n succeeding chapters we shall study the phenomena of
polarization, interference, and diffraction. These all share a
common conceptual basis in that they deal, for the most part,
with various aspects of the same process. Stating this in the
simplest terms, we are really concerned with what happens
when two or more lightwaves overlap in some region of space.
The precise circumstances governing this superposition deter-
mine the final optical disturbance. Among other things we are
interested 1n learning how the specific properties of each con-
stituent wave (amplitude, phase, frequency, etc.) influence the
ultimate form of the composite disturbance.

Recall that each field component of an electromagnetic
wave (E,, E,, E;, B,, B,, and B.) satisfies the scalar three-
dimensional differential wave equation,

Py 1 dY

+ + =— — 2.60
ax> 9yt 9 vP oar [2.60]

A significant feature of this expression is that it is linear;
Yi(r, 1) and its derivatives appear only to the first power. Con-
sequently, if s (r, 1), Ya(r, 1), ... , Y (r, t) are individual solu-
tions of Eq. (2.59), any linear combination of them will, in
turn, be a solution. Thus

Wir, 1) = > Capdr, 1) (1.1)
i=1

satisfies the wave equation, where the coefficients C; are sim-
ply arbitrary constants. Known as the Principle of Superposi-
tion, this property suggests that the resultant disturbance at
any point in a medium is the algebraic sum of the separate
constituent waves (Fig. 7.1). At this time we are interested

ey

So
< il
O

n

FIGURE 7.1

The superposition of two disturbances.
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only in linear systems where the superposition principle is
applicable. Do keep in mind, however, that large-amplitude
waves, whether sound waves or waves on a string, can gener-
ate a nonlinear response. The focused beam of a high-intensi-
ty laser (where the electric field might be as high as 10'°
V/cm) is easily capable of eliciting nonlinear effects (see
Chapter 13). By comparison, the electric field associated with
sunlight here on Earth has an amplitude of only about 10
V/om.

In many instances we need not be concerned with the vec-
tor nature of light, and for the present we will restrict ourselves
to such cases. For example, if the lightwaves all propagate
along the same line and share a common constant plane of
vibration, they can each be described in terms of one electric-
field component. These would all be either parallel or antipar-
allel at any instant and could thus be treated as scalars. A good
deal more will be said about this point as we progress; for
now, let’s represent the optical disturbance as a scalar function
E(r, t), which is a solution of the differential wave equation.
This approach leads to a simple scalar theory that is highly
useful as long as we are careful about applying it.

7.1 THe ApbiTioN oF WAVES OF THE
SAME FREQUENCY

There are several equivalent ways of mathematically adding
two or more overlapping waves that have the same frequen-
cy and wavelength. Let’s examine these different approach-
es so that, in any particular situation, we can use the one
most suitable.

7.1.1 The Algebraic Method

A solution of the differential wave equation can be written in

the form
E(x, t) = Eysin [wt — (kx + &)] (7.2)

in which Ky is the amplitude of the harmonic disturbance prop-
agating along the positive x-axis. To separate the space and
time parts of the phase, let

afx, g) = —(kx + ¢

(7.3)

so that
E(x, 1) = Ey sin [wt + a(x, €] (7.4)
Suppose then that there are two such waves
E] = E()] Sin ((Uf + CY]) (75:1)
and Ez = E()z sin (wt + CY:)_) (75b)

each with the same frequency and speed, coexisting in space,
The resultant disturbance is the linear superposition of these
waves:

E=FE +E>
or, on expanding Egs. (7.5a) and (7.5b)
E = Egy (sin wr cos «; + cos wt sin @)
+ Eg (Sin w? cos a, + cos wi sin as)

When we separate out the time-dependent terms, this
becoies

E = (Ey cos a) + Eg, cos tp) sin wt
+ (Eg; sin @y + Egy sin @) cos wt (7.6)
Since the parenthetical quantities are constant in time, let
Egcos a = Ey; cos a; + Ey, cos oy (1.7)

and Eqsin o = Egy sin @y + Egp sin «n

(7.8)

This is not an obvious substitution, but it will be legitimate as
long as we can solve for £y and «. To that end, square and add
Eqgs. (7.7) and (7.8) to get

