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directly from the slit to the screen. For the separation a,
between the two coherent sources, we take the distance
between the actual slit and its image Sy in the mirror. The
spacing of the fringes is once again given by (s/a)A. The dis-
tinguishing feature of this device is that at glancing incidence
(6; = 7/2) the reflected beam undergoes a 180° phase shift.
(Recall that the amplitude-reflection coefficients are then both
equal to —1). With an additional phase shift of =7,

6= k(l‘l - 1'2) 7

and the irradiance becomes

I = 4], sin® (T—\—>
SA

The fringe pattern for Lloyd’s mirror is complementary to
that of Young’s Interferometer; the maxima of one pattern
exist at values of y that correspond to minima in the other pat-
tern. The top edge of the mirror is equivalent to y = 0 and will
be the center of a dark fringe rather than a bright one, as in
Young’s device. The lower half of the pattern will be ob-
structed by the presence of the mirror itself. Consider what
would happen if a thin sheet of transparent material were
placed in the path of the rays traveling directly to the screen.
The transparent sheet would have the effect of increasing the
number of wavelengths in each direct ray. The entire pattern
would accordingly move upward, where the reflected rays
would travel a bit farther before interfering. Because of the
obvious inherent simplicity of this device, it has been used
over a very wide region of the electromagnetic spectrum. The
actual reflecting surfaces have ranged from crystals for X-
rays, ordinary glass for light, and wire screening for
microwaves to a lake or even the Earth’s ionosphere for
radiowaves.*

All the above interferometers can be demonstrated quite
readiiy either using a laser or, for white light, something a bit
more old-fashioned like a discharge lamp or a carbon arc (Fig.
9.15).

*For a discussion of the effects of a finite slit width and a finite fre-
quency bandwidth, see R. N. Wolfe and F. C. Eisen, “Irradiance
Distribution in a Lloyd Mirror Interference Pattern,” J. Opt. Soc. Am.
38, 706 (1948).
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FIGURE 9.15 Bench setup to study wavelrontsplitting arrangements
with a carbon arc source.The water cell is needed to keep things
cool.

9.4 AMPLITUDE-SPLITTING
INTERFEROMETERS

Suppose that a lightwave is incident on a half-silvered mir-
ror{, or simply on a sheet of glass. Part of the wave is trans-
mitted and part reflected. Both the transmitted and reflected
waves have lower amplitudes than the original one. It can be
said figuratively that the amplitude has been “split.”

If the two separate waves could be brought together again
al a detector, interference would result, as long as the origi-
nal coherence between the two had not been destroyed. If the
path lengths differed by a distance greater than that of the
wavegroup (i.e., the coherence length), the portions reunited
at the detector would correspond to different wavegroups.
No unigque phase relationship would exist between them in
that case, and the fringe pattern would be unstable to the
point of being unobservable. We will get back to these ideas
when we consider coherence theory in more detail. For the
moment the discussion is restricted, for the most part, to
those cases for which the path difference is less than the
coherence length.

tA halfsilvered mirror is one that is semitransparent, because the
metallic coating is too thin fo be opaque. You can look through i,
and at the same time you can see your reflection in it. Beamsplitters,
as devices of this kind are called, can also be made of thin stretched
plastic films, known as pellicles, or even uncoated glass plate.




9.4.1 Dielectric Films—Double-Beam
Interference

Interference effects are observable in sheet transparent materi-
als, the thicknesses of which vary over a very broad range,
from films less than the length of a lightwave (e.g., for green
light A, equals about 15 the thickness of this printed page) to
plates several centimeters thick. A layer of material is referred
to as a thin film for a given wavelength of electromagnetic
radiation when its thickness is of the order of that wavelength.
Before the early 1940s interference phenomena associated
with thin dielectric films, although well known, had fairly lim-
ited practical value. The rather spectacular color displays aris-
ing from oil slicks and soap films, however pleasing
aesthetically and theoretically, were mainly curiosities.

With the advent of suitable vacuum deposition techniques
in the 1930s, precisely controlled coatings could be produced
on a commercial scale, and that, in turn, led to a rebirth of
interest in dielectric films. During the Second World War,
both sides were finding the enemy with a variety of coated
optical devices, and by the 1960s multilayered coatings were
in widespread use.

