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I. CLASSICAL MAGNETIC MOMENTS

Consider a simple classical model of particle with charge q and mass m traveling in a

circular path with radius R at a speed v. The orbital angular momentum is

v

m, q

R

FIG. 1: Classical point particle traveling in a circle.

L = |r × p|

= mvR. (1)

The magnetic dipole moment of a current loop is

µ = IA, (2)

where I is the current, and A is the area of the loop. (See, e.g., Griffiths, Introduction to

Electrodynamics, Sect. 5.4.3.) In our simple model the current can be given in terms of the

period of the particle’s orbit T , giving

µ =
q

T
πR2

=
qv

2πR
πR2

=
qvR

2
, (3)

and this can be rewritten in terms of the angular momentum of the particle as

µ =
q

2m
L. (4)
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This just states that the magnetic moment is proportional to the angular momentum.

(Notational note: There is a confusing array of symbols used to represent angular momen-

tum: L usually designates an orbital angular momentum; S usually designates an intrinsic

electronic spin; J usually designates total electronic angular momentum (orbital plus spin);

I often designates nuclear angular momentum; and F often designates the total angular mo-

mentum of an atom (total electronic plus nuclear). In the simple model above the angular

momentum is orbital, so we used L. In discussing real nuclei below we will use the symbol

I.)

Real systems are more complex than this simple model. For example, the particle may

travel in an elliptical path (with constant angular momentum; for extended bodies (like

a spherical shell, or a solid sphere) the contribution of each mass element dm must be

considered, and the total moment is the integral over the mass distribution. . We also

shouldn’t expect the relationship expressed in Eq. (4) to hold exactly for microscopic parti-

cles which must be described using quantum mechanics, especially when treating inherently

non-classical entities such as the intrinsic spin of particles. But the proportionality between

magnetic moment and angular momentum does hold in general, and the quantity q/2m

can be taken as a rough order-of-magnitude estimate of the size of atomic moments. It is

standard to include a “g-factor” to account for the discrepancy between this naive classical

model and real moments. For example, the proton magnetic moment is written as

µp = gp
e

2m
I, (5)

where I is the proton angular momentum, e = +1.6 × 10−19 C, m = 1.67 × 10−27 kg, and gp

is the proton g-factor, which happens to have the approximate value 5.59. Another way to

parametrize this is to lump the constants together and write

µp = γI, (6)

where the constant γ is called the gyromagnetic ratio (sometimes referred to as the magne-

togyric ratio). For protons γ/2π = 4.26 kHz/Gauss = 42.6 MHz/T.
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II. MOTION OF MOMENTS IN MAGNETIC FIELDS

The motion of a magnetic moment µ in a field B is derived from the equation of motion

relating the time derivative of angular momentum to the net applied torque,

dI

dt
= τ . (7)

The torque is given by µ×B, and using this along with Eq. (6) gives

dµ

dt
= γµ×B. (8)

A. Moments in a constant field

Assume that the magnetic field is uniform and constant in time. It is conventional to let

the field point along the z axis so that

B = B0k̂. (9)

x

y

z

µ

B

FIG. 2: Magnetic moment in a magnetic field oriented parallel to the z axis.

Problem 1 Determine the direction of the instantaneous torque on the illustrated dipole,

and describe the resulting motion of the dipole.

4



Problem 2 Use Eq. (8) and the static field of Eq. (9) to show that components of µ obey

the equations

dµx

dt
= γB0µy, (10a)

dµy

dt
= −γB0µx, (10b)

dµz

dt
= 0. (10c)

Problem 3 Solve Eqs. (10a)–(10c) to show that

µx(t) = A cos(γB0t + φ), (11a)

µy(t) = −A sin(γB0t + φ), (11b)

µz(t) = µz(0). (11c)

Show that this solution is consistent with the qualitative result you obtained in Problem 1.

