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Those who have not wandered amidst the mineralogical departments of natural
history museums are often surprised to learn that metals, like most other solids, are
crystalline, for although one is used to the very obvious crystalline features of quartz,
diamond, and rock salt, the characteristic plane faces at sharp angles with one another
are absent from metals in their most commonly encountered forms. However, those
metals that occur naturally in the metallic state are quite often found in crystalline
forms, which are completely disguised in finished metal products by the great mal-
leability of metals, which permits them to be fashioned into whatever macroscopic
shape one wishes.

The true test of crystallinity is not the superficial appearance of a large specimen,
but whether on the microscopic level the ions are arranged in a periodic array.!
This underlying microscopic regularity of crystalline matter was long hypothesized
as the obvious way to account for the simple geometric regularities of macroscopic
crystals, in which plane faces make only certain definite angles with each other. It
received direct experimental confirmation in 1913 through the work of W. and
L. Bragg, who founded the subject of X-ray crystallography and began the inves-
tigation of how atoms are arranged in solids.

Before we describe how the microscopic structure of solids is determined by X-ray
diffraction and how the periodic structures so revealed affect fundamental physical
properties, it is useful to survey some of the most important geometrical properties
of periodic arrays in three-dimensional space. These purely geometrical consider-
ations are implicit in almost all the analysis one encounters throughout solid state
physics, and shall be pursued in this chapter and in Chapters 5 and 7. The first of
many applications of these concepts will be made to X-ray diffraction in Chapter 6.

BRAVAIS LATTICE

A fundamental concept in the description of any crystalline solid is that of the Bravais
lattice, which specifies the periodic array in which the repeated units of the crystal
are arranged. The units themselves may be single atoms, groups of atoms, molecules,
ions, etc., but the Bravais lattice summarizes only the geometry of the underlying
periodic structure, regardless of what the actual units may be. We give two equivalent
definitions of a Bravais lattice?:

(a) A Bravais lattice is an infinite array of discrete points with an arrangement and
orientation that appears exactly the same, from whichever of the points the
array is viewed.

(b) A (three-dimensional) Bravais lattice consists of all points with position vectors
R of the form

R = nja, + nya; + naa,, 4.1)

! Often a specimen is made up of many small pieces, each large on the microscopic scale and con-

taining large numbers of periodically arranged ions. This ‘“‘polycrystalline” state is more commonly
encountered than a single macroscopic crystal, in which the periodicity is perfect, extending through the
entire specimen.

2 Why the name Bravais appears is explained in Chapter 7.
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where a,, a,, and a, are any three vectors not all in the same plane, and n,,
n,, and 115 range through all integral values.® Thus the point Zn;a; is reached by
moving n; steps* of length g; in the direction of a; for i = 1,2, and 3.

The vectors a; appearing in definition (b) of a Bravais lattice are called primitive
vectors and are said to generate or span the lattice.

1t takes some thought to see that the two definitions of a Bravais lattice are equiva-
lent. That any array satisfying (b) also satisfies (a) becomes evident as soon as both def-
initions are understood. The argument that any array satisfying definition (a) can
be generated by an appropriate set of three vectors is not as obvious. The proof
consists of an explicit recipe for constructing three primitive vectors. The construction
is given in Problem 8a.

* * eP *  Figure4.l
A general two-dimensional Bravais lattice of no
particular symmetry: the oblique net. Primitive
Qe . . vectors a, and a, are shown. All points in the net are
linear combinations of these with integral coefficients;
2 ' for example, P = a, + 2a,, and @ = —a, + a,.

a,

Figure 4.1 shows a portion of a two-dimensional Bravais lattice.® Clearly definition
{a) is satisfied, and the primitive vectors a, and a, required by definition (b) are
indicated in the figure. Figure 4.2 shows one of the most familiar of three-dimensional
Bravais lattices, the simple cubic. It owes its special structure to the fact that it can
be spanned by three mutually perpendicular primitive vectors of equal length.

Figure 4.2

A simple cubic three-dimensional Bravais lattice. The three
primitive vectors can be taken to be mutually perpendicular,
and with a common magnitude.

3 We continue with the convention that “integer” means a negative integer or zero, as well as a
positive integer.

* ‘'When nis negative, n steps in a direction means » steps in the opposite direction. The point reached
does not, of course, depend on the order in which the n; + n, + n4 steps are taken,

5 A two-dimensional Bravais lattice is also known as a net.
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Figure 4.3

The vertices of a two-dimensional honeycomb
do not forin a Bravais lattice. The array of
points has the same appearance whether viewed
from point P or point Q. However, the view
from point R is rotated through 180°.

1t is important that not only the arrangement, but also the orientation must
appear the same from every point in a Bravais lattice. Consider the vertices of a
two-dimensional honeycomb (Figure 4.3). The array of points looks the same when
viewed from adjacent points only if the page is rotated through 180° each time one
moves from one point to the next. Structural relations are clearly identical, but not
orientational relations, so the vertices of a honeycomb do not form a Bravais lattice.
A case of more practical interest, satisfying the structural but not the orientational
requirements of definition (a), is the three-dimensional hexagonal close-packed lattice,
described below.

INFINITE LATTICES AND FINITE CRYSTALS

Since all points are equivalent, the Bravais lattice must be infinite in extent. Actual
crystals are, of course, finite, but if they are large enough the vast majority of points
will be so far from the surface as to be unaffected by its existence. The fiction of an
infinite system is thus a very useful idealization. If surface effects are of interest the
notion of a Bravais lattice is still relevant, but now one must think of the physical
crystal as filling up only a finite portion of the ideal Bravais lattice.

Frequently one considers finite crystals, not because surface effects are important,
but simply for conceptual convenience, just as in Chapter 2 we placed the electron
gas in a cubical box of volume ¥ = L*. One then generally picks the finite region
of the Bravais lattice to have the simplest possible form. Given three primitive
vectors ay, a,, and a;, one usually considers the finite lattice of N sites to be the set
of points of the form R = nja, + nya, + nzaz, where 0 < n; < N, 0 < n; < Ny,
0 < n3 < Nij,and N = N,N,N;. This artifact is closely connected with the general-
ization to the description of crystalline systems® of the periodic boundary condition
we used in Chapter 2. :

FURTHER ILLUSTRATIONS AND IMPORTANT EXAMPLES

Of the two definitions of a Bravais lattice, definition (b} is mathematically more
precise and is the obvious starting point for any analytic work. It has, however, two

¢ We shall make particolar use of it in Chapters 8 and 22,
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minor shortcomings. First, for any given Bravais lattice the set of primitive vectors
is not unique—indeed, there are infinitely many nonequivalent choices (see Figure
4.4y—and it is distasteful (and sometimes misleading) to rely too heavily on a defi-
nition that emphasizes a particular choice. Second, when presented with a particular
array of points one usually can tell at a glance whether the first definition is satisfied,
although the existence of a set of primitive vectors or a proof that there is no such
set can be rather more difficult to perceive immediately.

b ® b hd ° . ° Figure 4.4

° ° ° ° Several possible choices of pairs of
~ . w . primitive vectors for a two-dimen-
] . . cvv\\. . drawn, for clarity, from different
L] L] L ] L]
L J L J L] L J L] L]
L]
L J

.
sional Bravais lattice. They are
. origins.

Consider, for example, the body-centered cubic (bec) lattice, formed by adding to
the simple cubic lattice of Figure 4.2 (whose sites we now label 4) an additional point,
B, at the center of each little cube (Figure 4.5). One might at first feel that the center
points B bear a different relation to the whole than the corner points 4. However,
the center point B can be thought of as corner points of a second simple cubic array.

Figure 4.5 )

A few sites from a body-centered cubic Bravais
lattice. Note that it can be regarded either as a simple
cubic lattice formed from the points A with the points
B at the cube centers, or as a simple cubic lattice
formed from the points B with the points 4 at the
cube centers. This observation establishes that it is
indeed a Bravais lattice.

In this new array the corner points A of the original cubic array are center points.
H::m all points do have identical surroundings, and the body-centered cubic lattice
1s a Bravais lattice. If the original simple cubic lattice is generated by primitive vectors

ag, ay, az, 4.2)
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where %, §, and 2 are three orthogonal unit vectors, then a set of primitive vectors
for the body-centered cubic lattice could be (Figure 4.6)

a
a, =a%, a,=4ay, a3 = MAw + 9+ 2). “4.3)

Figure 4.6

Three primitive vectors, specified in Eq. (4.3),

for the body-centered cubic Bravais lattice. The

lattice is formed by taking all linear combina-

tions of the primitive vectors with integral

coefficients. The point P, for example, is P =
~ —a, —a, + 2a;5.

A more symmetric set (see Figure 4.7) is
a a
=t +2-% m=zE+R-9) m-zEEy-D @
1t is important to convince oneself both geometrically and analytically that these

sets do indeed generate the bee Bravais lattice.

Figure 4.7
A more symmetric set of primitive vectors,

centered cubic Bravais lattice. The point
P, for example, has the form P = 2a, +
a, + a;.