FrinGES oF EQuaL INCLINATION

Consider the simple case of a transparent paralle] plate of
dielectric material having a thickness d (Fig. 9.16). Suppose
that the film is nonabsorbing and that the amplitude-reflection
coefficients at the interfaces are so low that only the first two
reflected beams F;, and E,, (both having undergone only one
reflection) need be considered (Fig. 9.17). In practice, the
amplitudes of the higher-order reflected beams (£3,., etc.) gen-
erally decrease very rapidly, as can be shown for the air—water
and air—glass interfaces (Problem 9.23). For the moment, con-
sider S to be a monochromatic point source.

The film serves as an amplitude-splitting device, so that £/,
and E,, may be considered as arising from two coherent virtu-
al sources lying behind the film; that is, the two images of S
formed by reflection at the first and second interfaces. The
reflected rays are parallel on leaving the film and can be
brought together at a point P on the focal plane of a telescope
objective or on the retina of the eye when focused at infinity.
From Fig. 9.17, the optical path length difference for the first
two reflected beams is given by

A = nd(AB) + (BO)] — ny(AD)
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FIGURE 9.16 The wave and ray representations of thin-film interfer-
ence. Light reflected from the top and bottom of the film interferes to
create a fringe pattern.

and since (AB) = (BC) = d/cos 0,

2ned —
A= _,.(AD)
cos 6,
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FIGURE 9.17 Fringes of equal inclination.
Now, to find an expression for (AD), write
(AD) = (AC)sin 6;
Using Snell’s Law, this becomes
— — "y .
(AD) = (AC) —sin 6,
1y
where
(AC) = 2d tan 6, (9.32)
The expression for A now becoines
2nsd
A=—2 (1= sin? 6)
cos 8,
or finally
A =2nsd cos 6, (9.33)

The corresponding phase difference associated with the
optical path length difference is then just the product of the
free-space propagation number and A, that is, koA. If the film
is immersed in a single medium, the index of refraction can
simply be written as n; = n, = n. Realize that n may be less

than ny, as in the case of a soap film in air, or greater than ny,
as with an air film between two sheets of glass. In either case
there will be an additional phase shift arising from the reflec-
tions themselves. Recall that for incident angles up to about
30°, regardless of the polarization of the incoming light, the
two beams, one internally and one externally reflected, will
experience a relative phase shift of m radians (Fig. 4.43 and
Section 4.3). Accordingly,

S=kAxtm
and more explicitly
4
0= 71-nfd cos 6, = (9.34)
0
4md
or 8= 77 (n} —sin? )27 (9.35)
0 .

The sign of the phase shift is immaterial, so we will choose the
negative sign to make the equations a bit simpler. In reflected
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light an interference maximum, a bright spot, appears at P
when & = 2ma—in other words, an even multiple of 7. In that
case Eq. (9.34) can be rearranged to yield

[maxima]) T d cos 9, =~ (2772"'!" 1) ‘Z{ m =0, 1,2,...
' (9.36)

where use has been made of the fact that A\ = X\y/n.. This also
corresponds to minima in the transmitted light. Interference
minima in reflected light (maxima in transmitted light) result
when 6 = (2m * 1), that is, odd multiples of 7r. For such cas-
es Eq. (9.34) yields

[minima) , i . ’d“COS, 6, =2m ")i{ ’ : 9.37)
The appearance of odd and even multiples of A;/4 in Egs.
(9.36) and (9.37) is significant , as we will see presently. We
could, of course, have a situation in which n; > ny> n, or
ny < ny << ny, as with a fluoride {ilm deposited on an optical
element of glass immersed in air. The 7 phase shift would
then not be present, and the above equations would simply be
modified appropriately.

Extended source

FIGURE 9.19 Fringes seen on a large region of the film.
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If the lens used to focus the rays has a small aperture, inter-
ference fringes will appear on a small portion of the film. Only
the rays leaving the point source that are reflected directly into
the lens will be seen (Fig. 9.18). For an extended source, light
will reach the lens from various directions, and the fringe pat-
tern will spread out over a large area of the film (Fig. 9.19).

The angle 6; or equivalently 6,, determined by the position
of P, will in turn control . The fringes appearing at points P,
and P, in Fig. 9.20 are known as fringes of equal inclination.
(Problem 9.28 discusses some easy ways to see these fringes.)
Keep in mind that each source point on the extended source is
incoherent with respect to the others. When the image of the
extended source is reflected in the surface, it will be seen to be
banded with bright and dark fringes. Each of these is an arc of
a circle centered on the intersection of a perpendicular drop-
ped from the eye to the film.

