Pages
Part 1 Michelson Optics 1-14
Part 11 Fabry-Perot Optics 15-29
Part lll Replacement Optics 30

MICHELSON OPTICS

The Atomic L三joratories M-4 Interferometer is fabricated with Michelson Ootics, with Fabry-ferat Optics, or with a combination of both. The Micnelson front surface mirrors and beam splitter and the fajry-Ferot mirrors must be treated aith the utmost respect. They are never to be touched without wearing gloves, and then only sparingly. Dust may be cleaned from the mirrors oy means of the camel's heir brush which is shipped with each instrument. Otiner matter mey ce removed, it adosolutely recessary, with a soit cloth or piece ci lens paper brushed ever so lightly ageinst the surface. When the interíerometer is stored. it should be covered at a!l times with the plestic bee. It is also a gooc icea to keep the lens covers over the optics when they are not in use.

When the ri-4 literíerometer is orderad with onl/ one set ot cotics, the other set may be orceres at any future dete and eesily installed by removing tine masking tape on the interferometer chassis and cerriage and inserting the screws in the indicatミd nolas. The following unpecking irstructions apoly to the interíerometer irregardisss of the type of optics.

Unoackinc: Eently remove the cardboard insert which holds tine interiarcmeter in place, being Extremely carefiul not to rub or pusi it against the optics while lifting it out. Place the interfercmeter on a level surfiece and remove the plastic eover, as well as tine lens covers. Remcve the tape which holds the carriage in place.

Light Source: The $\mathrm{Ml}-4$ Interierometer will operate with any standerd mercury or sodium light source, including Atomic Laboratories' own monochromatic mercury light source. To operate the source, insert lamp, either one or both of the two ditfuser pletes, and, if desired, the green Wratten filter. If used.with the Michelson Optics, the light source should de positioned as shown in the photograph. The light should enter the beam splitter at a 45° ancle. DANGER: ULTRAVIOLET PAYS CAN severely daivage the eye. the diffuser plates ABSORB THESE PAYS: IF THEY SHCLLL BE REMCVED OR BROKEN, THE EXPOSED LAMP BECCMES EXTREMELY DANGEROUS:

Adiustment: Move the carriage until mirror number 2 is approximately the same distance from the beam splitter as the fixed mirror number 1. This distance is generally about 12.5 cm ., but it should be checked with a ruler. It should be measured from the coated side (left side) of the beam splitter in each case. Now tighten the carriage lock screw to hold the cerriage firmly in place. Turn on the light source, which is in the position previously described. The next step is to bring the mirrors into exact perpendicularity. The adjustment san be accomplished as follows:

Turn on the i igh: source ard observe the focusing pin* which is situated between tine i ight sourse and the beam splitter. Two images of the pin will be seen, one coming trom the reflection at the front surface of the beam splitter, the other from rine reflection at its back surface.

Line up the vertical positions of the focusing pin. This can be done by means of the adjusting serew of mirror number l. The adjusting serew of mirror number 2 will line up the focusing pin horizontally. When only one image of the pin is achieved, fringes should appear. To best observe these fringes, look straigh. into the back mirror from the fron of the inierierometer.

It takes a little praciice to obtain the fringes. As stated previously, before touching tite adjusting screws, make certain that tie two mirrors are equally disient from the eeam splititer. When the fringes iirst appear they can be sharpened by very careinl and minute adjustment of the screws. If the adjustment is accompilishec in a room with a great deal ot vibration or on an unsteed: table, the fringes will soon disappear.

Often onl: very rinin end blurred fringes will be seen in the beginning. A good tecinique is to line them up vertically or horizontally (see below) by adjusting one mirror. Then by centering in with the other mirror, the iringe curvature will be increased until tinally the center appears. Be sure while making thesa adjustments that the mirror is moved in the direction of the fringe's decreased radius of curvature.