E:é = E%l + E%z + 2E01E02 Cos (ag_ - (11) (79)
and divide Eq. (7.8) by (7.7) to get
@ = E01 sin g + EO?_ sin (053 (710)

Egy cos'a; + Egs cos ap
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Provided these last two expressions are satisfied for Ey and «,
the situation of Egs. (7.7) and (7.8) is valid. The total distur-
bance [Eq. (7.6)] then becomes

E = Ey cos « sin wt + Eg sin « cos wt
or : . E= EoSm((oz +a) _— .11

A single disturbance results from the superposition of the sinu-
soidal waves E| and E,. The composite wave [Eq. (7.11)] is
harmonic and of the same frequency as the constituents,
although its amplitude and phase are different.

Note that when Ey; >> Ey,in Eq. (7.10), o = o, and when
Eops >> Ep), @ = a5, the resultant is in-phase with the domi-
nant component wave (take another look at Fig. 4.11). The
flux density of a lightwave is proportional to its amplitude
squared, by way of Eq. (3.44). It follows from Eq. (7.9) that
the resultant flux density is not simply the sum of the compo-
nent flux densities; there is an additional contribution
2Eq.Eq; cos (a; — ay), known as the interference term. The
crucial factor is the difference in phase between the two inter-
fering waves E| and E;, 8 = (a3 — a;). When é = 0, =2,
+4q, ... the resultant amplitude is a maximum, whereas 8 =
*a, =37, ... yields a minimum (Problem 7.3). In the former
case, the waves are said to be in-phase; crest overlaps crest. In
the latter instance, the waves are 180° out-of-phase and trough
overlaps crest, as shown in Fig. 7.2, Realize that the phase dif-
Jerence may arise from a difference in path length traversed by
the two waves, as well as a difference in the initial phase
angle; that s,

o= (kx1 + El) - (k.X2 + 82) (712)
or o= 2T7T (x; —x2) + (g — &) (7.13)

Here x, and x, are the distances from the sources of the two
waves to the point of observation, and A is the wavelength in
the pervading medium. If the waves are initially in-phase at
their respective emitters, then £, = &, and

2
5= (x — x) (7.14)
A
This would also apply to the case in which two disturbances

from the same source traveled different routes before arriving
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at the point of observation. Since n = ¢/v = Ag/A,

5 :-Zin(xi ~x) o (115)
: Ag I

The quantity n(x; — x,) is known as the optical path differ-
ence and will be represented by the abbreviation OPD or by
the symbol A. It’s the difference in the two optical path
lengths [Eq. (4.9)]. It is possible, in more complicated situa-
tions, for each wave to travel through a number of different
thicknesses of different media (Problem 7.6). Notice too that
A/Ao = (x; — x5)/A is the number of waves in the medium
corresponding to the path difference; one route is that many
wavelengths longer than the other. Since each wavelength is

E=E+E,

e

FIGURE 7.2 The superposition of two harmonic waves in-phase
and outof-phase.
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associated with a 2 radian phase change, § = 2mw(x; — x2)/A,
or

& = koA (7.16)
ko being the propagation number in vacuum, that is, 27/Ag.
One route is essentially & radians longer than the other.

Waves for which g; — &, is constant, regardless of its val-
ue, are said to be coherent, a situation we shall assume obtains
throughout most of this discussion.

One special case of some interest is the superposition of the
waves

E1 = EOI sin [(L)T - k(l + Al)]
and E, = Ey sin {wt — kx)

where in particular Egy= Eg, and oy — ay = k Ax. Ttis left to
Problem 7.7 to show that in this case Eqgs. (7.9), (7.10), and
(7.11) Iead to a resultant wave of

k m) sin [a)r —k (x + Eﬂ (7.17)
2 2

This brings out rather clearly the dominant role played by the
path length difference, Ax, especially when the waves are
emitted in-phase (g, = &). There are many practical instances
in which one arranges just these conditions, as will be seen lat-
er. If Ax <<<CA, the resultant has an amplitude that is nearly
2Eq;, whereas if Ax = A/2, it is zero. Recall that the former
situation (p. 21) is referred to as constructive interference,
and the latter as destructive interference (see Fig. 7.3).