As the film becomes thicker, the separation AC between
E,,and E,, also increases, since

AC = 2d tan 6, [9.32]

Extended source

FIGURE 9.20 All rays inclined at the same angle arrive at the same
point.
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When only one of the two rays is able to enter the pupil of the
eye, the interference pattern will disappear. The larger lens of
a telescope can then be used to gather in both rays, once again
making the pattern visible. The separation can also be reduced
by reducing 6, and therefore 6;, that is, by viewing the film at
nearly normal incidence. The equal-inclination fringes that are
seen in this manner for thick plates are known as Haidinger
fringes, after the Austrian physicist Wilhelm Karl Haidinger
(1795-1871). With an extended source, the symimetry of the
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setup requires that the interference pattern consists of a series
of concentric circular bands centered on the perpendicular
drawn from the eye to the film (Fig. 9.21). As the observer
moves, the interference pattern follows along.

Haidinger fringes can be seen in the ordinary window glass
of a store front. Find one with a neon sign in the window and
look out at the street, at night, very close to the glowing tube.
You’ll see circular fringes centered on your eye floating off in
the distance.

FIGURE 9.21 Circular Haidinger fringes

centered on the lens axis.
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FrRINGES Oof EQuAL THICKNESS

A whole class of interference fringes exists for which the opti-
cal thickness, nd, is the dominant parameter rather than 6.
These are referred to as fringes of equal thickness. Under
white-light illumination the iridescence of soap bubbles, oil
slicks (a few wavelengths thick), and even oxidized metal sur-
faces is the result of variations in film thickness. Interference
bands of this kind are analogous to the constant-height contour
lines of a topographical map. Each fringe is the locus of all
points in the film for which the optical thickness is a constant.
In general, n, does not vary, so that the fringes correspond to
regions of constant film thickness. As such, they can be quite
useful in determining the surface features of optical elements
(lenses, prisms, etc.). For example, a surface to be examined
may be put into contact with an optical flat.* The air in the
space between the two generates a thin-film interference pat-
tern. If the test surface is flat, a series of straight, equally
spaced bands indicates a wedge-shaped air film, usually
resulting from dust between the flats. Two pieces of plate
glass separated at one end by a strip of paper will form a satis-
factory wedge with which to observe these bands.

When viewed at nearly normal incidence in the manner
illustrated in Fig. 9.22, the contours arising from a nonuniform
film are called Fizeau fringes. For a thin wedge of small angle
«, the optical path length difference between two reflected
rays may be approximated by Eq. (9.33), where d is the thick-
ness at a particular point, that is,

d = xx (9.38)

For small values of 6, the condition for an interference maxi-
mum becomes

(m + Do = 2n,d,,

or (m + Pro = 2ax,,n;

*A surface is said to be optically Hat when it deviates by not more
than about A/4 from a perfect plane. In the past, the best flats were
made of clear fused quartz. Now glass-ceramic materials (e.g.,
CERVIT) having extremely small thermal coefficients of expansion

(about one-sixth that of quartz) are available. Individual fats of
A/200 or a bit better can be made.
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FIGURE 9.22 Fringes from a wedge-shaped film.

Since ny = Ao/As, x,, may be written as

m+ 1/2
X, =|— A 9.39
X ( o ) Y (9.39)

Maxima occur at distances from the apex given by A, /4a,
3As/4e, and so on, and consecutive fringes are separated by a
distance Ax, given by

Ax = A2 (9.40)

Notice that the difference in film thickness between adjacent
maxima is simply A, /2. Since the beam reflected from the
lower surface traverses the film twice (6; = 6, = 0), adjacent
maxima differ in optical path length by A,. Note, too, that the
film thickness at the various maxima is given by

A
@=m+9§ (9.41)
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which is an odd multiple of a quarter wavelength. Traversing
the film twice yields a phase shift of 7, which when added to
the shift of 7 resulting from reflection, puts the two rays back
in-phase.

Figure 9.23 is a photograph of a soap film held vertically
so that it settles into a wedge shape under the influence of
gravity. When illuminated with white light, the bands are var-
ious colors. The black region at the top is a portion where the
film is less than A, /4 thick. Twice this, plus an additional
shift of /\\,~/2 due to the reflection, is less than a whole wave-
length. The reflected rays are therefore out-of-phase. As the
thickness decreases still further, the total phase difference
approaches 7. The irradiance at the observer goes to a mini-
mum (Eq. 9.16), and the film appears black in reflected
light.*

Press two well-cleaned microscope slides together. The
enclosed air film will usually not be uniform. In ordinary room
light a series of irregular, colored bands (fringes of equal
thickness) will be clearly visible across the surface (Fig. 9.24).
The thin glass slides distort under pressure, and the fringes
move and change accordingly. Tape two slides together with
transparent (matt-surfaced) tape. It will scatter light and make
the reflected fringes more easily seen.