The results of the preceding problem give the important result: the torque on magnetic

moments in a constant field lead to precession, and the precession frequency of a moment

in a field is given by

ωp = γB0. (12)

This is analogous to the motion of tops with angular momentum in a gravitational field:

frictionless spinning tops do not fall over, they precess.

B. Moments in combined static and rotating fields

Imagine that you are in a frame that it is rotating about the z axis at exactly the

precession frequency ωp. In this frame the moment is stationary; from the point of view of

an observer in the rotating frame there is no acceleration of the moment. The observer in

this frame doesn’t “see” the constant magnetic field applied parallel to the z axis.

Now imagine that we apply a field of magnitude B1 in the x-y plane which rotates along

with the rotating frame at ωp. In the rotating frame this field is a stationary field in the x

direction, as illustrated in Fig. 3. To an observer in the rotating frame the total effective
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field is this stationary field along the x axis, and the moment precesses about this field at a

rate γB1, as is illustrated in the figure. (For a more quantitative derivation of the equations

of motion in the non-inertial rotating frame, see the Appendix.)

x
′

y
′

µ

B1

z
′

FIG. 3: Motion of a dipole in a combined static and rotating field as viewed in a

frame rotating at the precession frequency ωp. The static field is oriented par-

allel to the z axis and the rotating field is oriented parallel to the x axis

of the rotating frame. The rotation rate of the field and the magnetic field

both match the precession frequency of the moment about the static field.

In the lab frame the motion of the moment does not appear quite so simple. The motion

is a combination of the precession in the rotating frame with the motion of the rotating

frame. The precession about the rotating field is usually much slower than ωp, the precession

frequency of the rotating field itself. In this case the moment rapidly precesses about the z

axis while the angle that the moment makes with respect to the z axis gradually changes.

The tip of the moment µ traces out a spiral path on the surface of a sphere, as is illustrated

in Fig. 4.

The net effect of the static and rotating fields is to tip the spins if the frequency of the

rotating field matches ωp, the precession frequency of a single spin in the static field. If the

rotation frequency doesn’t exactly match ωp, the spins are not tipped as effectively. This

flipping of the spins when the applied rf frequency matches the precession frequency is what

is known as nuclear magnetic resonance.
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FIG. 4: Motion of a dipole in a combined static and rotating field as viewed in the

lab frame. The line represents the path followed by the tip of the vector µ.

How do we create a rotating magnetic field? We don’t. We create an oscillating field in

one direction, say parallel to the x axis, and take advantage of a mathematical trick. An

oscillating field parallel to the x axis (and perpendicular to the direction of the static field)

can be written

B⊥(t) = 2B1 cos ωt î. (13)

(You will see why there we write this with a “extra” factor 2 in a moment.) Adding and

subtracting the quantity B1 sin ωt ĵ to this field doesn’t change anything, but it does allow

us to rewrite the oscillating field as

B⊥(t) = B1

(

cos ωt î + sin ωt ĵ
)

+ B1

(

cos ωt î − sin ωt ĵ
)

(14)

The field given by this equation is exactly the same as that given by Eq. (13, but now it is

written as the sum of two rotating fields, rotating in opposite directions. The addition of

counter-rotating fields is illustrated in Fig. 5.

The “part” of the field rotating in the same sense as the precessing moment acts to tip

the spins from their existing orientation relative to the z axis; the counter-rotating “part”
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has a negligible effect. (In the rotating frame the counter-rotating field appears to rotate at

2ωp, and doesn’t stay “in step” with the moment, and the effects of this counter-rotating

term are negligible under the conditions of typical NMR experiments.)

Problem 4 Convince yourself that the two terms on the right side of Eq. (14) are in each

circularly rotating fields. Determine which one corresponds to clockwise rotation as viewed

from the positive z direction, and which corresponds to counter-clockwise rotations.

ω

ω

x

y

2B1 cosωt

Resultant Field

FIG. 5: Two counter-rotating fields combine to form an oscillating field in a single direction.