MAINTENANCE: Every six months remove carriage and wipe steel ways with clean rag containing a few drops of three-in-one oil. Ways must be spotlessly clean and free of dust, dirt, or rust for efficient operation.

EXPERIMENT 1: Determination of the Wave Length of Monochromatic Liaht.
Procedure: Use Atomic Laboratories' Mercury Light Source, with a Wratten Number 74 filter or equivalent. Once a good pattern of fringes has been obtained, take a reading of the micrometer head. By turning the head, the carriage can be moved slowly in either direction. Count the fringes as they pass by the focusing pin or as they appear or disappear in the bull'seye. For satisfactory precision, count at least one hundred fringes. After counting them off, take a new reading of the micrometer head. From the number of fringes passed over, Δn, and the distance traversed by the mirror, we may determine the wave length of the monochromatic light by means of

[^0]the formu!e:
$$
2\left(d_{1}-d_{2}\right)=\lambda \Delta n
$$

The distence travelled by the mirror in centimeters is given by

$$
\left(d_{1}-d_{2}\right)=0.10\left(D_{1}-D_{2}\right) \times k
$$

where ($D_{1}-D_{2}$) is the change of the micrometer reading in milimeters and K is the ratis of carriage movement to micrometer screm reading. For the in-4 Interierometer $K=0.020$
whence:

$$
\lambda=\frac{2(0.10)\left(0_{1}-0_{2}\right) K}{\Delta n} \mathrm{~cm} .
$$

The correct value for the wavelength of green mercury lignt is $5450.740 \AA$ ($1 \dot{A}=1 \times 10^{-3} \mathrm{~cm}$). You may u ish to use this corract value of the wevelength to obtein a more exact value for K, since there are some veriations in menutacturing conditions of the instrument.

Discussion: An Interferometer is generally defined as an optical instrument which produces interference patterns by the division of one beam of light into one or more parts. These parts travel different paths and are then ultimately brought togetiner to yield theinterference effects. The resultant patterns depend on the opical paths traversed by the several beams. Consequently, the Interfarometer determires differances in ootical oaths. Since the optical path is the product of refractive index μ by path length d, it is clear that if the several beams traverse media of the seme μ, a measure of the patin length d is given. Conversely, if the path lengths d are equal (or at least constant) then the refractive index is determined. Thus, the Interferometer may be used to measure any of these three quantities: (1) Geometrical path lengin, (2) Optical path lencth, (3) Refractive index.

Determination ot optical path length is of importance in technical applications. Measurement of indices of refraction will be the subject of experiments numbers 4 and \mathfrak{j}. In this experiment, however, we have been concerned with geometrical path length.

If the difference between the separations of the two full-silvered mirrors from the half-silvered one (beam splitter) is d, then the difference of geometrical path length for the two central (normal) rays is 2d, because the distance d is traversed once in each direction. Consequently, the condition for constructive interference for the central rays is:

$$
2 d=n \lambda
$$

Where λ is the wave length of the light and n is an integer. Actually because of the difference between internal and external reflections at silvered surfaces a phase reversal of one of the rays may result, in which case the above condition would be appropriate to destructive interference, and that for constructive interference would be:

$$
2 d=(n+1 / 2) \lambda
$$

Sircs we measure fringe shifts here，which condition applies is of no consequence and the formula which is applicable is：

$$
2\left(d_{1}-d_{2}\right)=\lambda \Delta n
$$

Where（ $d_{1}-d_{2}$ ）is the distance the cerriage is moved to cause the appearance or disappearance of Δn fringes at the center．

Using the cal ibration given above and the readings of the micrometer heac（before and after carriage motion）the wave length is determined by use of tine ejove formula，by substituting the eppropriate values of（ $d_{1}-d_{2}$ ） and -n into it．

EKPE＝MENT 2：Measurament of Sodium Soublet Sedaration．
Procseurs：Tine sodium doublet consisis of two yellow spectral lines，heving Maveiengths of 5890 and 5396 A．The $5 \approx 90$ ì line is taice as intense as the 5çe d．line．