FIGURE 9.23 A wedge-shaped film made of liquid dishwashing
soap. (E. H.)

*The relative phase shift of 7 between internal and external reflection
is required if the reflected flux density is to go to zero smoothly, as
the film gets thinner and finally disappears.

(a)

FIGURE 9.24 Fringes created by an air film between two micro-
scope slides. (Photo by E. H.)

If the two pieces of glass are forced together at a point, as
might be done by pressing on them with a sharp pencil, a
series of concentric, nearly circular, fringes is formed about
that point. Known as Newton’s rings™® (Fig. 9.25), this pattern
is more precisely examined with the arrangement of Fig. 9.26.
Here a lens is placed on an optical flat and illuminated at nor-
mal incidence with quasimonochromatic light. The amount of
uniformity in the concentric circular pattern is a measure of
the degree of perfection in the shape of the lens. With R as the
radius of curvature of the convex lens, the relation between the
distance x and the film thickness d is given by

P=R~(R-d)’
or more simply by
x* =2Rd — d*

*Robert Hooke (1635-1703) and Isaac Newton independently stud-
ied a whole range of thinfilm phenomena, from soap bubbles 1o the
air film between lenses. Quoting from Newton's Opticks:

I took two Objectglasses, the one a Planoconvex for a fourteen
Foot Telescope, and the other a lorge double Convex for one of
about fifty Foot; and upon this, laying the other with its plane side
downwards, | pressed them slowly together to make the Colours
successfully emerge in the middle of the Circles.




FIGURE 9.25 Newton’s rings with two microscope slides. (€. H.)

Since R >> d, this becomes
x> = 2Rd

Assume that we need only examine the first two reflected
beams E,, and E,,. The mth-order interference maximum will

Quasimonochromatic
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FIGURE 9.26 A standard setup to observe Newton's rings.
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occur in the thin film when its thickness is in accord with the
relationship
2ned,, = (m + Do

The radius of the mth bright ring is therefore found by com-
bining the last two expressions to yield

[bright ring] Xy = [m + DAR]Y? (9.42)
Similarly, the radius of the mth dark ring is
[dark ring]) Xy — (ﬂl)\fR)l/z (943)

If the two pieces of glass are in good contact (no dust), the
central fringe at that point (xy = 0) will clearly be a minimum
in irradiance, an understandable result since d goes to zero at
that point. In transmitted light, the observed pattern will be the
complement of the reflected one discussed above, so that the
center will now appear bright.

Newton’s rings, which are Fizeau fringes, can be distin-
guished from the circular pattern of Haidinger’s fringes by the
manner in which the diameters of the rings vary with the order
m. The central region in the Haidinger pattern corresponds to
the maximum value of m (Problem 9.27), whereas just the
opposite applies to Newton’s rings.

An optical shop, in the business of making lenses, will have
a set of precision spherical test plates or gauges. A designer
can specify the surface accuracy of a new lens in terms of the
number and regularity of the Newton rings that will be seen
with a particular test gauge. The use of test plates in the man-
ufacture of high-quality lenses, however, is giving way to far
more sophisticated techniques involving laser interferometers
(Section 9.8.2).

9.4.2 Mirrored Interferometers

There are a good number of amplitude-splitting interferome-
ters that utilize arrangements of mirrors and beamsplitters. By
far the best known and historically the most important of these
is the Michelson Interferometer. Its configuration is illus-
trated in Fig. 9.27. An extended source (e.g., a diffusing
ground-glass plate illuminated by a discharge lamp) emits a
wave, part of which travels to the right. The beamsplitter at O
divides the wave into two, one segment traveling to the right
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Interference

Detector

(a)

reflection

FIGURE 9.27 The Michelson Interferometer. (a) Circular fringes are centered on the lens. (b) Top view of
the interferometer showing the path of the light. (c) A wedge fringe pattern was distorted when the tip of
a hot soldering iron was placed in one arm. Observe the interesting perceptual phenomenon whereby the

region corresponding to the iron’s tip appears faintly yellow. (E. H.)

and one up into the background. The two waves are reflected
by mirrors M; and M, and return to the beamsplitter. Part of
the wave coming from M, passes through the beamsplitter
going downward, and part of the wave coming from M, is
deflected by the beamsplitter toward the detector. The two
waves are united, and interference can be expected.