Ny

Another equally important example is the face-centered cubic (fcc) Bravais lattice.
To construct the face-centered cubic Bravais lattice add to the simple cubic lattice
of Figure 4.2 an additional point in the center of each square face (Figure 4.8). For
ease in description think of each cube in the simple cubic lattice as having horizontal
bottom and top faces, and four vertical side faces facing north, south, east, and west.
1t may sound as if all points in this new array are not equivalent, but in fact they are.
One can, for example, consider the new simple cubic lattice formed by the points added

specified in Eq. (4.4), for the body-
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Figure 4.8
Some points from a face-centered
. . . Up
cubic Bravais lattice.
w N
g E
Down

to the centers of all the horizontal faces. The original simple cubic lattice points are
now centering points on the horizontal faces of the new simple cubic lattice, whereas
the points that were added to the centers of the north-south faces of the original cubic
lattice are in the centers of the east-west faces of the new one, and vice versa.

In the same way one can also regard the simple cubic lattice as being composed
of all points centering the north-south faces of the original simple cubic lattice, or
all points centering the east-west faces of the original cubic lattice. In either case the
remaining points will be found centered on the faces of the new simple cubic frame-
work. Thus any point can be thought of either as a corner point or as a face-centering
point for any of the three kinds of faces, and the face-centered cubic lattice is indeed
a Bravais lattice.

A symmetric set of primitive vectors for the face-centered cubic lattice (see Figure

'49)is

B=S(9+2, m=SE+R), a3 =& +9) @5)

Figure 4.9

A set of primitive vectors, as given in Eq. (4.5),
for the face-centered cubic Bravais lattice. The
labeled points are P = a; + a, + a,, 0 = 2a,,
R =a, +a;,and S = —a, + a, + a,.

N

The face-centered cubic and body-centered cubic Bravais lattices are of great
importance, since an enormous variety of solids crystallize in these forms with an
atom-(or jon) at each lattice site (see Tables 4.1 and 4.2). (The corresponding simple
cubic form, however, is very rare, the alpha phase of polonium being the only known
example among the elements under normal conditions.)
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Table 4.1
ELEMENTS WITH THE MONATOMIC FACE-CENTERED

CUBIC CRYSTAL STRUCTURE

ELEMENT a(A) ELEMENT  a(A) ELEMENT  a (&)
Ar 526 (42 K) Ir 3.84 Pt 3.92
Ag 4.09 Kr 5.72 (58 K) 8-Pu 4.64
Al 4.05 La 5.30 Rh 3.80
Au 4.08 Ne 443 (4.2 K) Sc 4.54
Ca 5.58 Ni 3.52 Sr 6.08
Ce 5.16 Pb 495 Th 5.08
B-Co 3.55 Pd 3.89 Xe (58 K) 6.20
Cu 3.61 Pr 5.16 Yb 5.49

Data in Tables 4.1 to 4.7 are from R. W. G. Wyckofl, Crystal Structures, 2nd ed.,
Interscience, New York, 1963. In most cases, the data are taken at about room tem-
perature and normal atmospheric pressure. For elements that exist in many forms the
stable room temperature form (or forms) is given. For more detailed information, more
precise lattice constants, and references, the Wyckoff work should be consulted.

Table 4.2
ELEMENTS WITH THE MONATOMIC BODY-CENTERED
CUBIC CRYSTAL STRUCTURE

pLEMENT  a (A) ELEMENT  a(A) eLeMent  a (A)
Ba 5.02 Li 3.49 (78 K) Ta 331
Cr 2.88 Mo 3.15 Tl 3.88
Cs 6.05 (78 K) Na 423 (5K) v 3.02
Fe 2.87 Nb 3.30 w 3.16
K 523 (5K) Rb 559 (5 K)

A NOTE ON USAGE

Although we have defined the term “Bravais lattice” to apply to a set of points, it

is also generally used to refer to the set of vectors joining any one of these points -

to all the others. (Because the points are a Bravais lattice, this set of vectors does not
depend on which point is singled out as the origin.) Yet another usage comes from
the fact that any vector R determines a translation or displacement, in which everything
is moved bodily through space by a distance R in the direction of R. The term “Bravais
lattice” is also used to refer to the set of translations determined by the vectors, rather
than the vectors themselves. In practice it is always clear from the context whether
it is the points, the vectors, or the translations that are being referred to.”

7 The more general use of the term provides an elegant definition of a Bravais lattice with the pre-
cision of definition (b) and the nonprejudicial nature of definition (a): A Bravais lattice is a discrete set
of vectors not all in a plane, closed under vector addition and subtraction (i.e., the sum and difference of
any two vectors in the set are also in the set).
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COORDINATION NUMBER

The points in a Bravais lattice that are closest to a given point are called its nearest
neighbors. Because of the periodic nature of a Bravais lattice, each point has the same
number of nearest neighbors. This number is thus a property of the lattice, and is
referred to as the coordination number of the lattice. A simple cubic lattice has co-
ordination number 6; a body-centered cubic lattice, 8; and a face-centered cubic
lattice, 12. The notion of a coordination number can be extended in the obvious way
to some simple arrays of points that are not Bravais lattices, provided that each point
in the array has the same number of nearest neighbors.

PRIMITIVE UNIT CELL

A volume of space that, when translated through all the vectors in a Bravais lattice,
just fills all of space without either overlapping itself or leaving voids is called a
primitive cell or primitive unit cell of the lattice.® There is no unique way of choosing
a primitive cell for a given Bravais lattice. Several possible choices of primitive cells
for a two-dimensional Bravais lattice are illustrated in Figure 4.10.

Several possible choices of primitive cell for a single two-dimensional Bravais lattice.

A primitive cell must contain precisely one lattice point (unless it is so positioned
that Ewﬁ are points on its surface). It follows that if »n is the density of points in
the lattice® and v is the volume of the primitive cell, then ny = 1. Thus v = 1/n. Since

8 Translations of the primitive cell may possess common surface points; the nonoverlapping proviso

is only intended to prohibit overlapping regions of nonzero volume.

? ._,r.o density n of Bravais lattice points need not, of course, be identical to the density of conduction
m_.mn:.ozm in a metal. When the possibility of confusion is present, we shall specify the two densities with
different symbols.
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this result holds for any primitive cell, the volume of a primitive cell is independent
of the choice of cell. o

It also follows from the definition of a primitive cell that, given any go.v:B;Eo
cells of arbitrary shape, it is possible to cut the first up into Emomm., which, when
translated through appropriate lattice vectors, can be reassembled to give the second.
This is illustrated in Figure 4.11.

Figure 4.11

Two possible primitive cells for a two-dimen-
sional Bravais lattice. The parallelogram cell
(shaded) is obviously primitive; additional
hexagonal cells are indicated 1o demonstrate
that the hexagonal cell is also primitive. The
parallelogram can be cut into pieces, which,
when translated through lattice vectors, re-
assemble to form the hexagon. The translations
for the mo:_‘lwommosm of the cmmwzo_om_.ma are:
mmmmo: 1—CO; Region 1II—BO; Region IlI—
AO; Region IV—no translation.

The obvious primitive cell to associate with a particular set of primitive vectors,
a,, a,, a3, is the set of all points r of the form

r = x4, + X33, + X323 (4.6)

for all x; ranging continuously between O and 1;i.c, the parallelipiped %mzzoa. by the
three vectors 4, a,, and a,. This choice has the disadvantage of not &mw_mf:m the
full symmetry of the Bravais lattice. For example (Figure 4.12), the H.S.: cell {4.6) .».o‘a the
choice of primitive vectors (4.5) of the fce Bravais lattice is an oblique parallelipiped,
which does not have the full cubic symmetry of the lattice in which it is choaama‘
Tt is often important to work with cells that do have the full symmetry of their Bravais
lattice. There are two widely used solutions to this problem:

Figure 4.12

Primitive and conventional unit cells for the face-
centered cubic Bravais lattice. The conventional cell is
the large cube. The primitive cell is the figure with six
parallelogram faces. It has one quarter the volume of
the cube, and rather less symmetry.
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UNIT CELL; CONVENTIONAL UNIT CELL

One can fill space up with nonprimitive unit cells (known simply as unit cells or
conventional unit cells). A unit cell is a region that just fills space without any over-
lapping when translated through some subset of the vectors of a Bravais lattice. The
conventional unit cell is generally chosen to be bigger than the primitive cell and to
have the required symmetry. Thus one frequently describes the body-centered cubic
lattice in terms of a cubic unit cell (Figure 4.13) that is twice as large as a primitive
bee unit cell, and the face-centered cubic lattice in terms of a cubic unit cell (Figure
4.12) that has four times the volume of a primitive fcc unit cell. (That the conventional
cells are two and four times bigger than the primitive cells is easily seen by asking
how many lattice points the conventional cubic cell must contain when it is so placed
that no points are on its surface.) Numbers specifying the size of a unit cell (such as
the single number a in cubic crystals) are called lattice constants.