III. MEASUREMENT OF PRECESSING MOMENTS

In order to detect precessing spins take advantage of Faraday’s Law. If the moments

are precessing together with the same phase there is a resulting precession of the net mag-

netization vector M. (If the moments are all in random phases of precession, the x and

y components average to zero.) The precessing magnetization results in a changing flux

through the pick-up coils illustrated in Fig. 6, which generates a detectable emf oscillating

at the precession frequency. The magnitude of the emf depends on the magnitude of M and
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FIG. 6: A precessing magnetization M results in an emf in pickup coils around the sample.

the angle θ; the largest signals will be generated when θ = 90◦.

The signal from pick-up coils will be something like

S(t) = S0e
−t/T cos (ωpt + φ) , (15)

where the time T characterizes the time it takes for any detectable coherent precession of

M to die away. (We will discuss decay processes a little more in the next section.) The

amplified signal from the pick-up coils is available at the Receiver output labeled RF Out.

While it’s nice to see this signal, we don’t really care about the high-frequency oscillations;

the interesting physics is contained in the decaying amplitude of this signal. To get an

output that is proportional to the amplitude of the oscillation the raw signal is rectified and

run through a low pass filter, as is schematically illustrated in Fig. 7. The result of this is

available at the Receiver Detector Out.

As discussed above, the most effective flipping of the spins occurs when the applied

rf frequency ωrf exactly matches the precession frequency ωp. The mixer output helps

determine whether this condition is met. A mixer is a circuit that multiplies two oscillating

signals together, producing an output with frequency components at the sum and difference
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Low Pass
Filter
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FIG. 7: The detected rf signal is rectified and passed through a low-pass filter to give an

output that this proportional to the slowly varying amplitude of the oscillation.

of the two input frequencies. If we take the product of the signal from the precessing spins

and the applied rf we have A(t) cos ωrft cos ωpt where A(t) contains the slowly decaying

envelope of the signal. Using trigonometric identities we have

A(t) cos ωrft cos ωpt =
1

2
A(t) [cos (ωp + ωrf) t + cos (ωp − ωrf) t] . (16)

Since ωp ' ωrf, the difference ωp − ωrf is very small compared to the sum ωp + ωrf. This

makes it easy to filter the high frequency term, leaving

Vmixer ∝ A(t) cos (ωp − ωrf) t. (17)

When ωp = ωrf this has the same form as the detector output; when ωp 6= ωrf the mixer

output shows low-frequency “beats” at the difference frequency. The oscillator frequency

should be adjusted to eliminate the beats, and the mixer output and the detector output

should have the same shape when the resonance condition ωp = ωrf is met.

IV. RELAXATION

Up to this point we have considered the motion of isolated dipole moments. In real

samples there are very many moments and we actually measure the average magnetization

M, which is the dipole moment per unit volume. In addition, the spins in a real sample

are not isolated: they interact with their environment. In the liquid samples you will

investigate the molecules undergo random collisions, during which any given proton “sees”

rapidly varying magnetic fields from the neighboring molecules.
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The net effect of the interaction with the environment on the measured magnetization can

be lumped into two categories: transverse relaxation and longitudinal relaxation. Transverse

relaxation refers to the loss of detected signal because of the tendency of precessing spins to

get out of phase with each other. The spins may start out in perfect alignment, say along the

x-axis, but they may precess at slightly different rates due to inhomogeneities in the field,

or due to collisions that interrupt the uniform precession, so eventually the spins may point

in random directions in the x-y plane, in which case M = 0. The characteristic time for this

process is often called T2. (This process is often called spin-lattice relaxation, although this

can be misleading because there is no lattice in a liquid sample.) Longitudinal relaxation

refers to the relaxation of Mz back as the magnetization returns to its equilibrium orientation

along the z axis. The characteristic time for this process is often called T1. ((This process

is often called spin-spin relaxation.) We will not discuss the details of the various relaxation

processes in this document, only some techniques for measuring the distinct relaxation times.