Notice that one beam passes through O three times, where-
as the other traverses it only once. Consequently, each beam
will pass through equal thicknesses of glass only when a com-
pensator plate C is inserted in the arm OM,. The compensator
is an exact duplicate of the beamsplitter, with the exception of

any possible silvering or thin film coating on the beamsplitter.
It is positioned at an angle of 45°, so that O and C are parallel
to each other. With the compensator in place, any optical path
difference arises from the actual path difference. In addition,
because of the dispersion of the beamsplitter, the optical path
is a function of A. Accordingly, for quantitative work, the
interferometer without the compensator plate can be used
only with a quasimonochromatic source. The inclusion of a
compensator negates the effect of dispersion, so thateven a
source with a very broad bandwidth will generate discernible
fringes.




To understand how fringes are formed, refer to the con-
struction shown in Fig. 9.28, where the physical components
are represented more as mathematical surfaces. An observer at
the position of the detector will simultaneously see both mir-
rors M, and M, along with the source 2 in the beamsplitter.
We can redraw the interferometer as if all the elements were in
a straight line. Here M| corresponds to the image of mirror M,
in the beamsplitter, and 3, has been swung over in line with O
and M,. The positions of these elements in the diagram depend
on their relative distances from O (e.g., M| can be in front of,
behind, or coincident with M, and can even pass through it).
The surfaces % and 2, are the images of the source 2 in mir-
rors M and M,, respectively. Now consider a single point S on
the source emitting light in all directions; let’s follow the
course of one emerging ray. In actuality a wave from S will be

Detector
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split at O, and its segments will thereafter be reflected by M,
and M. In our schematic diagram we represent this by reflect-
ing the ray off both M, and M;. To an observer at D, the two
reflected rays will appear to have come from the image points
S1 and S, [note that all rays shown in {a) and (b) of Fig. 9.28
share a common plane-of-incidence]. For all practical purpos-
es, S, and S, are coherent point sources, and we can anticipate
a flux-density distribution obeying Eq. (9.14).

As the figure shows, the optical path difference for these
rays is nearly 2d cos 6, which represents a phase difference of
ko2d cos 6. There is an additional phase term arising from the
fact that the wave traversing the arm OM, is internally reflect-
ed in the beamsplitter, whereas the OM-wave is externally
reflected at O. If the beamsplitter is simply an uncoated glass
plate, the relative phase shift resulting from the two reflections

FIGURE 9.28 A conceptual
rearrangement of the Michelson
Interferometer.
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will be 7 radians. Destructive, rather than constructive, inter-
ference will then exist when

2d cos 6, = mAg (9.44)
where m is an integer. If this condition is fulfilled for the point
S, then it will be equally well fulfilled for any point on 3 that
lies on the circle of radius O’S, where O’ is located on the axis
of the detector. As illustrated in Fig. 9.29, an observer will see
a circular fringe system concentric with the central axis of her
eye’s lens. Because of the small aperture of the eye, the ob-
server will not be able to see the entire pattern without the use
of a large lens near the beamsplitter to collect most of the
emergent light.

If we use a source containing a number of frequency com-
ponents (e.g., a mercury discharge lamp), the dependence of
6,, on Ay in Eq. (9.44) requires that each such component gen-
erate a fringe system of its own. Note, too, that since
2d cos 6,, must be less than the coherence length of the source,
it follows that laser light will be particularly easy to use in
demonstrating the interferometer (see Section 9.5). This point
would be made strikingly evident were we to compare the
fringes produced by laser light with those generated by
“white” light from an ordinary tungsten bulb or a candle. In
the latter case, the path difference must be very nearly zero, if
we are o see any fringes at all, whereas in the former instance
a difference of 10 cm has little noticeable effect.

An interference pattern in quasimonochromatic light typi-
cally consists of a large number of alternatively bright and
dark rings. A particular ring corresponds to a fixed order m.
As M, is moved toward M|, d decreases, and according to Eq.
(9.44), cos 6,, increases while 0, therefore decreases. The

FIGURE 9.29 Formation of circular fringes.

rings shrink toward the center, with the highest-order one dis-
appearing whenever d decreases by Ao/2. Each remaining ring
broadens as more and more fringes vanish at the center, unti]
only a few fill the whole screen. By the time ¢ = O has been
reached, the central fringe will have spread out, filling the
entire field of view. With a phase shift of 7 resulting from
reflection off the beamsplitter, the whole screen will then be
an interference minimum. (Lack of perfection in the optical
elements can render this unobservable.) Moving M, still far-
ther causes the fringes to reappear at the center and move
outward.