Figure 4.13

Primitive and conventional unit cells for the body-
centered cubic Bravais lattice. The primitive cell
(shaded) has half the volume of the conventional
cubic cell.

WIGNER-SEITZ PRIMITIVE CELL

One can always choose a primitive cell with the full symmetry of the Bravais lattice.
By far the most common such choice is the Wigner-Seitz cell. The Wigner-Seitz cell
about a lattice point is the region of space that is closer to that point than to any
other lattice point.1® Because of the translational symmetry of the Bravais lattice,
the Wigner-Seitz cell about any one lattice point must be taken into the Wigner-Seitz
cell about any other, when translated through the lattice vector that joins the two
points, Since any point in space has a unique lattice point, as its nearest neighbor**
it will belong to the Wigner-Seitz cell of precisely one lattice point. It follows that a

¢ Such a cell can be defined for any set of discrete points that do not necessarily form a Bravais

lattice. In this broader context the cell is known as a Voronoy polyhedron. In contrast to the Wigner-Seitz
cell, the structure and orientation of a general Voronoy polyhedron will depend on which point of the
array it encloses.

1t Except for points on the common surface of two or more Wigner-Seitz cells.
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Wigner-Seitz cell, when translated through all lattice vectors, will just fill space
without overlapping; ie., the Wigner-Seitz cell is a primitive cell.

Since there is nothing in the definition of the Wigner-Seitz cell that refers to any
particular choice of primitive vectors, the Wigner-Seitz cell will be as symmetrical
as the Bravais lattice.'?

The Wigner-Seitz unit cell is illustrated for a two-dimensional Bravais lattice in
Figure 4.14 and for the three-dimensional body-centered cubic and face-centered
cubic Bravais lattices in Figures 4.15 and 4.16.

Note that the Wigner-Seitz unit cell about a lattice point can be constructed by
drawing lines connecting the point to all others'? in the lattice, bisecting each line

e  Figure 4.14

The Wigner-Seitz cell for a two-dimensional
Bravais lattice. The six sides of the cell bisect
the lines joining the central points to its six
nearest neighboring points (shown as dashed
tines). In two dimensions the Wigner-Seitz
cell is always a hexagon unless the lattice is
rectangular (see Problem 4a).

Figure 4.15

The Wigner-Seitz cell for the body-centered cubic Bravais
lattice (a “truncated octahedron”). The surrounding cube is a
conventional body-centered cubic cell with a lattice point at
its center and on each vertex. The hexagonal faces bisect the
lines joining the central point to the points on the vertices
(drawn as solid lines). The square faces bisect the lines joining
the central point to the central points in each of the six neigh-
boring cubic cells (not drawn). The hexagons are regular (see
Problem 4d).

Figure 4.16

Wigner-Seitz cell for the face-centered cubic Bravais
lattice (a “rhombic dodecahedron”). The surrounding
cube is not the conventional cubic cell of Figure 4.12,
but one in which lattice points are at the center of the
cube and at the center of the 12 edges. Each of the 12
(congruent) faces is perpendicular to a line joining the
central point to a point on the center of an edge.

12 A precise definition of “‘as symmetrical as” is given in Chapter 7.
13 In practice only a fairly small number of nearby points actually yield planes that bound the cell.
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with a plane, and taking the smallest polyhedron containing the point bounded by
these planes.

CRYSTAL STRUCTURE; LATTICE WITH A BASIS

A physical crystal can be described by giving its underlying Bravais lattice, together
with a description of the arrangement of atoms, molecules, ions, etc., within a
particular primitive cell. When emphasizing the difference between the abstract
pattern of points composing the Bravais lattice and an actual physical crystal'4
embodying the lattice, the technical term “crystal structure” is used. A crystal structure
consists of identical copies of the same physical unit, called the basis, located at all
the points of a Bravais lattice (or, equivalently, translated through all the vectors
of a Bravais lattice). Sometimes the term lattice with a basis is used instead. However,
“lattice with a basis” is also used in a more general sense to refer to what results
even when the basic unit is not a physical object or objects, but another set of points.
For example, the vertices of a two-dimensional honeycomb, though not a Bravais
lattice, can be represented as a two-dimensional triangular Bravais lattice!® with a
two-point basis (Figure 4.17). A crystal structure with a basis consisting of a single
atom or ion is often called a monatomic Bravais lattice.

Figure 4.17

The honeycomb net, drawn so as
to emphasize that it is a Bravais
lattice with a two-point basis. The
pairs of points joined by heavy
solid lines are identically placed in
the primitive cells (parallelograms)
of the underlying Bravais lattice.

One also can describe a Bravais lattice as a lattice with a basis by choosing a non-
primitive conventional unit cell. This is often done to emphasize the cubic symmetry
of the bee and fec Bravais lattices, which are then described respectively, as simple
cubic lattices spanned by ag, a¥, and a2, with a two-point basis

0, -®R+35+12 (bec) 4.7)

ST~

or a four-point basis

a a a
0, MQN + 9), 3 (y + 2), 5 z+ %) (fee). 4.8)

4 But still idealized in being infinite in extent.
15 Spanned by two primitive vectors of equal length, making an angle of 60°,
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SOME IMPORTANT EXAMPLES OF CRYSTAL STRUCTURES AND
LATTICES WITH BASES

Diamond Structure

The diamond lattice!® (formed by the carbon atoms in a diamond crystal) consists of
two interpenetrating face-centered cubic Bravais lattices, displaced along the body
diagonal of the cubic cell by one quarter the length of the diagonal. It can be regarded
as a face-centered cubic lattice with the two-point basis 0 and (a/4) (kX + § + Z). The
coordination number is 4 (Figure 4.18). The diamond lattice is not a Bravais lattice,

Figure 4.18

Conventional cubic cell of the diamond lattice.
For clarity, sites corresponding to one of the
two interpenetrating face-centered cubic lattices
are unshaded. (In the zincblende structure the
shaded sites are occupied by one kind of ion,
and the unshaded by another.) Nearest-neighbor
bonds have been drawn in. The four nearest
neighbors of each point form the vertices of a
regular tetrahedron.

~

because the environment of any point differs in orientation from the environments
of its nearest neighbors. Elements crystallizing in the diamond structure are given
in Table 4.3.

Table 4.3
ELEMENTS WITH THE DIAMOND CRYSTAL
STRUCTURE
ELEMENT CUBE SIDE a (A)
C (diamond) 3.57
Si 5.43
Ge 5.66
«-Sn (grey) 6.49

Hexagonal Close-Packed Structure

Though not a Bravais lattice, the hexagonal close-packed (hcp) structure ranks in
importance with the body-centered cubic and face-centered cubic Bravais lattices;
about 30 elements crystallize in the hexagonal close-packed form (Table 4.4).

16 We use the word “lattice,” without qualifications, to refer either to a Bravais lattice or a lattice
with a basis.
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Table 4.4
ELEMENTS WITH THE HEXAGONAL CLOSE-PACKED CRYSTAL
STRUCTURE

ELEMENT 4 (A) ¢ cla ELEMENT a(A) ¢ cla
Be . 229 3.58 1.56 Os 2.74 432 1.58
- Cd 2.98 562 189 Pr 3.67 592 16l
Ce 365 . 596 1.63 Re 2.76 4.46 1.62
a-Co 2.51 4.07 1.62 Ru 2.70 428 1.59
Dy 3.59 5.65 1.57 Sc 3.31 5.27 1.59
Er 3.56 5.59 1.57 Tb 3.60 5.69 1.58
Gd 3.64 5.78 1.59 Ti 295 4,69 1.59
He 2 K) 3.57 5.83 1.63 Tl 3.46 5.53 1.60
Hf 3.20 5.06 1.58 Tm 3.54 5.55 1.57
Ho 3.58 5.62 1.57 Y 3.65 5.73 1.57
La 3.75 6.07 1.62 Zn 2.66 495 1.86
Lu 3.50 5.55 1.59 Zr 3.23 5.15 1.59
Mg 321 521 162 — —
Nd 3.66 5.90 1.61 “Ideal” 1.63

Underlying the hep structure is a simple hexagonal Bravais lattice, given by stacking
two-dimensional triangular nets'® directly above each other (Figure 4.19). The direc-
tion of stacking (as, below) is known as the c-axis. Three primitive vectors are

a /\wn

a, = ag, »NHM»+ 2

¥, az =cz 4.9)

The first two generate a triangular lattice in the x-y plane, and the third stacks the
planes a distance ¢ above one another.