A. Measurement of the Longitudinal Relaxation Time, T1.

The decay of Mz can be measured with a sequence of two rf pulses, with a variable

delay between the pulses. The process is illustrated in Fig. 8, in which the axes are all

assumed to be fixed in the rotating frame. The duration of the first rf pulse is such that

the initial magnetization along the z axis is rotated 180◦ so that it points in the direction

of the negative z axis. After a waiting time τ , the magnetization vector will have become

shorter. Note: this is entirely due to longitudinal relaxation. Because the magnetization

is along the z direction it will not induce any signal in the pickup coils, so the relaxation

is not yet observable. To measure the length of the magnetization vector it must first be

rotated 90◦ into the x′-y′ plane, and this can be achieved with a second rf pulse of half the

duration of the first pulse. By repeating this sequence with varying delays between pulses,

the time-dependent decay of M due to longitudinal relaxation can be observed.

B. Measurement of the Transverse Relaxation Time, T2.

Transverse decay mechanisms fall into two categories: interesting and uninteresting. The

main “uninteresting” decay is due to inhomogeneity of the static magnetic field. The fact
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FIG. 8: 180◦-90◦ pulse sequence used to measure the longitudinal relaxation time T1.

that the field varies slightly over the size of the sample means that different spins feel slightly

different magnetic fields, leading to slightly different precession rates, which means that

initially in-phase precessing spins will eventually spread out. This doesn’t tell us anything

about the spins themselves, or their interactions with each other or their environment; thus

the classification as “uninteresting.” The spin-echo technique described in this section allows

us to get information about “interesting” relaxation processes.

The generation of spin echoes is illustrated in Fig. 9. Consider a set of stationary spins

with a transverse decay which is entirely due to field inhomogeneities. A first rf pulse rotates

the initial magnetization 90◦ so that it lies along the positive x′ axis. If the moments all

precessed at exactly the same rate, they would all remain aligned with the x′ axis (in the ro-

tating frame), and the magnetization would remain constant. Some spins precess faster than

the average, which means they move clockwise when viewed looking down from the positive

z′ axis in the rotating frame, and some slower, which means they move counterclockwise.
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FIG. 9: Illustration of formation of spin echoes. The square pulses in the top line represent

the amplitude of the applied rf as a function time, and the decay and echo are the

amplitude of the detected rf from the precessing magnetization. The drawings A through

H indicate the positions of the precessing spins at times corresponding to the letters

on the graph of the rf amplitude. From Carr and Purcell, Phys. Rev. 94, 630 (1954).

This leads to a “fanning out” of the moments in the rotating frame, and a decrease in the

magnitude of the net magnetization. After some time τ an rf pulse is applied that rotates

the spins 180◦ about the x′ axis. The “fast” spins in the illustration still move clockwise,

and the “slow” spins counterclockwise, but after the 180◦ flip the spins are all converging

on the negative x′ axis. After an additional time τ the spins are all once again aligned,

meaning the M has reformed, which leads to a large “echo” signal. The decay due to field

inhomogeneities has been reversed by this 90◦-180◦ pulse sequence. In real experiments there

are other mechanisms leading to transverse decay, and the reduction of the magnetization

signal as a function of delay time τ is due to these “interesting” processes.
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V. EXPERIMENT

1. Read the TeachSpin PS-1 manual.

2. Measure the field of the PS-1 magnet.

3. Follow the procedures given in the following parts of the Getting Started section of the

manual:

(a) All of Section A.

(b) All of Section B.

(c) All of Section C.

(d) Section D (Discuss with your instructor whether to follow Option 1 or 2 on p.

30.)

4. Observe longitudinal relaxation with a 180◦-90◦ pulse sequence. Vary the delay time

τ and make record qualitative observations in your notebook.

5. Observe transverse relaxation with a 90◦-180◦ pulse sequence. Vary the delay time τ

and make record qualitative observations in your notebook.

6. After discussions with your instructor, perform a set of quantitative measurements

with the PS-1 spectrometer.
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