Notice that a central dark fringe for which 6,, = 0 in Eq.
(9.44) can be represented by

2d = myAg (9.45)
(Keep in mind that this is a special case. The central region
might correspond to neither a maximum nor a minimum.)
Even if d is 10 cm, which is fairly modest in laser light, and
Ao = 500 nm, mg will be quite large, namely 400000. At a
fixed value of d, successive dark rings will satisfy the expres-
sions
2d cos 8, = (mg — DAy

2d cos 8, = (g — 2)A,

2d cos 6, = (my — plAy (9.46)

The angular position of any ring, for example, the pth ring, is
determined by combining Eqgs. (9.45) and (9.46) to yicld

2d(1 — cos 6,) = pAy (9.47)
Since 8, = 6, both are just the half-angle subtended at the
detector by the particular ring, and since m = gy — p, Eq.
(9.47) is equivalent to Eq. (9.44). The new form is somewhat
more convenient, since (using the same example as above)
with d = 10 cm, the sixth dark ring can be specified by stating
that p = 6, or in terms of the order of the pth ring, that m =
399994, 1f 8, is small,

65
cos 8, =1-— 7’

and Eq. (9.47) yields
A\ 172
6, = (1)_0>
d

for the angular radius of the pth fringe.

(9.48)
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The construction of Fig. 9.28 represents one possible con-
figuration, the one in which we consider only pairs of parallel
emerging rays. Since these rays do not actually meet, they can-
not form an image without a condensing lens of some sort.
Indeed, that lens is most often provided by the observer’s eye
focused at infinity. The resulting fringes of equal inclination
(6., = constant) located at infinity are also Haidinger fringes.
A comparison of Figs. 9.28b and 9.3a, both showing two
coherent point sources, suggests that in addition to these (vir-
tual) fringes at infinity, there might also be (real) fringes
formed by converging rays. These fringes do in fact exist.
Hence, if you illuminate the interferometer with a broad
source and shield out all extrancous light, you can easily see
the projected pattern on a screen in a darkened room (see Sec-
tion 9.5). The fringes will appear in the space in front of the
interferometer (i.e., where the detector is shown), and their
size will increase with increasing distance from the beamsplit-
ter. We will consider the (real) fringes arising from point-
source illumination a little later on.

When the mirrors of the interferometer are inclined with
respect to each other, making a small angle (i.e., when M, and
M, are not quite perpendicular), Fizeau fringes are observed.
The resultant wedge-shaped air film between M, and M cre-
ates a pattern of straight parallel fringes. The interfering rays
appear to diverge from a point behind the mirrors. The eye
would have to focus on this point in order to make these local-
ized fringes observable. It can be shown analytically* that by
appropriate adjustment of the orientation of the mirrors M,
and M, fringes can be produced that are straight, circular,
elliptical, parabolic, or hyperbolic—this holds as well for the
real and virtual fringes.

The Michelson Interferometer can be used to make
extremely accurate length measurements. As the moveable
mirror is displaced by A¢/2, each fringe will move to the posi-
tion previously occupied by an adjacent fringe. Using a micro-
scope arrangement, one need only count the number of fringes
N, or portions thereof, that have moved past a reference point
to determine the distance traveled by the mirror Ad, that is,

Nowadays this can be done fairly easily by electronic means.

Michelson used the method to measure the number of wave-
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lengths of the red cadmium line corresponding to the standard
meter in Sévres near Paris.{

The Michelson Interferometer can be used along with a few
polaroid filters to verify the Fresnel-Arago Laws. A polarizer
inserted in each arm will allow the optical path length differ-
ence to remain fairly constant, while the vector field directions
of the two beams are easily changed.

A microwave Michelson Interferometer can be constructed
with sheet-metal mirrors and a chicken-wire beamsplitter.
With the detector located at the central fringe, it can easily
measure shifts from maxima to minima as one of the mirrors is
moved, thereby determining A. A few sheets of plywood, plas-
tic, or glass inserted in one arm will change the central fringe.
Counting the number of fringe shifts yields a value for the
index of refraction, and from that we can compute the dielec-
tric constant of the material.

The Mach-Zehnder Interferometer is another amplitude-
splitting device. As shown in Fig. 9.30, it consists of two
beamsplitters and two totally reflecting mirrors. The two
waves within the apparatus travel along separate paths. A dif-
ference between the optical paths can be introduced by a slight
tilt of one of the beamsplitters. Since the two paths are sepa-
rated, the interferometer is relatively difficult to align. For the

Beam-
N

Mirror

[ ]

Delector

U

Extended
source

Beam
splitter

FIGURE 9.30 The Mach—Zehnder Interferometer.