The hexagonal close-packed structure consists of two interpenetrating simple hex-
agonal Bravais lattices, displaced from one another by a,/3 + a;/3 + as/2 (Figure
4.20). The name reflects the fact that close-packed hard spheres can be arranged in

N)

<)

la)l=lajl=a

)

Figure 4.19
The simple hexagonal Bravais lattice. Two-dimensional triangular nets (shown in inset) are
stacked directly above one another, a distance ¢ apart.
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Figure 4.20

The hexagonal close-packed crystal structure. It can
be viewed as two interpenetrating simple hexagonal
Bravais lattices, displaced vertically by a distance c/2
along the common c-axis, and displaced horizontally
so that the points of one lie directly above the centers
of the triangles formed by the points of the other.

such a structure. Consider stacking cannonballs (Figure 4.21), starting with a close-
packed triangular lattice as the first layer. The next layer is formed by placing a ball
in the depressions left in the center of every other triangle in the first layer, thereby
forming a second triangular layer, shifted with respect to the first. The third layer is
formed by placing balls in alternate depressions in the second layer, so that they lie
directly over the balls in the first layer. The fourth layer lies directly over the second,
and so on. The resulting lattice is hexagonal close-packed with the particular value
(see Problem 5):

c= Wn = 1.63299a. (4.10)
Figure 4,21
View from above of the first two layers in a stack
of cannonballs. The first layer is arranged in a
plane triangular lattice. Balls in the second layer
are placed above alternate interstices in the first.
If balls in the third layer are placed directly
above those in the first, at sites of the type
shown in inset (a), balls in the fourth directly
above those in the second, etc., the resulting
structure will be close-packed hexagonal. If,
however, balls in the third layer are placed
directly above those interstices in the first that
were not covered by balls in the second, at sites
of the type shown in inset (b), balls in the fourth
layer placed directly above those in the first,
balls in the fifth directly above those in the
second, etc., the resulting structure will be face-
centered cubic (with the body diagonal of the
cube oriented vertically.)

Because, however, the symmetry of the hexagonal close-packed lattice is independent
of the ¢/a ratio, the name is not restricted to this case. The value c/a = /8/3 is
sometimes called “ideal,” and the truly close-packed structure, with the ideal value
of ¢/a, is known as an ideal hep structure. Unless, however, the physical units in the
hep structure are actually close-packed spheres, there is no reason why c/a should
be ideal (see Table 4.4).
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Note, as in the case of the diamond structure, that the hcp lattice is not a Bravais
lattice, because the orientation of the environment of a point varies from layer to
layer along the c-axis. Note also that, when viewed along the c-axis, the two types
of planes merge to form the two-dimensional honeycomb array of Figure 4.3, which
is not a Bravais lattice.

Other Close-Packing Possibilities

Note that the hep structure is not the only way to close-pack spheres. If the first two
layers are laid down as described above, but the third is placed in the other set of
depressions in the second—i.e., those lying above unused depressions in both the first
and second layers (see Figure 4.21}—and then the fourth layer is placed in depressions
in the third directly above the balls in the first, the fifth above the second, and so on,
one generates a Bravais lattice. This Bravais lattice turns out to be nothing but the
face-centered cubic lattice, with the cube diagonal perpendicular to the triangular
planes (Figures 4.22 and 4.23).

Figure 4.22
How to section the face-centered cubic Bravais lattice to get
the layers pictured in Figure 4.21.

Figure 4.23
A cubic section of some face-centered cubic close-packed
spheres.

There are infinitely many other close-packing arrangements, since each successive
layer can be placed in either of two positions. Only fcc close-packing gives a Bravais
lattice, and the fcc (...ABCABCABC...) and hcp (...ABABAB...) structures are by
far the most commonly encountered. Other close-packed structures are observed,
however. Certain rare earth metals, for example, take on a structure of the form
(...ABACABACABAC...). ,
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The Sodium Chloride Structure

We are forced to describe the hexagonal close-packed and diamond lattices as lattices
with bases by the intrinsic geometrical arrangement of the lattice points. A lattice
with a basis is also necessary, however, in describing crystal structures in which the
atoms or ions are located only at the points of a Bravais lattice, but in which the crystal
structure nevertheless lacks the full translational symmetry of the Bravais lattice
because more than one kind of atom or ion is present. For example, sodium chloride

(Figure 4.24) consists of equal numbers of sodium and chlorine ions placed at alternate -

points of a simple cubic lattice, in such a way that each ion has six of the other kind
of ions as its nearest neighbors.!” This structure can be described as a face-centered
cubic Bravais lattice with a basis consisting of a sodium ion at 0 and a chlorine ion
at the center of the conventional cubic cell, (¢/2)(X + § + 2).

Figure 4.24

The sodium chloride structure. One type of ion is repre-
sented by black balls, the other type by white. The black
and white balls form interpenetrating fcc lattices.

Table 4.5

SOME COMPOUNDS WITH THE SODIUM CHLORIDE STRUCTURE

crYSTAL  a(A) CRYSTAL  a(A) CRYSTAL  a (A)
LiF 4.02 RbF 5.64 CaS 5.69
LiCl 5.13 RbCl 6.58 CaSe 591
LiBr 5.50 RbBr 6.85 CaTe 6.34
Lil 6.00 Rbl 7.34 SrO 5.16
NaF 4.62 CsF 6.01 SrS 6.02
NaCl 5.64 AgF 492 SrSe 6.23
NaBr 5.97 .AgCl 5.55 SrTe 6.47
Nal 6.47 AgBr 5.77 BaO 5.52
KF 5.35 MgO 4.21 BaS 6.39
KCl 6.29 MgS 5.20 BaSe 6.60
KBr 6.60 MpgSe 5.45 BaTe 6.99
KI 7.07 CaO 4.81

The Cesium Chloride Structure

mmB.:mz% cesium chloride (Figure 4.25) consists of equal numbers of cesium and
chlorine ions, placed at the points of a body-centered cubic lattice so that each ion

17 For examples see Table 4.5.

Some Important Examples of Crystal Structures and Lattices with Bases 81

has eight of the other kind as its nearest neighbors.'® The translational symmetry
of this structure is that of the simple cubic Bravais lattice, and it is described as a
simple cubic lattice with a basis consisting of a cesium ion at the origin 0 and a chlorine
ion at the cube center (a/2)(X + ¥ + Z).

Figure 4.25

The cesium chloride structure. One type of ion is repre-
sented by black balls, the other type by white. The black
and white balls form interpenetrating simple cubic lattices.

Table 4.6

SOME COMPOUNDS WITH THE CESIUM CHLORIDE

STRUCTURE

CRYSTAL a(A) CRYSTAL a(A)
CsCl 4.12 TICI 3.83
CsBr 4.29 TIBr 3.97
Csl 4,57 Til 4.20

The Zincblende Structure

Zincblende has equal numbers of zinc and sulfur ions distributed on a diamond lattice
so that each has four of the opposite kind as nearest neighbors (Figure 4.18). This
structure!® is an example of a lattice with a basis, which must be so described both
because of the geometrical position of the ions and because two types of ions occur.

Table 4.7
SOME COMPOUNDS WITH THE ZINCBLENDE STRUCTURE

CRYSTAL a(l) CRYSTAL  a(A) crYSTAL  a(A)
CuF 4.26 ZnS 5.41 AlSb 6.13
CuCl 5.41 ZnSe 5.67 GaP 5.45
CuBr 5.69 ZnTe 6.09 GaAs 5.65
Cul 6.04 CdS 5.82 GaSb 6.12
Agl 6.47 CdTe 6.48 InP 5.87
BeS 4.85 HgS 5.85 InAs 6.04
BeSe 5.07 HgSe 6.08 InSb 6.48
BeTe 5.54 HgTe 6.43 SiC 4.35
MnS (red) 5.60 AlP 5.45

MnSe 5.82 AlAs 5.62

18 For examples see Table 4.6.
1% For examples see Table 4.7.
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OTHER ASPECTS OF CRYSTAL LATTICES

This chapter has concentrated on the description of the translational symmetry of
crystal lattices in real physical space. Two other aspects of periodic arrays will be
dealt with in subsequent chapters: in Chapter 5 we examine the consequences of
translational symmetry not in real space, but in the so-called reciprocal (or wave
vector) space, and in Chapter 7 we describe some features of the rotational symmetry
of crystal lattices.

PROBLEMS

1. In each of the following cases indicate whether the structure is a Bravais lattice. If it is, give
three primitive vectors; if it is not, describe it as a Bravais lattice with as small as possible a basis.

(a) Base-centered cubic (simple cubic with additional points in the centers of the horizontal
faces of the cubic cell).

(b) Side-centered cubic (simple cubic with additional points in the centers of the vertical
faces of the cubic cell).

(c) Edge-centered cubic (simple cubic with additional points at the midpoints of the lines
joining nearest neighbors).

2. What is the Bravais lattice formed by all points with Cartesian coordinates (n,, n,, n3) if:
(a) The n; are either all even or all odd?
(b) The sum of the n; is required to be even?

3. Show that the angle between any two of the lines (bonds) joining a site of the diamond lattice
to its four nearest neighbors is cos™* (—1/3) = 109°28". 3

4. (a) Prove that the Wigner-Seitz cell for any two-dimensional Bravais lattice is either a
hexagon or a rectangle.

(b) Show that the ratio of the lengths of the diagonals of each parallelogram face of the
Wigner-Seitz cell for the face-centered cubic lattice (Figure 4.16) is /\M :1.

