platform, OpenSignals, for visualizing
incoming data. Similarly, the OpenBCI Board focuses on ac-
quisition accessibility, providing a cheap microcontroller that
can also sample signals such as EEG, EMG, and ECG. An in-
creasing number of signal processing applications have been
built using SDKs on top of OpenBCI [2], allowing users to
monitor signals in real time.

OpenViBE, an open-sourced software platform for BCIs, fo-
cuses on improving accessibility at the software level [10]. It
uses a flexible, data-flow architecture that is specifically tuned
for constructing Brain-Computer Interfaces. In addition, a
GUI front-end allows users to build systems using direct-
manipulation interactions. While these features impose re-
quirements on underlying operating system and other soft-
ware dependencies, OpenViBE’s low barrier of use has suc-
cessfully broadened the participation in building BCIs (with
over 90 references in scholarly articles since 2014 alone).
Finally, other physiological computing products more nar-
rowly emphasize accessibility of a specific technology (Ope-
nEEG [9]), domain (Libelium e-Health Sensor Platform [3]),
or educational goal (SpikerBox [7]).

FlyLoop differentiates itself from existing solutions by main-
taining its identity as a lightweight, minimal programming
framework that focuses on usability for the developer. It at-
tempts to hide issues that are difficult to implement in physio-
logical computing systems, but leaves the choice of input sen-
sors (which may or may not be from physiological sources),
machine-learning libraries, and output dependencies entirely
in the hands of the developer.

FLYLOOP CORE MODULES
FlyLoop is a Java micro framework that consists of four fun-
damental pieces that we identify as critical components of any
physiological computing system:

• Data sources: sources of streaming data input
• Filters: manipulates or processes the data
• Learners: mappings from data to user state
• Outputs: outputs data from the system

In the following sections, we discuss the design behind each
of these categories of components, beginning with the deci-
sion to allow them to function interchangeably.

Pusher-Receiver Design
The FlyLoop framework was constructed to employ a modu-
lar and flexible flow of data through the system. FlyLoop fol-
lows the roadmap of other data flow systems by implementing
a communication interface that can be used between all mod-
ules - the Pusher-Receiver Design.

All modules involved in the system’s data pipeline inherit
from a Receiver class or implement a Pusher interface
(using a Push design pattern). In either case, information is
transferred either into or out of a module one data point at
a time - the speed of which is controlled by a system-wide
polling rate (discussed further in Sensor Fusion). To prevent
limiting data to any particular format (int, float, string), data
is passed as the generic class Object in Java. Pushers can
output data to one-to-many Receivers. Similarly, Receivers
can input data from one-to-many Pushers. Enforcing a con-
sistent input/output definition enables modules to be used at
any juncture of the data pipeline, and potentially with varying
input sources.

Design flexibility is critical for advancing the state-of-the-art
in physiological computing systems. Different physiologi-
cal sensors may sample at different frequencies, and data

pipelines can vary widely. Constructing a communication
protocol makes it easier to treat the data flow of the appli-
cation as a fluid system that can be manipulated and ex-
perimented on. In the following sections, we explain how
each core module of FlyLoop takes advantage of the Pusher-
Receiver design.

DataSource
The DataSource component interfaces with any kind of
streaming input. So far, we have motivated this work largely
from the perspective of physiological sensors. However, sys-
tems that restrict input to specified hardware or even a par-
ticular modality are constraining. Intelligent systems operate
best when they leverage all valuable information sources of
information.

Figure 1. DataSources can represent any form of streaming input, out-
putting the raw data to one-to-many Receivers

As a result, DataSource makes no assumptions about in-
coming data and contains two core operations that must be
completed the by a developer - startCollection and
getOutput. Given the Pusher-Receiver design, getOut-
put returns a single datapoint from the sensor of data source.
This allows disparate inputs to be treated in a similar manner,
whether they are from EEG or mouse movements. In the Sys-
tem Design section, we discuss how data sources of various
sampling rates work in concert in the FlyLoop Framework.

Filter
A Filter takes incoming data and modifies it. In sensor-
based systems, data is often modified in a number of ways in
order to transform it from raw data to meaningful informa-
tion. This can take the form of noise-reducing filters, aggre-
gating input from multiple sensors, or extracting high-level
features for input to a model.

Figure 2. The Filter module modifies data in some way, receiving in-
put from one-to-many Pushers, and outputting data to one-to-many Re-
ceivers.