Use a sodium lignt sourcミ（三．ミ．Cenco Numicer 87300 ）to establisit a stra！git line fringe pettern．Therミ ミrミ now two sets of fringe patiems formed，one for each line of the doublist．Loosen the carriage lock screw and move the carriage by hand and obserye that the yellow iringes pass a！ternately from a cond ition of high contrast to one of almost compiete diseppearance． This letter condition occurs when one set of fringes is half way bet：ween the other set．Fix the carriage at one of the conditions of most complete disappearance by tightening the cerriage lock screw and read the micrometer head．By turning the micrometer head，move to the next condition of most comolete diseppearance and read the nead egain．Repeat．Calculate the average distance d between conditions of disappearance．We can now calculate the difierence in wavelencths of these tmo lines as follows：

At the first micrometer reading：

$$
2 d_{1}=m_{1} \lambda_{1}=\cdot\left(m_{1}+n+1 / 2\right) \lambda_{2}
$$

Where λ_{1} is greater than λ_{2} ．The term on the right hand side indicates that the order of the shorter wavelength fringe difiers from that of the longer wavelength fringe system by an odd helt integer．This is true since the condition of disappearance of the fringe system occurs when one system is just halfway between the other．For the second reading，we have：

$$
2 d_{2}=m_{2} \lambda_{1}=\left(m_{2}+n+3 / 2\right) \lambda_{2}
$$

By subtraction we obtain：

$$
2\left(d_{2}-d_{1}\right)=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}-\lambda_{2}}
$$

Since λ_{1} and λ_{2} are approx imately equal，we then obtain：

$$
\lambda_{1}-\lambda_{2} \div \Delta \lambda=\lambda^{2} / 2 d
$$

Where \therefore is the average wavelensri, and $d=d_{2}-d_{1}=0.10\left(D_{2}-0_{1}\right) K$.
The average wavelencth can be measured by repeating Experiment 1 using the Scdium lamp as the light source.

EXPERI位NT $3:$ Observation of White Light Frinces.
Frocedure: In order to observe fringes with a source of white light, it is best to edjust the Interieromerer to obtain the so-called localized fringes. This is done by edjusting one ot the mirrors slightly so as to destroy the condition of exact perpendicularity. The fringe petiern now will consist oi curved, horizontal or verticel stripes. Next, a position of neerly zero path length is searched for. This position is cheracterized by the fect that. the striped pe-tern will become mos- neerly streight when the condition is ach ieved.
dit this point an extended white lignt source may be substituted for the moncchromatic source, and a very slow motion of the carriage will brinc the white light fringes into view. White fringes are especially important in the Michelson Interferometer in that they give a precise indication of the position oi zero optical path length difference.

An ordinary, frosted, incandescent lemp or even bright sunlight will serve very well as the light source for this experiment. The lamp can be placed ben ind the monochromatic light and turned on in the beginning of the experiment. When zero peth length is obtained, simply turn oft the monochromatic light.

Another means of obtaining zero patin length is to construct a "T" by separating a diffuser plate with cardboard or black paper (see drawing). Place a monochromatic light source on one side, a white light source on the other, and turn both of them on. With this method it is not necessary to ootain localized fringes. Once any frinces have been obtained--they will appear in the left side of the mirror--loosen carriage lock screw and
 move carriage slowly by hand until the right side of the mirror flashes briefly with color. Tighten cerriage lock screw. Search either way from this direction, and the white light fringes, which have the appearance or small spectra, will be finally located.

Discussion: Only a few white light fringes are observed. This is accounted for when we recall that white light consists of all wave lengths of visible light. Apart from. the central fringe, the various interference patterns (for different wave lengths) will overlap. A colored fringe is violet on the side neerer to the central fringe and red on the other.

EXPERIMENT 4: Index of Sefraction of a Transoarent Solid.