{c) Show that every edge of the polyhedron bounding the Wigner-Seitz cell of the body-
centered cubic lattice (Figure 4.15) is /\M\A times the length of the conventional cubic cell.

(d) Prove that the hexagonal faces of the bcc Wigner-Seitz cell are all regular hexagons.
{Note that the axis perpendicular to a hexagonal face passing through its center has only threefold
symmetry, so this symmetry alone is not enough.)

5. (a) Prove that the ideal ¢/a ratio for the hexagonal close-packed structure is /\w]\u = 1.633.

(b) Sodium transforms from becc to hep at about 23K (the “martensitic” transformation).
Assuming that the density remains fixed through this transition, find the lattice constant a of
the hexagonal phase, given that a = 4.23 A in the cubic phase and that the ¢/a ratio is indistin-
guishable from its ideal value,

6. The face-centered cubic is the most dense and the simple cubic is the least dense of the three
cubic Bravais lattices. The diamond structure is less dense than any of these. One measure of
thisis that the coordination numbers are: fcc, 12; bec, 8; sc, 6; diamond, 4. Another is the following::
Suppose identical solid spheres are distributed through space in such a way that their centers

|
|
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lie on the points of each of these four structures, and spheres on neighboring points just touch,
without overlapping. (Such an arrangement of spheres is called a close-packing arrangement.)
Assuming that the spheres have unit density, show that the density of a set of close-packed spheres
on each of the four structures (the “packing fraction”) is:

fce: 2r/6 = 0.74
bee: /@iw = 0.68
'sc: 7/6 = 0.52
diamond: /\wm\a = 0.34.

7. Let N, be the number of nth nearest neighbors of a given Bravais lattice point (e.g., in a simple
cubic Bravais lattice N, = 6, N, = 12, etc.). Let r, be the distance to the nth nearest neighbor
expressed as a multiple of the nearest neighbor distance (e.g., in a simple cubic Bravais lattice
rn=1r= /\M = 1.414). Make a table of N, and r, for n = 1, ..., 6 for the fcc, bec, and sc
Bravais lattices.

8. (a) Given a Bravais lattice, let a, be a vector joining a particular point P to one of its nearest
neighbors. Let P’ be a lattice point not on the line through P in the direction of a, that is as
close to the line as any other lattice point, and let a, join P to P'. Let P” be a lattice point not
on the plane through P determined by a, and a; that is as close to the plane as any other lattice
point, and let a5 join P to P”. Prove that a, a,, and a; are a set of primitive vectors for the
Bravais lattice.

(b) Prove that a Bravais lattice can be defined as a discrete set of vectors, not all in a plane,
closed under addition and subtraction (as described on page 70).
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The reciprocal lattice plays a fundamental role in most analytic studies of periodic
structures. One is led to it from such diverse avenues as the theory of crystal diffraction,
the abstract study of functions with the periodicity of a Bravais lattice, or the question
of what can be salvaged of the law of momentum conservation when the full trans-
lational symmetry of free space is reduced to that of a periodic potential. In this brief
chapter we shall describe some important elementary features of the reciprocal lattice
from a general point of view not tied to any particular application.

DEFINITION OF RECIPROCAL LATTICE

Consider a set of points R constituting a Bravais lattice, and a plane wave, ¢*". For
general k, such a plane wave will not, of course, have the periodicity of the Bravais
lattice, but for certain special choices of wave vector it will. The set of all wave vectors
K that yield plane waves with the periodicity of a given Bravais lattice is known as its
reciprocal lattice. Analytically, K belongs to the reciprocal lattice of a Bravais lattice
of points R, provided that the relation

oK G+R) _ iKer (5.1)

holds for any r, and for all R in the Bravais lattice. Factoring out e™ ", we can charac-
terize the reciprocal lattice as the set of wave vectors K satisfying

e*t =1 _ 62)

for all R in the Bravais lattice.

Note that a reciprocal lattice is defined with reference to a particular Bravais
lattice. The Bravais lattice that determines a given reciprocal lattice is often referred
to as the direct latrice, when viewed in relation to its reciprocal. Note also that
although one could define a set of vectors K satisfying (5.2) for an arbitrary set of
vectors R, such a set of K is called a reciprocal lattice only if the set of vectors R is
a Bravais lattice.!

THE RECIPROCAL LATTICE IS A BRAVAIS LATTICE

That the reciprocal lattice is itself a Bravais lattice follows most simply from the
definition of a Bravais lattice given in footnote 7 of Chapter 4, along with the fact
that if K; and K, satisfy (5.2), so, obviously, will their sum and difference.

It is worth considering a more clumsy proof of this fact, which provides an explicit
algorithm for constructing the reciprocal lattice. Let a,, a,, and a; be a set of primitive
vectors for the direct lattice. Then the reciprocal lattice can be generated by the three
primitive vectors

2, X 2,
b, = 2 —22 %%
P (@ % a3)

a; X a
—uﬂwﬁ.\u‘pn 5.3
2 (s x ay) 5-3)
b, = 21 a; % a,

a; -(ay x ag)’

! In particular, in working with a lattice with a basis one uses the reciprocal lattice determined by
the underlying Bravais lattice, rather than a set of K satisfying (5.2) for vectors R describing both the
Bravais lattice and the basis points.
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To verify that (5.3) gives a set of primitive vectors for the reciprocal lattice, one
first notes that the b; satisfy?

—u_. a; = Nﬁ.&..s.v Am.kv
where §;; is the Kronecker delta symbol:

%C.HOV mm.m.\.w 5.5
Su=1  i=] 9

Now any vector k can be written as a linear combination® of the b;:
- k = kb, + kyb, + k3ba. (5.6)
If R is any direct lattice vector, then
R = ma, + nya, + naa,, 5.7
where the n; are integers. It follows from (5.4) that
kR = 2n(kin, + kyny + kans). (5.8)

For e¢®* R to be unity for all R (Eq. (5.2)) k - R must be 2z times an integer for any
choices of the integers n;. This requires the coefficients k; to be integers. Thus the
condition (5.2) that K be a reciprocal lattice vector is satisfied by just those vectors
that are linear combinations (5.6) of the b; with integral coefficients. Thus (compare
Eq. (4.1)) the reciprocal lattice is a Bravais lattice and the b; can be taken as primitive
vectors. '

THE RECIPROCAL OF THE RECIPROCAL LATTICE

Since the reciprocal lattice is itself a Bravais lattice, one can construct its reciprocal
lattice. This turns out to be nothing but the original direct lattice.

One way to prove this is by constructing ¢,, ¢,, and ¢3 out of the b; according to
the same formula (5.3) by which the b; were constructed from the a;. It then follows
from simple vector identities (Problem 1) that ¢; = a;,i = 1, 2, 3.

A simpler proof follows from the observation that according to the basic definition
(5.2), the reciprocal of the reciprocal lattice is the set of all vectors G satisfying

e k=1 5.9)

for all K in the reciprocal lattice. Since any direct lattice vector R has this property
(again by (5.2)), all direct lattice vectors are in the lattice reciprocal to the reciprocal
lattice. Furthermore, no other vectors can be, for a vector not in the direct lattice has
the form r = x,a, + x,a, -+ x3a; with at least one nonintegral x;. For that value
of i, e™ " = ¥ % 1, and condition (5.9) is violated for the reciprocal lattice vector
K =b;.

2 When i # j, Eq. (5.4) follows because the cross product of two vectors is normal to both. When
i = j, it follows because of the vector identity

a;*(a; X a3) = a,° (a3 x a;) = a3 (a; % a,). -

3 This is true for any three vectors not all in one plane. It is easy to verify that the b; are not all in a
plane as long as the a; are not.



88 Chapter 5 The Reciprocal Lattice

IMPORTANT EXAMPLES

The simple cubic Bravais lattice, with cubic primitive cell of side g, has as its reciprocal
a simple cubic lattice with cubic primitive cell of side 2z/a. This can be seen, for
example, from the construction (5.3), for if

) a) = af, a, = ay, a3 = az, (5.10)
then
2 2 2
by=% b,=2"9 by=—"2 (5-11)
a a a

The face-centered cubic Bravais lattice with conventional cubic cell of side a has
as its reciprocal a body-centered cubic lattice with conventional cubic cell of side
47/a. This can be seen by applying the construction (5.3) to the fcc primitive vectors
(4.5). The result is

4 1 4r 1

b= "5 +2-8), bo=—5@E+%-73), b=

S

T

—5;®&+9-2 (1)

RO =

This has precisely the form of the bee primitive vectors (4.4), provided that the side
of the cubic cell is taken to be 4n/a.

The body-centered cubic lattice with conventional cubic cell of side a has as its
reciprocal a face-centered cubic lattice with conventional cubic cell of side 4n/a. This
can again be proved from the construction (5.3), but it also follows from the above
result for the reciprocal of the fcc lattice, along with the theorem that the reciprocal
of the reciprocal is the original lattice.