1A discussion of the procedure he used to avoid counting the
3106327 fringes directly can be found in Strong, Concepts of
Classical Optics, p. 238, or Williams, Applications of Interferometry,
p. 51.
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same reason, however, the interferometer finds myriad appli-
cations. It has even been used, in a somewhat altered yel con-
ceptually similar form, to obtain electron interference
fringes.*

An object interposed in one beam will alter the optical path
length difference, thereby changing the fringe pattern. A com-
mon application of the device is to observe the density varia-
tions in gas-flow patterns within research chambers (wind
tunnels, shock tubes, etc.). One beam passes through the opti-
cally flat windows of the test chamber, while the other beam
traverses appropriate compensator plates. The beam within the
chamber will propagate through regions having a spatially
varying index of refraction. The resulting distortions in the
wavefront generate the fringe contours. A particularly nice
application is shown in Fig. 9.31, which is a photograph of the
magnetic compression device known as Scylla IV. It was used
to study controlled thermonuclear reactions at the Los Alamos
Scientific Laboratory. In this application, the Mach—Zehnder
Interferometer appears in the form of a parallelogram, as illus-
trated in Fig. 9.32. The two ruby laser interferograms, as these
photographs are called, show (Fig. 9.33) the background pat-

FIGURE 9.31 Scylla IV (Courtesy of University of California,
Lawrence Livermore National Laboratory, and the Department of
Energy)

*L. Marton, J. Arol Simpson, and J. A. Suddeth, Rev. Sci. Instr. 25,
1099 (1954), and Phys. Rev. 90, 490 (1953).
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FIGURE 9.32 Schematic of Scylla IV.

tern without a plasma in the tube and the density contours
within the plasma during a reaction (Fig. 9.34).

Another amplitude-splitting device, which differs from the
previous instrument in many respects, is the Sagnac Interfer-
ometer. It is very easy to align and quite stable. An interesting
application of the device is discussed in the last section of this
chapter, where we consider its use as a gyroscope. One form

FIGURE 9.33 Interferogram without plasma. (Photo courtesy Los
Alamos National Laboratory.}
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FIGURE 9.34 lnterferogram with plasma. (Photo courtesy Los
Alamos National Laboratory.)

of the Sagnac Interferometer is shown in Fig. 9.354 and anoth-
er in Fig. 9.35b; still others are possible. Notice that the main
feature of the device is that there are two identical but oppo-
sitely directed paths taken by the beams and that both form
closed loops before they are united to produce interference. A
deliberate slight shift in the orientation of one of the mirrors

Source

Detector (a)

Detector
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will produce a path length difference and a resulting fringe
pattern. Since the beams are superimposed and therefore
inseparable, the interferometer cannot be put to any of the con-
ventional uses. These in general depend on the possibility of
imposing variations on only one of the constituent beams.

ReaL FRINGES

Before we examine the creation of real, as opposed to virtual,
fringes, let’s first consider another amplitude-splitting inter-
ferometric device, the Poh! fringe-producing system, illus-
trated in Fig. 9.36. It is simply a thin transparent film
illuminated by the light coming from a point source. In this
case, the fringes are real and can accordingly be intercepted on
a screen placed anywhere in the vicinity of the interferometer
without a condensing-lens system. A convenient light source
to use is a mercury lamp covered with a shield having a small
hole (=% inch diameter) in it. As a thin film, use a piece of
ordinary mica taped to a dark-colored book cover, which
serves as an opaque backing. If you have a laser, its remark-
able coherence length and high flux density will allow you to
perform this same experiment with almost anything smooth
and transparent. Expand the beam to about an inch or two in
diameter by passing it through a lens (a focal length of 50 to
100 mm will do). Then just reflect the beam off the surface of
a glass plate (e.g., a microscope slide), and the fringes will be

FIGURE 9.35 (o) A
Sagnac Interferometer.
(b) Another variation of
the Sagnac Interferome-
ter.

Beam-splitter

(d)
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Small diverging
quasimonochromatic
source

evident within the illuminated disk wherever it strikes a
screen.

The underlying physical principle involved with point-
source illumination for all four of the interferometric devices
considered above can be appreciated with the help of a con-
struction, variations of which are shown in Figs. 9.37 and
9.38.*% The two vertical lines in Fig. 9.37, or the inclined ones

—

-

ot

s S, L .I s
: L—de —-‘ d
FIGURE 9.37 Pointsource illumination of parallel surfaces.