Procedure: For the purpose of performing this experiment it will be necessary to construct a sample holder which is capable of positioning the sample eccurately between the beam splitter and the fixed mirror (mirror number 1).

The holder must be cミこミう！：of giving a slow rotation of the sample，through a measureadle angle．

When the holder has been attached to the interierometer and with the sample positioned normal to the beam，the instrument is aligned to produce circular monochromatic iringes．When this has been achieved，rotate the sample througn en angle sutficient to produce a shift of a few nundred fringes．Count the number of fringes．The index of refraction of the sample is then given by the formula：

$$
2 \Delta(\mu x)=\lambda \Delta n
$$

where $\Delta(\mu x)$ is the incrasse in uptical path produced by the rotation．
For a given angle of rotation θ ，fringe shift Δ ，and wave length λ, μ is eva！uated as follows：

Reforring to the diagram：
Optical path before rotation $=, ~ \overline{A B}+\overline{B C}$
Optical path after rotation $\boldsymbol{p}_{\boldsymbol{\mu}} \overline{A D}+\overline{D E}$
Angle of rotation $=\theta$
$\overline{A D}=t \sec \phi$
$\overline{A B}=t$
$\overline{D E}=\overline{C E} \tan \theta$

$$
\overline{C E}=\overline{A D} \sin (\theta-\phi)=+\sec \phi \sin (\theta-\phi)
$$

$\overline{D E}=t \sec \phi \sin (\theta-\phi) \tan \theta$
$\overline{B C}=t \sec \theta-t$

$\frac{\lambda \Delta n}{2}=\mu+\sec \phi+t \sec \phi \sin (\theta-\phi) \tan \theta-\mu t-t \sec \theta+t$
$\sec \phi \tan \theta \sin (\theta-\phi)=(\tan \theta-\tan \phi) \sin \theta$
$\lambda \frac{\Delta n}{2}=+\left(\frac{\mu-\sin \theta \sin \phi}{\cos \phi}\right)++(1-\cos \theta-\mu)$
ϕ and θ are related by $\frac{\sin \theta}{\sin \phi}=\mu$ so
$+\left(\frac{\mu-\frac{1}{\mu} \sin ^{2} \theta}{\sqrt{1-\frac{1}{\mu^{2}} \sin ^{2} \theta}}\right)++(1-\cos \theta-\mu)=\frac{\lambda \Delta n}{2}$
$\frac{\lambda \wedge n}{2}=+\sqrt{\mu^{2}-\sin ^{2} \theta} \div+(1-\cos \theta-\mu)$
$t^{2}\left(\mu^{2}-\sin ^{2} \theta\right)=\left(\frac{\lambda \Delta n}{2}\right)^{2} \div t^{2}\left(\mu^{2}+\cos ^{2} \theta+1+24 \cos \theta-2 \mu-2 \cos \theta\right)$

$$
+\lambda+\Delta n(\mu+\cos \theta-1)
$$

Neglecting tha term $\left(\frac{\lambda n}{2}\right)^{2}$ (because it is very small) and simplifying gives

$$
\mu=\frac{\left(t-\frac{\lambda \Delta n}{2}\right)(1-\cos \theta)}{t(1-\cos \theta)-\frac{\lambda \Delta n}{2}}
$$

Any transparent material available in suitable shape and size will be satisfactory. One must bear in mind that index of refraction depends on wave length and that, therefore, different results will be obtained for different colors of light.

EXPERIMAENT 5: Index of Refraction of 3 Ges

Procedure: For this experiment $i t$ is necessary to construct a gas cell with plane, flat transparent surfeces normal to the beam diraction. The cell must be capable of being evacuated. It must also be possibla to introduce the gas sample at a known temperature and pressure. It is, of course, necessary to introduce the sample sufficiently slowly that the fringe shift can be determined. The index of refraction of the gas is then given by

$$
2(\mu-1) \dagger=\lambda \Delta n
$$

where t is the geometrical path length through the cell. Here the quantity μ depends on the pressure and temperature of the gas according to the LorentzLorenz Law.