While identifying best-practice signal processing techniques
remains an open question for physiological signals, re-
searchers continue to spend considerable effort experiment-
ing with various combinations of algorithms. A design goal
of FlyLoop is to allow developers to rapidly swap in and
out new filtering algorithms, or quickly define new sets of
features to serve as input to a model. As a result, any Fil-
ter can act as the receiver of any number of other modules,
and act as the pusher to any number of modules. In Fig. 5,
we show two example systems that demonstrate some of the
flexibility that this affords.

At first glance, it can appear that Filters may be difficult to im-
plement given that the framework pushes a single data point at
a time through the system. However, in keeping with our de-
sign goals, FlyLoop focuses on usability at module creation
as well. We provide support functions - getDatapoints -
that allows the programmer to ask for a window of data of any
size, for example. Rather than considering data one-point-at-
a-time, the system will wait for the necessary interval of data
and return it to the Filter.

These design decisions allow developers to focus their atten-
tion on the signal processing algorithms themselves, instead
of spending considerable effort on timing issues. Below, we
show an example of a Filter that computes the moving aver-
age of an incoming signal. Note that the input and output of
data is largely hidden from the developer, and that the logic
of the module is almost completely devoted to the algorithm.

/** Moving avg. low-pass filter with given interval size*/
public class AvgFilter extends Filter {
public AvgFilter(int interval) {
super(interval);

}

public Object filterData() {
// Returns the last interval data points
Queue<Double> dataPoints = getDataPoints(interval);
// Compute the average
double total = 0;
for (Double d : dataPoints) {
total += d;

}
return new Double(total/dataPoints.size());

}
}

Listing 1. A simple example of building a Filter module

Learner
The Learner class, which accepts input from any Filter or
DataSource, has two primary responsibilities: 1) to construct
a model based on incoming training data, and 2) to output
real-time classifications based on new data. Working in con-
cert with a Calibrator (which we describe in detail in
System Design), the Learner defines a mapping from incom-
ing data to meaningful output. While this is often done using
statistical techniques or known machine-learning algorithms
(for example, we provide a Learner that interfaces with Weka,
a widely used machine-learning library), the exact definition
is to be defined by the developer, and Learners fundamentally
consist of a single learn method. In addition, we provide
mechanisms to accept the output or input of pre-existing mod-
els, allowing the system to immediately begin its real-time
classification phase.

Figure 3. The Learner module, which interacts with a Calibrator, builds
a model and classifies data in real time. It can take input from one-to-
many Pushers and output predictions to one to many Receivers

Like all Receivers, Learners have access to the
getDataPoints method that simplifies the collec-
tion of data from incoming modules, allowing developers to
quickly define their own feature sets.

Output
Data can be pushed from any module to an Output at any
juncture of the data pipeline. Because the module treats input
from any Pusher in a similar manner, Output can produce a
mixture of DataSources, Learners, or Filters. For example, it
can be used as an interface to send model classifications over
the network, or to construct logs that preserve the history of
the system. The generic design affords flexibility within the
system as well. Developers can build Output modules that
interface with existing data visualization tools and monitor
the signal in real-time at various states of the pipeline.

Figure 4. The output module can take input from one-to-many Pushers

SYSTEM DESIGN: HIDING COMPLEXITY

Simple Training: Calibrator
In many PCS, data flows through the system in two distinct
stages: training (or calibration) and testing. In the training
phase, signals are recorded during known user states to create
training examples for a model. For example, a users may be
asked to perform complicated arithmetic to capture responses
during high workload. Then in the testing phase, after the
model is constructed, predictions of user state are generated
in real time from new sensor data. While the flow of data be-
tween these two stages is similar, differentiating them within
the system can be a challenge. FlyLoop hides the engineering
behind this two-step process from the programmer by using a
Calibrator module.

The Calibrator module uses a small set of built-in functions to
communicate the labels of training data to a Learner, as well
as whether it should be calibrating or making predictions in
real-time. Each time a calibration task changes the desired
user state, that information is immediately communicated to
the Learner to associate the true label with incoming data.