*A. Zajac, H. Sadowski, and S. Licht, “The Real Fringes in the
Sagnac and the Michelson Interferometers,” Am. J. Phys. 29, 669
(1961).

FIGURE 9.36 The Poh!

Interferometer.

Near normal incidence

in Fig. 9.38, represent either the positions of the mirrors or the
two sides of the thin sheet in the Pohl Interferometer. Let’s
assume that point P in the surrounding medium is a point at
which there is constructive interference. A screen placed at
that point would intercept this maximum, as well as a whole
fringe pattern, without any condensing system. The coherent
virtual sources emitting the interfering beams are mirror imag-
es S and S; of the actual point source S. It should be noted that
this kind of real fringe pattern can be observed with both the
Michelson and Sagnac Interferometers (Fig. 9.39). If either

FIGURE 9.38 Point-source illumination of inclined surfaces.




FIGURE 9.39 Real Michelson fringes using He—Ne laser light. (E. H.)

device is illuminated with an expanded laserbeam, a real
fringe pattern will be generated directly by the emerging
waves. This is an extremely simple and beautiful demonstra-
tion.

9.5 Types AND LOCALIZATION
OF INTERFERENCE FRINGES

Often it is important to know where the fringes produced in a
given interferometric system will be located, since that is the
region where we need to focus our detector (eye, camera, tele-
scope). In general, the problem of locating fringes is charac-
teristic of a given interferometer; that is, it has to be solved for
each individual device.

Fringes can be classified, first, as either real or virtual and,
second, as either nonlocalized or localized. Real fringes are
those that can be seen on a screen without the use of an addi-
tional focusing system. The rays forming these fringes con-
verge to the point of observation, all by themselves. Virtual
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fringes cannot be projected onto a screen without a focusing
system. In this case the rays obviously do not converge.

Nonlocalized fringes are real and exist everywhere within
an extended (three-dimensional) region of space. The pattern
is literally nonlocalized, in that it is not restricted to some
small region. Young’s Experiment, as illustrated in Fig. 9.8,
fills the space beyond the secondary sources with a whole
array of real fringes. Nonlocalized fringes of this sort are gen-
erally produced by small sources, that is, point or line sources,
be they real or virtual. In contrast, localized fringes are clearly
observable only over a particular surface. The pattern is liter-
ally localized, whether near a thin film or at infinity. This type
of fringe will always result from the use of extended sources
but can be generated with a point source as well.

The Pohl Interferometer (Fig. 9.36) is particularly useful in
illustrating these principles, since with a point source it will
produce both real nonlocalized and virtual localized fringes.
The real nonlocalized fringes (Fig. 9.40, upper half) can be
intercepted on a screen almost anywhere in front of the mica
film.

For the nonconverging rays, realize that since the aperture
of the eye is quite small, it will intercept only those rays that
are directed almost exactly at it. For this small pencil of rays,
the eye, at a particular position, sees either a bright or dark
spot but not much more. To perceive an extended fringe pat-
tern formed by parallel rays of the type shown in the bottom
half of Fig. 9.40, a large lens will have to be used to gather in
light entering at other orientations. In practice, however, the
source is usually somewhat extended, and fringes can general-
ly be seen by looking into the film with the eye focused at
infinity. These virtual fringes are localized at infinity and are
equivalent to the equal-inclination fringes of Section 9.4. Sim-
ilarly, if the mirrors M, and M, in the Michelson Interferome-
ter are parallel, the usual circular, virtual, equal-inclination
fringes localized at infinity will be seen. We can imagine a
thin air film between the surfaces of the mirrors M, and M}
acting to generate these fringes. As with the configuration of
Fig. 9.40 for the Pohl device, real nonlocalized fringes will
also be present.

The geometry of the fringe pattern seen in reflected light
from a transparent wedge of small angle « is shown in Fig.
9.41. The fringe location P will be determined by the direction
of incidence of the incoming light. Newton’s rings have this
same kind of localization, as do the Michelson, Sagnac, and
other interferometers for which the equivalent interference
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FIGURE 9.40 A parallel film. The rays are
drawn neglecting refraction.

system consists of two reflecting planes inclined slightly to
each other. The wedge setup of the Mach-Zehnder Interfer-
ometer is distinctive in that by rotating the mirrors, one can

Region of
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(real fringes)

V4

P Region of localization
(virtual fringes)

FIGURE 9.41 Fringes formed by a wedge-shaped film.

localize the resulting virtual fringes on any plane within the
region generally occupied by the test chamber (Fig. 9.42).

Region of s

localization

FIGURE 9.42 Fringes in the Mach-Zehnder Interferometer.