A simple gas cell has been described by T. G. Bullen in Am. J. Phys. 27, 520 (1959). The following description is from his article:

A cell can be readily constructed from a piece of brass tubing about 4 cm in diameter and 6 to 7 cm long. The ends of the tubing should be turned true in a lathe and a side tube attached for pumping. Thin plate glass squares, carefully cleaned with alcohol, are then fitted to the ends with Tackiwax Central Scientific Co., Catalog No. 11444). The cell is placed in the uncompensated arm of the interferometer and attached to a ballast bottle of about five-liters capacity, fitted with a stop cock for admitting air and for connection to a vacuum pump. On pumping down the systern the iringe pattern altars in a staccoto fashion, very rapidly at first and then more slowly as vacuum is attained. Leaks can be detected if the pattern is observed to alter when pumping is complete. By admitting air slowly through the stop-cock it is possible to count the fringe displacement from vacuum to atmospheric pressure. For guses other than air the determination can be made by admitting the ges via the stop-cock. The ballast bottle permits fine control of the rote of tringe displacement without the use of a needle valve. For air, a displacement of about 60 tringes is obtained for a $6-\mathrm{cm}$ cell; reasonable accuracy for the refractive indices of gases can be attained.

EXPERIAKIT 6: Datermining Thicknass of Thin Transparent films of Organic or Inorganic Materials.

A method of determining the thickness of such films is outlined here. This method mill serve to determine: (1) Refractive index, if thickness is known; and (2) Thiekness, if refractive indees is known.

Frocedure:

i. Sat up the Interferometer as shown below. First the instrument is adjusted to show white light fringes in left half of the field and showing the black band (see Fig. I next page).

2. Set up a telescope for viewing the bands. The reticule used in the ocular should be ruled so that there are about 20 divisions to either side of center. The micrometer scraw is used to bring the center of the black band to the center line of the reticule. Fig. I shows this condition minus the image of the raticula. Substituted, in the drawing, for the canter line of the reticule is the symbol, \triangleright.
3. If now the film to be measured is placed somewhere in optical path isl of the instrument and positioned so as to appear in part of the white fringe area as shown in fig. II, it will be noticed that the white light fringes have disappeared in the portion of light path that nu: passes through the film. This is due to the fact that the filn has caused the optical path ifl to appear longer due to the refractive index of the film. To return the black band so it shows in the file, the optical path ir2 must be lengthened.
4. The micrometer screw is slowly turned toward higher readings so that the carriage moves fartiner from the beam soli-ter.
':lhile this is done a caraful count must be made of the hig light fringes, one by one, as they pass any given fixed position until the black band is visible through the film and in its original horizontal position as in fig. III

5. To detarmine the thickness, the formula given in Experiment 5 is used as follows:

$$
t=\frac{\lambda \operatorname{air} \Delta n}{2(\mu-1)}
$$

where

$$
\begin{aligned}
t & =\text { Thickness } \\
\Delta n & =\text { Number of fringes passed over } \\
\mu & =\text { Index of refraction of the film material } \\
\lambda_{\text {air }} & =\text { Wave length of } H g \text { light }=5460 \AA
\end{aligned}
$$

For example, suppos $\Delta_{n}=10, \mu=1.5$, then

$$
t=\frac{10 \times 5460}{2 \times .5}=54,600 \dot{A}=5.46 \mathrm{micron}=.00546 \mathrm{~mm} .
$$

6. In measurement of very thin films where the displacement is less than one fringe (see Fig. V) measure as follows:

$$
D_{1}=1 / 4 D_{2}
$$

and D_{2} corresponds to $1 / 2$ wave length path difference ($\Delta n=1 / 2$). Therefore

$$
\Delta n=1 / 4 \times 1 / 2=1 / 8
$$

Again, essuming $\mu=1.5$, the thickness is given as beiore by

$$
t=\frac{1 / 8 \times 5460}{2 \times .5}=582 \AA
$$

EXPE: IMENT 7: Determinetion of Wave Lenath Differences fur the Ealmer Lines of Hydroaen and Desterium.