It is left as an exercise for the reader to verify (Problem 2) that the reciprocal to a
simple hexagonal Bravais lattice with lattice constants ¢ and a (Figure 5.1a) is another

?

(@) (b)
Figure 5.1
(a) Primitive vectors for the simple hexagonal Bravais lattice. (b) Primitive vectors for
the lattice reciprocal to that generated by the primitive vectors in (a). The ¢ and ¢* axes
are parallel. The a* axes are rotated by 30° with respect to the a axes in the plane perpen-
dicular to the ¢ or ¢* axes. The reciprocal lattice is also simple hexagonal.
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simple hexagonal lattice with lattice constants 2zt/c and fﬁ\/\wn (Figure 5.1b), rotated
through 30° about the c-axis with respect to the direct lattice.*

VOLUME OF THE RECIPROCAL LATTICE PRIMITIVE CELL

If v is the volume® of a primitive cell in'the direct lattice, then the primitive cell of the
reciprocal lattice has a volume (27)/v. This is proved in Problem 1.

FIRST BRILLOUIN ZONE

The Wigner-Seitz primitive cell (page 73) of the reciprocal lattice is known as the
first Brillouin zone. As the name suggests, one also defines higher Brillouin zones,
which are primitive cells of a different type that arise in the theory of electronic levels
in a periodic potential. They are described in Chapter 9.

Although the terms “Wigner-Seitz cell” and “first Brillouin zone” refer to identical
geometrical constructions, in practice the latter term is applied only to the k-space
cell. In particular, when reference is made to the first Brillouin zone of a particular
r-space Bravais lattice (associated with a particular crystal structure), what is always
meant is the Wigner-Seitz cell of the associated reciprocal lattice. Thus, because the
reciprocal of the body-centered cubic lattice is face-centered cubic, the first Brillouin
zone of the bec lattice (Figure 5.2a) is just the fcc Wigner-Seitz cell (Figure 4.16).
Conversely, the first Brillouin zone of the fcc [attice (Figure 5.2b) is just the bec Wigner-
Seitz cell (Figure 4.15).

Figure 5.2

) The first Brillouin zone for
the body-centered cubic lattice.
(b) The first Brillouin zone for
the face-centered cubic lattice.

(@) (b)

LATTICE PLANES

There is an intimate relation between vectors in the reciprocal lattice and planes of
points in the direct lattice. This relation is of some importance in understanding the
fundamental role the reciprocal lattice plays in the theory of diffraction, and will be
applied to that problem in the next chapter. Here we shall describe the relation in
general geometrical terms.

*+ The hexagonal close-packed structure is not a Bravais lattice, and therefore the reciprocal lattice
used in the analysis of hep solids is that of the simple hexagonal lattice (see footnote 1).
5 The primitive cell volume is independent of the choice of cell, as proved in Chapter 4.
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Given a particular Bravais lattice, a lattice plane is defined to be any plane con-
taining at least three noncollinear Bravais lattice points. Because of the translational
symmetry of the Bravais lattice, any such plane will actually contain infinitely many
lattice points, which form a two-dimensional Bravais lattice within the plane. Some
lattice planes in a simple cubic Bravais lattice are pictured in Figure 5.3.

Figure 5.3
Some lattice planes (shaded) in a simple cubic Bravais lattice; (a) and (b)
show two different ways of representing the lattice as a family of lattice planes.

By a family of lattice planes we mean a set of parallel, equally spaced lattice planes,
which together contain all the points of the three-dimensional Bravais lattice. Any
lattice plane is a member of such a family. Evidently the resolution of a Bravais lattice
into a family of lattice planes is far from unique (Figure 5.3). The reciprocal lattice
provides a very simple way to classify all possible families of lattice planes, which is
embodied in the following theorem:

For any family of lattice planes separated by a distance d, there are reciprocal
lattice vectors perpendicular to the planes, the shortest of which have a length
of 2n/d. Conversely, for any reciprocal lattice vector K, there is a family of lattice
planes normal to K and separated by a distance d, where 2n/d is the length of
the shortest reciprocal lattice vector parallel to K.

The theorem is a straightforward consequence of (a) the definition (5.2) of recip-
rocal lattice vectors as the wave vectors of plane waves that are unity at all Bravais
lattice sites and (b) the fact that a plane wave has the same value at all points lying in
a family of planes that are perpendicular to its wave vector and separated by an
integral number of wavelengths.

To prove the first part of the theorem, given a family of lattice planes, let i be a
unit vector normal to the planes. That K = 2xfi/d is a reciprocal lattice vector follows
from the fact that the plane wave ¢® " is constant in planes perpendicular to K and
has the same value in planes separated by 1 = 2r/K = d. Since one of the lattice
planes contains the Bravais lattice point r = 0, ¢®"* must be unity for any point r in
any of the planes. Since the planes contain all Bravais lattice points, e®*'* = 1 for all
R, so that K is indeed a reciprocal lattice vector. Furthermore, K is the shortest
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reciprocal lattice vector normal to the planes, for any wave vector shorter than K
will give a plane wave with wavelength greater than 2n/K = d. Such a plane wave
cannot have the same value on all planes in the family, and therefore cannot give a
plane wave that is unity at all Bravais lattice points.

To prove the converse of the theorem, given a reciprocal lattice vector, let K be
the shortest parallel reciprocal lattice vector. Consider the set of real space planes on
which the plane wave ¢™ " has the value unity. These planes (one of which contains
the point r = 0) are perpendicular to K and separated by a distance d = 2n/K. Since
the Bravais lattice vectors R all satisfy ¢®'® = 1 for any reciprocal lattice vector K,
they must all lie within these planes; i.e., the family of planes must contain within it
a family of lattice planes. Furthermore the spacing between the lattice planes is also
d (rather than some integral multiple of d), for if only every nth plane in the family
contained Bravais lattice points, then according to the first part of the theorem, the
vector normal to the planes of length 2n/nd, i.e., the vector K/n, would be a reciprocal
lattice vector. This would contradict our original assumption that no reciprocal
lattice vector parallel to K is shorter than K.

MILLER INDICES OF LATTICE PLANES

The correspondence between reciprocal lattice vectors and families of lattice planes
provides a convenient way to specify the orientation of a lattice plane. Quite generally
one describes the orientation of a plane by giving a vector normal to the plane. Since
we know there are reciprocal lattice vectors normal to any family of lattice planes, it
is natural to pick a reciprocal lattice vector to represent the normal. To make the
choice unique, one uses the shortest such reciprocal lattice vector. In this way one
arrivas at the Miller indices of the plane:

The Miller indices of a lattice plane are the coordinates of the shortest reciprocal
lattice vector normal to that plane, with respect to a specified set of primitive recip-
rocal lattice vectors. Thus a plane with Miller indices h, k, I, is normal to the reciprocal
lattice vector hb; + kb, + Ibs.

As so defined, the Miller indices are integers, since any reciprocal lattice vector is
a linear combination of three primitive vectors with integral coefficients. Since the
normal to the plane is specified by the shortest perpendicular reciprocal lattice vector,
the integers A, k, [ can have no common factor. Note also that the Miller indices
depend on the particular choice of primitive vectors.

In simple cubic Bravais lattices the reciprocal lattice is also simple cubic and the
Miller indices are the coordinates of a vector normal to the plane in the obvious
cubic coordinate system. As a general rule, face-centered and body-centered cubic
Bravais lattice are described in terms of a conventional cubic cell, i.e., as simple cubic
lattices with bases. Since any lattice plane in a fcc or bee lattice is also a lattice plane
in the underlying simple cubic lattice, the same elementary cubic indexing can be
used to specify lattice planes. In practice, it is only in the description of noncubic
crystals that one must remember that the Miller indices are the coordinates of the
normal in a system given by the reciprocal lattice, rather than the direct lattice.

The Miller indices of a plane have a geometrical interpretation in the direct lattice,
which is sometimes offered as an alternative way of defining them. Because a lattice
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plane with Miller indices h, k, ! is perpendicular to the reciprocal lattice vector K =
hby + kb, + /s, it will be contained in the continuous plane K - r = 4, for
suitable choice of the constant 4. This plane intersects the axes determined by the
direct lattice primitive vectors a; at the points x,a;, x,a,, and x;a; (Figure 5.4,
where the x; are determined by the condition that x;a; indeed satisfy the equation of
the plane: K - (x;a) = 4. Since K-a, = 27k, K- a; = 2nk, and K-a; = 27l, it
follows that
A A A

= o T e %= o

kel 5.13
ke’ (5.13)
Thus the intercepts with the crystal axes of a lattice plane are inversely proportional
to the Miller indices of the plane.

Figure 5.4

An illustration of the crystallographic definition of the Miller indices of
a lattice plane. The shaded plane can be a portion of the continuous plane
in which the points of the lattice plane lie, or ‘any plane parallel to the
lattice plane. The Miller indices are inversely proportional to the x;.