By repeated applications of the procedure used to arrive at

E = 2Ey; cos (

Eq. (7.11), we can show that the superposition of any number
of coherent harmonic waves having a given frequency ang
traveling in the same direction leads to a harmonic wave of
that same frequency (Fig. 7.4). We happen to have chosen tq
represent the two waves above in terms of sine functions, byt
the same results would prevail if cosine functions were used,
In general, then, the sum of N such waves,

n
E= Z Eq; cos (a; = wt)
i=1

is given by

E = Eycos (o £ wt) (7.18)
where
M\ ﬁ" N
Ej=> Ey+2> > EgEgcos(a;—a) (119
i=1 JEii=
ﬁ:
\L" EO[ Sin (a5
and tan o = ':,l (7.20)

T Eqi cos

=1

Pause for a moment and satisfy yourself that these relations
are indeed true.

Consider a number (N) of atomic emitters constituting an
ordinary source (an incandescent bulb, candle flame, or dis-
charge lamp). A flood of light is emitted that presumably cor-
responds to a torrent of photons, which manifest themselves
en masse as an electromagnetic wave. To keep things in a
wave perspective, it’s useful to imagine the photon as some-

FIGURE 7.3 Waves out-ofphase by kax

radians.
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FIGURE 7.4 The superposition of three har-
monic waves yields a harmonic wave of the
same frequency.

how associated with a short-duration oscillatory wave pulse.
Each atom is effectively an independent source of photon
wavetrains (Section 3.4.4), and these, in turn, extend in time
for roughly 1 to 10 ns. In other words, the atoms can be
thought of as emitting wavetrains that have a sustained phase
for only up to about 10 ns. After that a new wavetrain may be
emitted with a totally random phase, and it too will be sus-
tained for less than approximately 10 ns, and so forth. On the
whole each atom emits a disturbance {(composed of a stream of
photons) that varies in its phase rapidly and randomly.

In any event, the phase of the light from one atom, «;(1),
will remain constant with respect to the phase from another
atom «;(t), for only a time of at most 10 ns before it changes
randomly: the atoms are coherent for up to about 10~ ¥ 5. Since
flux density is proportional to the time average of Ej, general-
ly taken over a comparatively long interval of time, it follows
that the second summation in Eq. (7.19) will contribute terms
proportional to {cos[a,(t) — a;(1)]), each of which will average
out to zero because of the random rapid nature of the phase
changes. Only the first summation remains in the time aver-
age, and its terms are constants. If each atom is emitting wave-
trains of the same amplitude Ey,, then

E3 = NEJ, (7.21)

The resultant flux density arising from N sources having ran-
dom, rapidly varying phases is given by N times the flux den-
sity of any one source. In other words, it is determined by the
sum of the individual flux densities.

A flashlight bulb, whose atoms are all emitting a random
tumult, puts out light which (as the superposition of these
essentially “incoherent” wavetrains) is itself rapidly and ran-
domly varying in phase. Thus two or more such bulbs will
emit light that is essentially incoherent (i.e., for durations
longer than about 10 ns), light whose total combined irradi-
ance will simply equal the sum of the irradiances contributed

by each individual bulb. This is also true for candle flames,
flashbulbs, and all thermal (as distinct from laser) sources. We
cannot expect to see interference when the lightwaves from
two reading lamps overlap.

At the other extreme, if the sources are coherent and in-
phase at the point of observation (i.e., o; = ), Eq. (7.19) will

become N N N
2 _ N 2 <N .
Eg=> Eg+2) > EoEqy
=1 j>ii=1

or, equivalently,

N 2
E= (}: EO,-> (7.22)

i=1

Again, supposing that each amplitude is Eq, we get
Ej = (NEo))* = N’E3, (7.23)

In this case of in-phase coherent sources, we have a situation
in which the amplitudes are added first and then squared to
determine the resulting flux density. The superposition of
coherent waves generally has the effect of altering the spatial
distribution of the energy but not the total amount present. If
there are regions where the flux density is greater than the sum
of the individual flux densities, there will be regions where it
is less than that sum.