Procsdure: For this experiment a Heavy Water Balmer Tube light source is used with the M-4 Interierometer. A Number 16 Wratten filter or equivalent is necessary for coservetion of the red Balmer lines, and a Number 45 Wratten filter or equivalent is necessary for observation of the blue Balmer lines without interfersnce from the other lines of the Balmer series. A cylindrical lens of about 2.5 inches focal length (or about 15 diopters) placed approximately 2 inches from the Balmer tube is helpful in providing more uniform illumination to the field viewed in the interferometer. A diffuser plate (ground glass or wexed peper) and the appropriate filter are located between the cylindrical lens ard the interferometer.

With the Number 15 Wratten filter or equivalent in place, obtain a good pattern of fringes. The wavelength of the red Balmer line may be determined using the procedure of Experiment 1.

Loosen the carriage lock screw. Now, with the bull's eye in view, place a thumb on each side of the interferometer base, and index and middle fingers on each side of the carriage. Very gently push the carriage until the bull's eye disappears. Place a centimeter scale on top of the beam splitter and the compensator. Measure the distance between the index marks in the top center of the beam splitter and compensator frames. Estimate distances to 0.1 millimeters. Again gently push the carriage. The bull's eye will reappear and then again disappear. Measure the distance between index marks. Repeat this procedure for five to ten successive disappearances of the bull's eye. In reducing the data only the initial and final measurements are used. However, a reasonable uniformity of the differences between intermediate measurements ensures that a disappearance of the bull's eye has not been missed in moving the interferometer carriage.

Between successive disappearances of the bull's eye, we heve moved the carriage one more wavelengith for the shorter wavelength line than for the longer wave length line.

$$
2\left(d_{2}-d_{1}\right)=\lambda_{1} \Delta \Omega=\lambda_{2}(\Delta n+1)
$$

Where $\left(d_{2}-d_{1}\right)$ is the distance the carriage is moved between successive disappearances of the bull's eye. However,

$$
\lambda_{1}=\lambda_{2}+\Delta \lambda_{0}
$$

Thus,

$$
\lambda_{2}=\Delta n \Delta \lambda
$$

$$
2\left(d_{2}-d_{1}\right)=\frac{\lambda_{2} \lambda_{1}}{\Delta \lambda}
$$

Since λ_{1} is approximately ecual to λ_{2}, we have:

$$
\Delta \lambda=\frac{\lambda^{2}}{2\left(d_{2}-d_{1}\right)}
$$

An example of data taken and its reduction is given below.

$$
\begin{aligned}
& \lambda=\frac{2\left(d_{2}-d_{1}\right)}{\Delta n}=\frac{4 \times 10^{-3}\left(D_{2}-D_{1}\right)}{\Delta n}=\frac{4 \times 10^{-3}(17.23-12.28)}{300}=6.6 \times 10^{-5} \mathrm{~cm} . \\
& \begin{array}{ll}
\text { Disappearance } & \text { Distance between } \\
\text { of Bull's Eve } & \text { Index Marks (cm) }
\end{array} \quad \begin{array}{l}
\text { Distance Eetween }
\end{array} \\
& \text { Disapoerances }
\end{aligned}
$$

0
7.85
7.96
8.08
8.20
8.32
8.45
8.57
8.69
8.80
8.92
0.11
0.12
0.12
0.12
0.13

5
6
7
8
9
0.12
0.12
0.11
0.12

$$
\begin{aligned}
& d_{2}-d_{1}=\frac{1.07}{9}=0.119 \\
& \Delta \lambda=\frac{\lambda^{2}}{2\left(d_{2}-d_{1}\right)}=\frac{\left(6.6 \times 10^{-5}\right)^{2}}{0.238}=1.83 \times 10^{-8} \mathrm{~cm} .
\end{aligned}
$$

More accurate values for the red lines are:
$\lambda=6563$ Angstrom Units for $H \alpha$ and $\Delta \lambda=1.79$ Angstrom Units.