We provide this minimal specification so that a developer can
use a diverse set of training tasks in the system without signif-
icantly refactoring the code. We hope that this will encourage
developers to build libraries of potential training tasks that
could be used by a variety of systems and users. Below, we
provide a simple example of a Calibrator that is designed to
differentiate between low workload and high workload.
/** A workload calibrator */
public class WLTrainer extends Calibrator {
// The user states we are trying to predict
private String[] STATES = {"low", "high"};
private NUM_TRIALS = 5;

public WLTrainer extends Calibrator(Learner learner) {
states(STATES, learner);

}

/** A naive calibration task which cycles between
training trials of low workload and high workload */
public void calibration() {
setCalibrating(true);
for (int i = 0; i < NUM_TRIALS; i++) {
this.setCurrentState("low");
// Insert call to low workload task here
this.setCurrentState("high");
// Insert call to high workload task here

}
setCalibrating(false);

}
}

Listing 2. A simple example that demonstrates the structure of the
Calibrator module

Defining Data Flow
After modules are built, the flow of data between them must
be defined. Each module may accept one-to-many sources of
data from one-to-many other modules. We share a simple ex-
ample to demonstrate the design of the Receiver class makes
these relationships straightforward:
// Sensor sends data through filter
brainSensor.setReceivers(mvgAvgFilter);
// Filter sends data to model
mvgAvgFilter.setReceivers(SVMlearner);
// Model sends data to the console
learner.setReceivers(consoleOutput);

Listing 3. Defining the data pipeline in FlyLoop

While the method appears simplistic, identifying the flow of
data through a system is often a nontrivial task in physiolog-
ical computing systems. Constraining the major design deci-
sions of the system to simple statements increases the read-
ability of the code and clarifies the biocybernetic loop to other
users. Since each module is capable of receiving information
from one-to-many modules, readability is not compromised
even as the system scales to a more complex example, as
shown in Figure 5.

Sensor Fusion
Combining data from multiple input sources is an additional
challenge for building PCS. Sensors sample at different fre-
quencies, and those frequencies can vary in their reliability.
In addition, data may be integrated at various points in a
pipeline. For example, fusion may occur directly after re-
ceiving data from the sensors or just before the model, in a
Learner. As a result, designing for any single point of fusion
limits the flexibility of the system.

We attempt to hide this complexity from the programmer by
using a system-wide polling rate that is set to match the high-
est frequency of data input. At this frequency, FlyLoop trig-
gers the push function of each module, transferring one data
point to the next module in the data stream. The system pro-
vides two default options for sensors that sample at a slower
rate: 1) data is repeated until a new point enters the stream, or
2) null values are pushed when there is no new data at a mod-
ule. While these options can be overridden by the developer,
its default behavior allows developers hide the complexity of
sensor fusion and focus on other aspects of the system.

Figure 5. An example of two potential data pipelines in FlyLoop. The first simply uses blink frequency to predict workload. The second uses a
combination of blink frequency as well as high-level features from two brain sensors. Note that output can be inserted at any point in the pipeline and
that filters can receive input from one or more sources. The framework is designed to be as flexible as possible to the developers

EXAMPLE APPLICATION: ADAPTING TO WORKLOAD
To give a clearer understanding of FlyLoop’s code structure,
we walk through the ‘complex system’ example (Fig. 5) - an
application that responds to user workload. For the sake of
brevity, we choose to highlight critical portions of the code.

First, we define each of the modules we want to use:

// Define the states we want to detect
String [] states = new String [] {"Low", "High"};
// Sensor initialization - each inherits from DataSource
EyeTracker eyeSensor = new EyeTracker();
BrainSensor brainSensor1 = new BrainSensor();
// Filter initialization - each inherits from filter
MovingAvgFilter mvgAvg = new MovingAverageFilter(200);
LowPassFilter lowPass1 = new LowPassFilter();
// Initialize an SVM using the states we want to detect
Learner svmLearner = new WekaML(states, new SMO());
// Initialize Outputs - each inherits from Output
DataLog rawData = new DataLog(’rawData.csv’);
DataLog featuresFile = new DataLog(’brainFeatures.csv’);
MyApp myApp = new MyApp();

Next, we define the flow of data in the system. We focus on
the data pipeline specifically from the brain sensors:

// Define the flow of data from the sensors
brainSensor1.setReceivers(new Receivers[] {lowPass1,

rawData});
brainSensor2.setReceivers(new Receivers[]{lowPass2,

rawData});
// Define the flow of data from the filters
lowPass1.setReceivers(new Receivers[]{ratioFilter,

meanFilter});
lowPass2.setReceivers(ratioFilter);
// Define the flow of data from the feature generators
meanFilter.setReceivers(new Receivers[]{featuresFile,

svmLearner});
ratioFilter.setReceivers(new Receivers[]{featureFile,

svmLearner});
// Define where SVM classifications are sent
svmLearner.setReceivers(myApp);

In this particular application, we decide that the n-back task (a
well-validated task from the psychology literature) is a suit-
able training task for high and low workload. So finally, we
define the Calibrator and start the system:

// Create the training task
NBackTraining nbackTask = new NBackTraining(states,

svmLearner);
// Define a system-wide polling rate
final static int POLLING_RATE = 200;
// Start the system
FlyLoop loop = new FlyLoop(nbackTask, sensors,

POLLING_RATE);
loop.go();

Using this code, we can build a system that predicts workload
in real time to pass onto an adaptive application.

DISCUSSION
In this paper, we discussed the design of the FlyLoop frame-
work, emphasizing flexibility and ease-of-use. In this section,
we will expand on the implications of its design.

Designing for Replication, Accessibility
Despite the emphasis on reproducibility in the HCI commu-
nity, replicating PCS experiments that rely heavily on com-
plex systems is challenging. With this in mind, we designed
FlyLoop to maximize system transparency and code clarity.

FlyLoop’s modular design promotes reuse, as the coupling
between modules in the framework is severely constrained by
the Pusher-Receiver model. Thus it enables interoperability
between classes/modules from different developers. In addi-
tion, because modules can be inserted midstream to an exist-
ing framework, it encourages extensions of existing physio-
logical computing systems, minimizing the overhead placed
on developers to build their own systems.

Second, the data flow definition promotes system trans-
parency by clearly defining each transition. Researchers re-
viewing a piece of code no longer need to sift through mul-
tiple objects or parse complicated looping schemes to ob-
tain a high-level view of the system. This follows closely to
Ben Shneiderman’s well known information-seeking mantra
of ‘overview, zoom and filter, details on demand’ [11].

Increasing Accessibility Beyond the Developer
While the FlyLoop framework simplifies front-facing code,
code of any kind can be intimidating to those without expe-
rience in a language. However, as physiological sensors be-
come more ubiquitous, constraining participation in any ca-
pacity is undesirable. FlyLoop’s modular design opens doors
for future extensions to broaden accessibility even beyond the
developer.

Currently, we are developing a simple, easy-to-understand
language that sits on top of FlyLoop in the form of config-
uration files. This would allow users to select components,
set parameters, and define data-flows without any interaction
with code. Configuration files could be compiled to Java code
that conforms to the definitions in our framework.

Moving forward, systems that leverage data-flows in other
domains have successfully used visual programming lan-
guages to increase participation. For example, PureData, a
tool often used in the music community, translates its modu-
lar design into a visual interface that looks similar to the con-
ceptual design we presented in Fig. 5. It has been suggested
that this visual language has increased the public outreach
in speech processing, among other sound-based analysis [8].
Given the modular construction of FlyLoop, a similar visual
language could be designed on top of the existing framework.

LIMITATIONS
While the FlyLoop framework succeeds in hiding complex-
ity from the programmer, its Pusher-Receiver design also has
limitations. Since the same modules are used in both train-
ing and classification pipeline, Filters must use algorithms
that can operate in online environments. While this design
constraint is not dissimilar to one that many researchers face
when constructing physiological computing systems, it may
make manipulations that require a global view of the data
challenging.

The online approach also limits the effectiveness of algo-
rithms whose speed are dependent on matrix operations
(which are common in languages such as MATLAB). While
we did not encounter any slowdowns in informal tests using
a commercial EEG device and eye-tracker, our design could
impact systems that have a high volume and velocity of data.

Finally, we focused on the foundations of the framework itself
instead of a rich feature set. As a result, the out-of-box capa-
bilities of FlyLoop may initially feel underwhelming. How-
ever, it is our hope that the design will encourage Output mod-
ules that interface with other open data-analysis frameworks
(such as OpenViBE), or Learner modules that interact with
popular machine-learning libraries (we currently provide an

interface with Weka). We believe that FlyLoop thrives as tool
for rapid prototyping and experimentation.