7.1.2 The Complex Method

It is often mathematically convenient to make use of the com-
plex representation when dealing with the superposition of
harmonic disturbances. The wave

Ey = Eg cos (kx = wt + &)

or El = EOl coS ((11 + (1)[)
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can then be written as

E; = Eg @ ™ e (7.24)
if we remember that we are interested only in the real part (see
Section 2.5). Suppose that there are N such overlapping waves
having the same frequency and traveling in the positive x-
direction. The resultant wave 1s given by

E — Eoei(nf + wr)

which is equivalent to Eq. (7.18) or, upon summation of the
component waves,

N
E=1> Ege e (7.25)
=1
The quantity
N
Eoe™ = > Epe (7.26)
j=1

is known as the complex amplitude of the composite wave and
is simply the sum of the complex amplitudes of the con-
stituents. Since

Ej = (Ee™) (Eoe™)* (7.27)

we can always compute the resultant irradiance from Egs.
(7.26) and (7.27). For example, if N = 2,

Eg = (E 1™ + Eqe®)(Egie™ ™ + Ege ™)

whence

Reference
axis

o X(ul

(a)
FIGURE 7.5 Phasor addition.

s nl ~. : T - ey - 2 ) 1 er
Ey= L5 + Eoy + Eg Egule™ 70 + ¢ e

-2

-2 o2 . )
or Ey = Eoy + Eos o+ 2E0 Egn cos (o) — @)

which is identical to Eq. (7.9).

7.1.3 Phasor Addition

The summation described in Eq. (7.26) can be represented
graphically as an addition of vectors in the complex plane
(recall the discussion on p. 23). In the parlance of electricg)
engineering. the complex amplitude is known as a phasor,
and it's specified by its magnitude and phase. often written
simply as EyZa. Imagine, then, that we have a disturbance
described by

E, = Ey; sin (wt + «)

In Fig. 7.5¢ the wave is represented by a vector of length £y,
rotating counterclockwise at a rate w such that its projection
on the vertical axis is E, sin (wr + «). If we were concerned
with cosine waves, we would take the projection on the hori-
zontal axis. Incidentally. the rotating vector is, of course, a
phasor £y Za . and the R and 7 designations signify the real
and tmaginary axes. Similarly, a second wave

Es> = Epp sin (wt + «v5)

1s depicted along with E| in Fig. 7.5b. Their algebraic sum,
E = E, + [Es is the projection on the [-axis of the resultant
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phasor determined by the vector addition of the component
phasors, as 1n Fig. 7.5¢. The law of cosines applied to the tri-
angle of sides Eqy, Egs, and Ej yields

E§ = Eby + Egy + 2Eg Eqa cos (o — a))

where use was made of the fact that cos [7 — (ax — )] =
—cos (@ — «y). This is identical to Eq. (7.9), as it must be.
Using the same diagram, observe that tan « is given by Eq.
(7.10) as well. We are usually concerned with finding F,
rather than E(t), and since E, is unaffected by the constant
revolving of all the phasors, it will often be convenient to set ¢
= ( and eliminate that rotation.

Some rather elegant schemes, such as the vibration curve
and the Cornu spiral (Chapter 10), will be predicated on the
technique of phasor addition. As a final example, let’s briefly
examine the wave resulting from the addition of

E, = 5 sin wt
E> = 10 sin (wt + 45°)
E3 = sin (wt — 15°)
Es = 10 sin (wt + 120°)
and E5s = 8 sin (wt + 180°)

RN
c N
Fos {180 %

FIGURE 7.6 The sum of £;, E5, E5, E4, and Es.
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where w 15 in degrees per second. The appropriate phasors
570°,10245°, 1£—15° 10£120° and 8 £180° are plotted in
Fig. 7.6. Notice that each phase angle, whether positive or
negative, is referenced to the horizontal. One need only read
oft EyZa with a scale and protractor to get E = E sin (wf +
«). It is evident that this technique offers a tremendous advan-
tage in speed and simplicity, if not in accuracy.