Crystallographers put the cart before the horse, defining the Miller indices to be a
set of integers with no common factors, inversely proportional to the intercepts of
the crystal plane along the crystal axes:

11 1

hiki = —:—: —, (5.14)
X1 X3 X3

SOME CONVENTIONS FOR SPECIFYING DIRECTIONS

Lattice planes are usually specified by giving their Miller indices in parentheses:
(h, k, 1). Thus, in a cubic system, a plane with a normal (4, —2, 1) (or, from the crys-
tallographic viewpoint, a plane with intercepts (1, -2, 4) along cubic axes) is called a
{4, —2, 1) plane. The commas are eliminated without confusion by writing 7 instead
of —n, simplifying the description to (421). One must know what set of axes is being
used to interpret these symbols unambiguously. Simple cubic axes are invariably used
when the crystal has cubic symmetry. Some examples of planes in cubic crystals are
shown in Figure 5.5.

A similar convention is used to specify directions in the direct lattice, but to avoid
confusion with the Miller indices (directions in the reciprocal lattice) square brackets
are used instead of parentheses. Thus the body diagonal of a simple cubic lattice lies
in the [111] direction and, in general the lattice point mya, + nya, + niay lies in
the direction [n,n,n3] from the origin.

There is also a notation specifying both a family of lattice planes and all those
other families that are equivalent to it by virtue of the symmetry of the crystal. Thus

‘
i
i
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(100) (110) (111)

- Figure 5.5 o . 4 4 )
Three lattice planes and their Miller indices in a simple cubic Bravais lattice.

the (100), (010), and (001) planes are all equivalent in a cubic crystal. One refers to
them collectively as the {100} planes, and in general one uses {hkl} to refer to the
(hkl) planes and all those that are equivalent to them by virtue of the crystal symmetry.
A similar convention is used with directions: the [100], [010], ﬁooS, [100], [010],
and [001] directions in a cubic crystal are referred to, collectively, as the (100
directions.

This concludes our general geometrical discussion of the reciprocal lattice. In
Chapter 6 we shall see an important example of the utility and the power of the
concept in the theory of the diffraction of X rays by a crystal.

PROBLEMS

N

¥ (a) Prove that the reciprocal lattice primitive vectors defined in (5.3} satisfy

(2m)*
a, - (a; x a3)

by - (by x by) = (5.15)

(Hint: Write b, (but not b, or b,) in terms of the a;, and use the orthogonality relations (5.4).)
(b) Suppose primitive vectors are constructed from the b; in the same manner (Eq. (5.3)) as
the b; are constructed from the a;. Prove that these vectors are just the a; themselves; i.e., show that

b, x b,
T2 = 3
b - (b; x b;)
(Hint: Write b, in the numerator (but not b,) in terms of the a;, use the vector identity A x
(B x C) = B(A-C) — C(A - B), and appeal to the orthogonality relations (5.4) and the result
(5.15) above.) . .
(c) Prove that the volume of a Bravais lattice primitive cell is

v =a,*(a; X a3)}, B.17)

where the a; are three primitive vectors. (In conjunction with (5.15) this establishes that the volume
of the reciprocal lattice primitive cell is (2r)*/v.)

2 =a,, etc (5.16)
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2. (a) Using the primitive vectors given in Eq. (4.9) and the construction (5.3) (or by any other
method) show that the reciprocal of the simple hexagonal Bravais lattice is also simple hexagonal,
with lattice constants 2r/c and 4/, /3a, rotated through 30° about the c-axis with respect to the
direct lattice.

(b) For what value of ¢/a does the ratio have the same value in both direct and reciprocal
lattices? If ¢/a is ideal in the direct lattice, what is its value in the reciprocal lattice?

(c) The Bravais lattice generated by three primitive vectors of equal length a, making equal
angles 6 with one another, is known as the trigonal Bravais lattice (see Chapter 7). Show that the
reciprocal of a trigonal Bravais lattice is also trigonal, with an angle 8% given by —cos 0* =
cos 6/[1 + cos 6], and a primitive vector length a*, given by a* = (2n/a)(l + 2 cos 0 cos §%)~ 1/

3. (a) Show that the density of lattice points (per unit area) in a lattice plane is d/v, where v is
the primitive cell volume and d the spacing between neighboring planes in the family to which the
given plane belongs.

{(b) Prove that the lattice planes with the greatest densities of points are the {111} planes in
a face-centered cubic Bravais lattice and the {110} planes in a body-centered cubic Bravais lattice
(Hint: This is most easily done by exploiting the relation between families of lattice planes m:m;
reciprocal lattice vectors.) ;

4. Prove that any reciprocal lattice vector K is an integral multiple of the shortest parallel
reciprocal lattice vector K. (Hint: Assume the contrary, and deduce that since the reciprocal
lattice is a Bravais lattice, there must be a reciprocal lattice vector parallel to K shorter than Kg.)
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Typical interatomic distances in a solid are on the order of an angstrom (1078 cm).
An electromagnetic probe of the microscopic structure of a solid must therefore have
a wavelength at least this short, corresponding to an energy of order

5 he he
= T 10 %m
Energies like this, on the order of several thousands of electron volts (kilovolts or
keV), are characteristic X-ray energies.

In this chapter we shall describe how the distribution of X rays scattered by a
rigid,! periodic? array of ions reveals the locations of the ions within that structure.
There are two equivalent ways to view the scattering of X rays by a perfect periodic
structure, due to Bragg and to von Laue. Both viewpoints are still widely used. The
von Laue approach, which exploits the reciprocal lattice, is closer to the spirit of
modern solid state physics, but the Bragg approach is still in wide use by X-ray crys-
tallographers. Both are described below, together with a proof of their equivalence.

~ 123 x 103 €V. (6.1)

BRAGG FORMULATION OF X-RAY DIFFRACTION BY A CRYSTAL

In 1913 W. H. and W. L. Bragg found that substances whose macroscopic forms
were crystalline gave remarkably characteristic patterns of reflected X-radiation,
quite unlike those produced by liquids. In crystalline materials, for certain sharply
defined wavelengths and incident directions, intense peaks of scattered radiation
(now known as Bragg peaks) were observed.

W. L. Bragg accounted for this by regarding a crystal as made out of parallel planes
of ions, spaced a distance d apart (i.e., the lattice planes described in Chapter 5). The
conditions for a sharp peak in the intensity of the scattered radiation were: (1) that
the X rays should be specularly reflected? by the ions in any one plane and (2) that the
reflected rays from successive planes should interfere constructively. Rays specularly
reflected from adjoining planes are shown in Figure 6.1. The path difference between
the two rays is just 2d sin 6, where  is the angle of incidence.* For the rays to interfere
constructively, this path difference must be an integral number of wavelengths, leading
to the celebrated Bragg condition:

nA = 2dsin 6. 6.2)

The integer n is known as the order of the corresponding reflection. For a beam
of X rays containing a range of different wavelengths (“white radiation”) many
different reflections are observed. Not only can one have higher-order reflections
from a given set of lattice planes, but in addition one must recognize that there are

' Actually the ions vibrate about their ideal equilibrium sites (Chapters 21-26). This does not affect

the conclusions reached in this chapter (though in the early days of X:ray diffraction it was not clear why
such vibrations did not obliterate the pattern characteristic of a periodic structure). It turns out that
the vibrations have two main consequences (see Appendix N): (a) the intensity in the characteristic peaks
that reveal the crystal structure is diminished, but not eliminated; and (b) a much weaker continuous
background of radiation (the “diffuse background™) is produced.

2 Amorphous solids and liquids have about the same density as crystalline solids, and are therefore
also susceptible to probing with X rays. However, the discrete, sharp peaks of scattered radiation charac-
teristic of crystals are not found. -

3 In specular reflection the angle of incidence equals the angle of reflection.

The angle of incidence in X-ray crystallography is conventionally measured from the plane of
reflection rather than from the normal to that plane (as in classical optics). Note that 8 is just half the
angle of deflection of the incident beam (Figure 6.2).

4

)
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Figure 6.1

A Bragg reflection from a particular
family of lattice planes, separated by a
distance d. Incident and reflected rays are
shown for the two neighboring planes.
The path difference is 2d sin 6.

Figure 6.2 ) o
The Bragg angle 8 is just half the total angle by which the incident

beam is deflected.

Figure 6.3

The same portion of Bravais lattice shown °

in Figure 6.1, with a different resolution

into lattice planes indicated. The incident )
ray is the same as in Figure 6.1, but both é
the direction (shown in the figure) and

wavelength (determined by the Bragg

condition (6.2) with d replaced by d°) of

the reflected ray are different from the

reflected ray in Figure 6.1. Reflections

are possible, in general, for any of the

infinitely many ways of resolving the

lattice into planes.

many different ways of sectioning the crystal into planes, owo.v of which will itself
produce further reflections (see, for example, Figure 5.3 or Figure 6.3).

