A particle is prepared in the state

$$\left|\phi\right\rangle = 0.1 \left|A\right\rangle - i \, 0.5 \left|B\right\rangle + c \left|C\right\rangle$$

What is the probability that a measurement will result in the value associated with state $|B\rangle$?

2. -0.25 **4.** *i* 0.25 **6.** 0.25

A particle is prepared in the state

$$\left|\phi\right\rangle = 0.1 \left|A\right\rangle - 0.5 i \left|B\right\rangle + c \left|C\right\rangle$$

Which of the following is a possible value for the coefficient c?

1.
$$-\sqrt{0.74}$$
3. $0.74i$
5. $0.9 + 0.5i$

2. 0.74
4. 0.4
6. $\sqrt{0.4}$

A ball is spinning with an angular momentum with magnitude L and pointing in the +z-direction (toward the ceiling), so that $L_z = +L$. We now measure the component of spin angular momentum in the x direction, i.e., the horizontal component. What will we find for L_x ?

1. 0 **4.** Either
$$-L/2$$
 or $L/2$

- **2.** L/2 **5.** Either -L or L
- **3.** L **6.** Anything between -L and L

Consider an electron with its spin oriented along the +z direction, so $|\psi\rangle = |+z\rangle$. If you measure S_z you will get $+\hbar/2$.

What will you get if you measure the x component of the spin angular momentum?

1. 0 **3.**
$$-\hbar/2$$

2. $+\hbar/2$ **4.** Either $+\hbar/2$ or $-\hbar/2$, but you don't know which.

What can you do to flip a proton's spin such that its magnetic field points in the direction opposite an external magnetic field?

- 1. You don't have to do anything. It naturally wants to point in that direction.
- **2.** Send in a photon with energy $\mu_p B$
- **3.** Send in a photon with energy $2\mu_p B$
- 4. Send in a photon with energy $-\mu_p B$
- 5. There isn't anything you can do to flip the proton.