7.1.4 Standing Waves

We saw earlier (p. 21) that the sum of solutions to the differ-
ential wave equation is itself a solution. Thus, in general,

Yix, 1) = C f(x —ot) + Cog(x + vt)

satisfies the differential wave equation. In particular let’s
examine two harmonic waves of the saine frequency propa-
gating in opposite directions. A situation of practical concern
arises when the incident wave is reflected backward off some
sort of mirror; a rigid wall will do for sound waves or a con-
ducting sheet for electromagnetic waves. Imagine that an
incoming wave traveling to the left,

El = EOI sin (l\_,\ + wt + 8[) (728)

strikes a mirror at x = 0 and is reflected to the right in the form

ER = EOR sin (kx —w! + 8[\’) (729)

The composite wave in the region to the right of the mirror is
E = E; + Ex. In other words, the two waves (one traveling to
the right, the other to the left) exist simultaneously in the
region between the source and the mirror.

We could perform the indicated summation and arrive at a
general solution* much like that of Section 7.1. However,
some valuable physical insights can be gained by taking a
slightly more restricted approach.

The initial phase g may be set to zero by merely starting
our clock at a time when £y = Ey; sin kx. Certain qualifica-
tions determined by the physical setup must be met by the
mathematical solution, and these are known formally as
boundary conditions. For example, if we were talking about a

*See, for example, J. M. Pearson, A Theory of Waves.
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rope with one end tied to a wall at x = 0, that point must
always have a zero displacement. The two overlapping waves,
one incident and the other reflected, would have to add in such
a way as to yield a zero resultant wave at x = 0. Similarly, at
the boundary of a perfectly conducting sheet the resultant elec-
tromagnetic wave must have a zero electric-field component
parallel to the surface. Assuming Ey; = Eyg, the boundary con-
dittons require that at x = 0, £ = 0, and since
g = 0, it follows from Egs. (7.28) and (7.29) that e = 0. The
composite disturbance is then

E = Eg; [sin (kx + w?) + sin (kx — wt)]
Applying the identity

sin & + sin B = 2 sin $(a + B) cos 3(a — B)
yields

E(x, t} = 2Fy; sin kx cos wt (7.30)
This is the equation for a standing or stationary wave, as
opposed to a traveling wave (Fig. 7.7). Its profile does not
move through space; it is clearly not of the form f(x * vt). At
any point x = x', the amplitude is a constant equal to
2Eq;sin kx', and E(x’, t) varies harmonically as cos wt. At cer-
tain points, namely, x = 0, A/2, A, 3A/2,..., the disturbance
will be zero at all times. These are known as nodes or nodal
points (Fig. 7.8). Halfway between each adjacent node, that is,
atx = A/4,31/4,51/4,..., the amplitude has a maximum val-
ue of £2Fy,, and these points are known as the antinodes. The
disturbance E(x, t) will be zero at all values of x when-
ever cos wt = 0, that is, when + = (2m + 1)7/4, where
m=0,1,2,3,...and 7 is the period of the component waves.

If the reflection off the mirror is not perfect, as is often the
case, the composite wave will contain a traveling component
along with the stationary wave. Under such conditions there
will be a net transfer of energy, whereas for the pure standing
wave there is none.

Although the analysis carried out above 1s essentially one-
dimensional, standing waves exist in two and three dimen-
sions as well. The phenomenon is extremely commonplace:
standing waves occur in one dimension on guitar strings and
diving boards, in two dimensions on the surface of a drum or
in a jiggled pail of water (Fig. 7.9), and in three dimensions
when you sing in a shower stall. In fact, standing waves are
created within the cavities inside your head whenever you
sing, no matter where you are.

FIGURE 7.7 The creation of standing waves. Two waves of the
same amplitude and wavelength traveling in opposite directions form
a stationary disturbance that oscillates in place.

If a standing-wave system is driven by an oscillating
source, it will efficiently absorb energy provided that the
vibrations match one of its standing-wave modes. That
process is known as resonance, and it happens every time your
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FIGURE 7.9 A pail used to wash a floor contained a suspension of
fine dirt particles in water. When placed in a curved sink, the pail
gently rocked along a fixed axis, setting up standing waves and dis-
tributing the particles in ridges as they settled.

house buzzes when an airplane flies low overhead or when a
heavy truck passes by. If the source continues to supply ener-
gy, the wave will continue to build until the system’s inherent
losses equal the energy input and equilibrium is reached. This
ability to sustain and simplify an input is an extremely impor-
tant feature of standing-wave systems. The ear’s auditory
canal is just such a resonant cavity. It amplifies (by about
100%) sounds in the range from =3 kHz to =4 kHz. Similar-
ly, the laser builds its powerful emission within a standing-
wave cavity (p. 585). Figure 7.10 shows the standing-wave
pattern produced when a reflecting rod is placed in front of an
antenna emitting =3 GHz electromagnetic waves.