CONCLUSION
In this paper, we presented the FlyLoop framework - a simple,
lightweight Java framework for building systems that intelli-
gently react to physiological input. Rather than developing
front-end solutions for building physiological computing sys-
tems, FlyLoop acts as a minimalistic framework that empha-
sizing system flexibility and usability for developers. Maxi-
mizing code clarity at both the system and module level, we
believe that systems built with FlyLoop will be easily repli-
cable, and its modular design will encourage experimentation
and innovation of adaptive mechanisms. In addition, the fun-
damental pieces of the framework lend itself to a wider range
of inputs and outputs, functioning with any streaming input.
While the field of physiological computing systems is still rel-
atively young, we hope that with accessible frameworks such
as FlyLoop, we can broaden the demographic of developers
inventing the next generation of user interfaces.

REFERENCES
1. A. Alves, H. Silva, A. Lourenço, and A. Fred. 2013. BITalino:

A Biosignal Acquisition System based on the Arduino. Proc. of
BIOSIGNALS 2013 (2013), 261–264.

2. P.J. Durka, R. Kuś, J. ygierewicz, M. Michalska, P.
Milanowski, M. abcki, T. Spustek, D. Laszuk, A. Duszyk, and
M. Kruszyski. 2012. User-centered design of brain-computer
interfaces: OpenBCI.pl and BCI Appliance. Bulletin of the
Polish Academy of Sciences: Technical Sciences 60, 3 (2012),
427–431. DOI:
http://dx.doi.org/10.2478/v10175-012-0054-1

3. Libelium e Health Sensor Platform. 2015. (2015).
http://www.libelium.com/130220224710/

4. S.H. Fairclough. 2009. Fundamentals of Physiological
Computing. Interacting with Computers 21 (2009), 133–145.
DOI:
http://dx.doi.org/10.1016/j.intcom.2008.10.011

5. S.H. Fairclough. 2015. We Need To Talk About Clippy. (2015).
http://physiologicalcomputing.org/2015/03/
we-need-to-talk-about-clippy/

6. M. Magnaudet and S Chatty. 2014. What Should Adaptivity
Mean to Interactive Software Programmers?. In Proc. of EICS
2014. 13–22. DOI:
http://dx.doi.org/10.1145/2607023.2607028

7. T.C. Marzullo and G.J. Gage. 2012. The SpikerBox: A low
cost, open-source bioamplifier for increasing public
participation in neuroscience inquiry. PLoS ONE 7, 3 (2012).
DOI:
http://dx.doi.org/10.1371/journal.pone.0030837

8. R K Moore. 2014. On the use of the Pure Data programming
language for teaching and public outreach in speech
processing. In Proc. of Interspeech 2014. 1498–1499.

9. OpenEEG. 2015. (2015).
http://openeeg.sourceforge.net/

10. Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V.
Delannoy, O. Bertrand, and A. Lécuyer. 2010. OpenViBE: An
Open-Source Software Platform to Design, Test, and Use
BrainComputer Interfaces in Real and Virtual Environments.
Presence: Teleoperators and Virtual Environments 19, 1
(2010), 35–53. DOI:
http://dx.doi.org/10.1162/pres.19.1.35

11. B Schneiderman. 1996. The Eyes Have It: A Task by Data
Type Taxonomy for Information Visualizations. In Proc. of
IEEE VIsual Languages 1996. 336–343.

http://dx.doi.org/10.2478/v10175-012-0054-1
http://www.libelium.com/130220224710/
http://dx.doi.org/10.1016/j.intcom.2008.10.011
http://physiologicalcomputing.org/2015/03/we-need-to-talk-about-clippy/
http://physiologicalcomputing.org/2015/03/we-need-to-talk-about-clippy/
http://dx.doi.org/10.1145/2607023.2607028
http://dx.doi.org/10.1371/journal.pone.0030837
http://openeeg.sourceforge.net/
http://dx.doi.org/10.1162/pres.19.1.35

	Introduction
	Background: Accessible PCS
	FlyLoop Core Modules
	Pusher-Receiver Design
	DataSource
	Filter
	Learner
	Output

	System Design: Hiding Complexity
	Simple Training: Calibrator
	Defining Data Flow
	Sensor Fusion

	Example Application: Adapting to Workload
	Discussion
	Designing for Replication, Accessibility
	Increasing Accessibility Beyond the Developer

	Limitations
	Conclusion
	REFERENCES