With the Number 45 Wratten filier or equivalent in place, the experimant may be performed for the blue Ealmer line. An example of data taken and its reduction is given below.

$$
\begin{array}{ll}
\lambda=\frac{2\left(d_{2}-d_{1}\right)}{\Delta n}=\frac{4 \times 10^{-3}\left(0_{2}-0_{1}\right)}{\Delta n}=\frac{4 \times 10^{-3}(15.53-11.90)}{300}=4.9 \times 10^{-5} \mathrm{~cm} . \\
\begin{array}{ll}
\text { Disappearance } & \text { Distance between } \\
\text { of bull's eve } & \text { Disex Marks }(\mathrm{cm})
\end{array} \quad \text { Distance Between }
\end{array}
$$

$$
0.10
$$

$$
0.09
$$

$$
0.09
$$

$$
0.09
$$

$$
0.09
$$

More accurate values for the blue lines are:
$\lambda=4861$ Angstrom Units for HE and $\Delta \lambda=1.33$ Angstrom Units.

Discussion: According to the Bonr theory, the wavelength of a spectrum line can be expressed by the formula:

$$
-\frac{1}{\lambda}=\frac{2 \pi^{2} m e^{c} \underline{z}^{2}}{\operatorname{cn}^{2}}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

Where $\quad \lambda$ is wavelength
m is the mass of the electron
e is the charge of the electron
Z is the charge of the atomic nucleus
c is the velocity of light
h is Planck's constant
n l is the quantum number of the initial state
n_{2} is the quantum number of the final state.
The Rydberg constant $R=2 \pi^{2} \mathrm{me}^{4} / \mathrm{ch}^{3}$ so that

$$
\frac{1}{\lambda}=R Z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

However, the electron does not rotate about a stationary nucleus but instead, both the electron and the nucleus rotate about the center of mass of the system. Thus the mass of the electron m should be replaced by the reduced

$$
\begin{aligned}
& 0 \quad 8.03 \\
& 1 \\
& \text { e. } 15 \\
& 2 \\
& 3 \\
& 4 \\
& 0.22 \\
& \text { E. } 31 \\
& 8.40 \\
& 5 \\
& 3.49 \\
& d_{2}-d_{1}=0.45 / 5=0.092 \\
& \Delta x=\frac{\lambda^{2}}{2\left(d_{2}-d_{1}\right)}=\frac{\left(4.9 \times 10^{-5}\right)^{2}}{0.184}=1.31 \times 10^{-8} \mathrm{~cm} .
\end{aligned}
$$

mass

$$
\frac{m}{1 \div \frac{m}{M}}
$$

where M is the mass of the nucleus.

For the nucleus of hydrogen $M=1837 \mathrm{~m}$ and for the nucleus of deuterium $M=3674 \mathrm{~m}$. Thus the Rydberg constant is slightly different for deuterium than for hydrogen. For hydrogen $R=109677.759$. For deuterium $R=109707.387$. For a nucleus of infinite mass $R=109737.424$.

In the Eon r theory formula above $Z=1$ for hydrogen and deuterium. For the Delmer series $n_{1}=2$. The red line $H_{\alpha^{\prime}}$ corresponds to $n_{2}=3$ and the blue line H_{p} corresponds to $n_{2}=4$.

References:
H. E. White, Introduction to Atomic Soectra, McGraw-Hill, 1934, pp. 27-38.
G. Herzberg, Atomic Spectra and Atomic Structure, Dover 1944, po. 19-26, 182-183.

[^0]: * The focusing pin is removable from the carriage.