It was by measuring the distances between the nodes of
standing waves that Hertz was able to determine the wave-
length of the radiation in his historic experiments (see Section
3.6.1). A few years later, in 1890, Otto Wiener first demon-
strated the existence of standing lightwaves. The arrangement
he used is depicted in Fig. 7.11. It shows a normally incident
parallel beam of quasimonochromatic light reflecting off a
front-silvered mirror. A transparent photographic film, less
than A /20 thick, deposited on a glass plate, was inclined to the
mirror at an angle of about 102 radians. In that way the film
plate cut across the pattern of standing plane waves. After
developing the emulsion, it was found to be blackened along a
series of equidistant parallel bands. These corresponded to the
regions where the photographic layer had intersected the
antinodal planes. Significantly, there was no blackening of the
emulsion at the mirror’s surface. It can be shown that the
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FIGURE 7.10 A two-dimensional standing-wave pattern formed
between a source and a reflector. EM-waves from a 3.9-GHz anten-
na enter from the right. They reflect off a metal rod and travel back to
the antenna. The pattern is made visible by absorbing the microwave
radiation and recording the resulting temperature distribution with an
IR camera. {Photo courtesy H. H. Pohle, Phillips Laboratory, Kirtland
Air Force Base.)

nodes and antinodes of the magnetic field component of an
electromagnetic standing wave alternate with those of the
electric field (Problem 7.10). We might suspect as much from
the fact that at 1 = (2m + 1)7/4, E = 0 for all values of x, so to

Antinodal
planes
A2 Film
. lat
2 plate
A4

FIGURE 7.11 Wiener's experiment.

conserve energy it follows that B # 0. In agreement with the-
ory, Hertz had previously (1888) determined the existence of
a nodal point of the electric field at the surface of his reflector,
Accordingly, Wiener could conclude that the blackened
regions were associated with antinodes of the E-field. It is the
electric field that triggers the photochemical process.

In a similar way Drude and Nernst showed that the E-field
is responsible for fluorescence. These observations are all
quite understandable, since the force exerted on an electron by
the B-field component of an electromagnetic wave is general-
ly negligible in comparison to that of the E-field. It is for these
reasons that the electric field is referred to as the optic distur-
bance or light field.

Standing waves generated by two oppositely propagating
disturbances represent a special case of the broader subject of
double-beam interference (p. 377). Consider the two point
sources sending out waves in Fig. 7.12. When point P, the
point of observation somewhere near the middle is far from
the sources, angle ¢ is small, the two waves superimpose, and
there results a complicated interference pattern (that will be
treated in detail in Chapter 9). Suffice it to say here that the
space surrounding the sources will be filled with a system of
bright and dark bands where the interference is alternately
constructive and destructive. As P comes closer and ¢ gets
larger, the fringes become finer, that is, narrower, until £ is on

FIGURE 7.12 Two monochromatic point sources. At any point P
the resultant wave is maximum where peak (—) overlaps peak (—) or
trough (- ) overlaps trough (- =). It's minimum where peak overlaps
trough. The maxima that form along the 5,5, line correspond to
standing waves.




the line joining the sources and ¢ = 180°. Then standing
waves are set up, and the “fringes” are the finest they’ll get,
namely, half a wavelength peak-to-peak.

7.2 THe ApbiTioN oF WAVES OF
DirrereNT FREQUENCY

Thus far the analysis has been restricted to the superposition of
waves all having the same frequency. Yet one never actually
has disturbances, of any kind, that are strictly monochromatic.
It will be far more realistic, as we shall see, to speak of quasi-
monochromatic light, which is composed of a narrow range of
frequencies. The study of such light will lead us to the impor-
tant concepts of bandwidth and coherence time.

The ability to modulate light effectively (Section 8.11.3)
makes it possible to couple electronic and optical systems in a
way that has had and will certainly continue to have far-reach-
ing effects on the entire technology. Moreover, with the
advent of electro-optical techniques, light has taken on a sig-
nificant role as a carrier of information. This section is devot-
ed to developing some of the mathematical ideas needed to
appreciate this new emphasis.

7.2.1 Beats

Consider the composite disturbance arising from a combina-
tion of the waves

El = EOI COS (klx - (.l)]f)
and E; = Ep; cos (kax — w»l)

which have equal amplitudes and zero initial phase angles.
The net wave

E = Egi[cos (kix — wyt) + cos (kox — wot)]

can be reformulated as
E = 2E,; cos %[(kl + ko)x — (w; + w)i]

X cos 3[(k; — ka)x — (w1 — wy)1]
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using the identity
cos o + cos B = 2 cos 3(e + B8) cos 3(a — B)

Now define the quantities @ and k, which are the average
angular frequency and average propagation number, respec-
tively. Similarly, the quantities w,, and k,, are designated the
modulation frequency and modulation propagation number,
respectively. Let

o= 'li(wl + w5) w,, = Lt(wl — w>) (7.31)
and k=2 + ko) ky =3k; — k) (7.32)
thus

E = 2E, cos (k,x — w,,1) cos (kx — @) (7.33)

The total disturbance may be regarded as a traveling wave of
frequency @ having a time-varying or modulated amplitude
Eq(x, t) such that

E(x, t) = Ey(x, t) cos (kx — @1) (7.34)

where

Eo(x, 1) = 2Ey; cos (K, x — w,,1) (7.35)

In applications of interest here, w, and w; will always be
rather large. In addition, if they are comparable to each other,
®; = w,, then @ >> w,, and Ey(x, ¢) will change slowly,
whereas E(x, 1) will vary quite rapidly (Fig. 7.13). The irradi-
ance is proportional to

E%(X, t) = 4E%I COSZ (kmx - (Um[)
or E3(x, 1) = 2E3;[1 + cos (2k,,x — 2w,1)]

Notice that E3(x, 1) oscillates about a value of 2E3; with an
angular frequency of 2w,, or simply (w; — w,), which is
known as the beat frequency. That is, Ey varies at the modu-
lation frequency, whereas E% varies at twice that, namely, the
beat frequency.

Beats were first observed with the use of light in 1955 by
Forrester, Gudmundsen, and Johnson.* To obtain two waves

*A. T. Forrester, R. A. Gudmundsen, and P. Q. Johnsen, “Photo-elec-
tric Mixing of Incoherent Light.” Phys. Rev. 99, 1691 (1955).
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FIGURE 7.13 The superposition of two harmonic waves of different frequency.

of slightly different frequency they used the Zeeman Effect.
When the atoms of a discharge lamp, in this case mercury, are
subjected to a magnetic field, their energy levels split. As a
result, the emitted light contains two frequency components,
vy and v,, which differ in proportion to the magnitude of the
applied field. When these comiponents are recombined at the
surface of a photoelectric mixing tube, the beat frequency,
vy — v, 1s generated. Specifically, the field was adjusted so
that v; — v, = 10'® Hz, which conveniently corresponds to a
3-cm microwave signal. The recorded photoelectric current
had the same form as the Eg(x) curve in Fig. 7.13d.

The advent of the laser has since made the observation of
beats using light considerably easier. Even a beat frequency of
afew Hz out of 10" Hz can be seen as a variation in phototube
current. The observation of beats now represents a particular-
ly sensitive and fairly simple means of detecting small fre-
quency differences. The ring laser (Section 9.8.3), functioning
as a gyroscope, utilizes beats to measure frequency differences

induced as a result of the rotation of the system. The Doppler
Effect, which accounts for the frequency shift when light is
reflected off a moving surface, provides another series of
applications of beats. By scattering light off a target. whether
solid, hiquid, or even gaseous, and then beating the original
and reflected waves, we get a precise measure of the target
speed. In much the same way on an atomic scale, laser light
will shift in phase upon interacting with sound waves moving
in a material. (This phenomenon is called Brillouin Scatter-
ing.) Thus 2w,, becomes a measure of the speed of sound in
the medium.

7.2.2 Group Velocity

The specific relationship between w and & determines v, the
phase velocity of a wave. In a nondispersive medium such as
vacuum [Eq. (2.33)] © = w/k and a plot of w versus k is a