VON LAUE FORMULATION OF X-RAY DIFFRACTION
BY A CRYSTAL

The von Laue approach differs from the Bragg approach in that no vmn:o:_m.n sec-
tioning of the crystal into lattice planes is singled out, and no ad hoc assumption of
specular reflection is imposed.® Instead one regards the crystal as composed of

5 The Bragg assumption of specular reflection is, however, equivalent to the assumption that rays
scattered from individual ions within each lattice plane interfere oosmS._o:ﬁ_w...;:m vo% E.n Bragg and
the von Laue approaches are based on the same physical assumptions, and their precise equivalence (see

page 99) is to be expected.
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Figure 6.4

Illustrating that the path difference for rays
mmw:nz& from two points separated by d is
given by Eq. (6.3) or (6.4).

dcos@ =-d.qn

aojcom_ microscopic objects (sets of ions or atoms) placed at the sites R of a Bravais
lattice, o,mor of which can reradiate the incident radiation in all directions. Shar
peaks will be observed only in directions and at wavelengths for which ﬁrn .
scattered from all lattice points interfere constructively. o
To find the condition for constructive interference, consider first just two mnm:mnwa
separated by a displacement vector d (Figure 6.4). Let an X ray be incident mon”
very far away, along a direction i, with wavelength 1, and wave vector k = 2nn/A
>\ mnm:o:wa ray iE be observed in a direction fi’ with wavelength® 1 and wave <M08H.
W:anﬁ%wwo\ﬁ Eoﬁ%w Em,_w the path difference between the rays scattered by each of
ns is an integral num i i
et thes ath diforen ow. e ber of wavelengths. From Figure 6.4 it can be seen

dcos® +dcosb' = d- (R — M), 6.3)
The condition for constructive interference is thus
d-(f — 1) =mi, 6.4)
for integral m. Multiplying both sides of (6.4) by 2x/2 yi iti inci
forntegralm Multiplying b (6.4) by 2z/A yields a condition on the incident
d-k—k)=
for integral m. A )= 2 @
wZoxf we o.ozma,ﬁ not just ﬁ.io scatterers, but an array of scatterers, at the sites of
a Bravais lattice. Since the lattice sites are displaced from one another by the Bravais

W:Mm vectors R, the Anoz&mos that all scattered rays interfere constructively is that
ondition (6.5) hold simultaneously for all values of d that are Bravais lattice vectors:

\ for integral m and
R-(k — k') = 2mm, all Bravais lattice (6.6)
vectors R.
This can be written in the equivalent form

e™-W'R — 1 for all Bravais lattice vectors R. 6.7)

6 H 1 H
ere (and in the Bragg picture) we assume that the incident and scattered radiation has the same

Mnﬂﬂ“wﬂ..mmz“m M.. ﬁm.:ﬁw.—,& vvoamnm this means that no energy has been lost in the scattering, i.e., that the
astic. To a good approximation the bulk of the scattered radiation i ically s

e e e PP attered radiation is elastically scattered

; m the study of that small iati is in-

elastically scattered (Chapter 24 and Appendix N). component of the mdiation that s fn
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Comparing this condition with the definition (5.2) of the reciprocal lattice, we
arrive at the Laue condition that constructive interference will occur provided that
the change in wave vector, K = k' — k, is a vector of the reciprocal lattice.

It is sometimes convenient to have an alternative formulation of the Laue con-
dition, stated entirely in terms of the incident wave vector k. First note that because
the reciprocal lattice is a Bravais lattice, if k' — kis a reciprocal lattice vector, sO is
k — X' Calling the latter vector K, the condition that k and k' have the same magni-

tude is
k=|k - K|. . (6.8)

Squaring both sides of (6.8) yields the condition
kK = iK; 6.9)
i.e., the component of the incident wave vector k along the reciprocal lattice vector
K must be half the length of K.
Thus an incident wave vector k will satisfy the Laue condition if and only if the
tip of the vector lies in a plane that is the perpendicular bisector of a line joining the
origin of k-space to a reciprocal lattice point K (Figure 6.5). Such k-space planes

are called Bragg planes.

Figure 6.5

The Laue condition. If the sum of k and —k’
is a vector K, and if k and Kk’ have the same
length, then the tip of the vector k is equi-
distant from the orlgin O and the tip of the
vector K, and therefore it lies in the plane
bisecting the line joining the origin to the tip
of K.

1t is a consequence of the equivalence of the Bragg and von Laue points of view,
demonstrated in the following section, that the k-space Bragg plane associated with
a particular diffraction peak in the Laue formulation is parallel to the family of direct
lattice planes responsible for the peak-in the Bragg formulation.

EQUIVALENCE OF THE BRAGG AND VON LAUE FORMULATIONS

The equivalence of these two criteria for constructive interference of X rays by a
crystal follows from the relation between vectors of the reciprocal lattice and families
of direct lattice planes (see Chapter 5). Suppose the incident and scattered wave
vectors, k and K/, satisfy the Laue condition that K = k' —kbea reciprocal lattice
vector. Because the incident and scattered waves have the same wavelength,’ k' and
Kk have the same magnitudes. It follows (see Figure 6.6) that k’ and k make the same
angle 0 with the plane perpendicular to K. Therefore the scattering can be viewed
as a Bragg reflection, with Bragg angle 6, from the family of direct lattice planes
perpendicular to the reciprocal lattice vector K.



100 Chapter 6 Determination of Crystal Structures by X-ray Diffraction

K=k'-k Figure 6.6

The plane of the paper contains the incident wave

vector k, the reflected wave vector k', and their differ-
&k ence K satisfying the Laue condition. Since the scat-
tering is elastic (' = k), the direction of K bisects the
angle between k and k’. The dashed line is the inter-
section of the plane perpendicular to K with the plane
of the paper. ’

To demonstrate that this reflection satisfies the Bragg condition (6.2), note that
the vector K is an integral multiple” of the shortest reciprocal _mﬁoo. vector K, parallel
to K. According to the theorem on page 90, the magnitude of K is just 27/d, where
d is the distance between successive planes in the family perpendicular to Kq or to
K. Thus

K=— (6.10)

On the other hand, it follows from Figure 6.6 that K = 2k sin 6, and thus
nn
'k

Since k = 2x/A, Eq. (6.11) implies that the wavelength satisfies the Bragg condition
2).
¢ uv;::m a Laue diffraction peak corresponding to a change in wave vector given Ndw the
reciprocal lattice vector K corresponds to a Bragg reflection from Sm.\a.i:& of direct
lattice planes perpendicular to K. The order, n, of the Bragg reflection is just the length
of K divided by the length of the shortest reciprocal lattice vector EE:& to K. .
Since the reciprocal lattice associated with a given Bravais lattice is far more easily
visualized than the set of all possible planes into which the Bravais lattice can .co
resolved, the Laue condition for diffraction peaks is far more simple to work f.::
than the Bragg condition. In the rest of this chapter we m:m: apply the Laue no:a:_o.:
to a description of three of the most important ways in é:n: X-ray crystallographic
analyses of real samples are performed, and to a discussion of how one can extract
information not only about the underlying Bravais lattice, but also about the arrange-
ment of ions within the primitive cell.

ksinf = (6.11)

EXPERIMENTAL GEOMETRIES SUGGESTED BY THE
LAUE CONDITION

An incident wave vector k will lead to a diffraction peak (or :wnm.mm reflection”) if
and only if the tip of the wave vector lies on a k-space Bragg plane. Since the set of all

7 This is an elementary consequence of the fact that the reciprocal lattice is a Bravais lattice. See
Chapter 3, Problem 4.
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Bragg planes is a discrete family of planes, it cannot begin to fill up three-dimensional
k-space, and in general the tip of k will not lie on a Bragg plane. Thus for a fixed
incident wave vector—i.e., for a fixed X-ray wavelength and fixed incident direction
relative to the crystal axes—there will be in general no diffraction peaks at all.

If one wishes to search experimentally for Bragg peaks one must therefore relax
the constraint of fixed k, either varying the magnitude of k (i.c., varying the wavelength
of the incident beam) or varying its direction (in practice, varying the orientation of
the crystal with respect to the incident direction).

The Ewald Construction

A simple geometric constriction due to Ewald is of great help in visualizing these
various methods and in deducing the crystal structure from the peaks so observed.
We draw in k-space a sphere centered on the tip of the incident wave vector k of radius
k (so that it passes through the origin). Evidently (see Figure 6,7) there will be some
wave vector k' satisfying the Laue condition if and only if some reciprocal lattice
point (in addition to the origin) lies on the surface of the sphere, in which case there
will be a Bragg reflection from the family of direct lattice planes perpendicular to
that reciprocal lattice vector.

Figure 6.7

The Ewald construction. Given the
incident wave vector k, a sphere of
radius k£ is drawn about the point k.
Diffraction peaks corresponding to re-
ciprocal lattice vectors K will be ob-
served only if K gives a reciprocal lattice
point on the surface of the sphere. Such
a reciprocal lattice vector is indicated in .
the figure, together with the wave vector
k’ of the Bragg reflected ray.

In general, a sphere in k-space with the origin on its surface will have no other
reciprocal lattice points on its surface, and therefore the Ewald construction con-
firms our observation that for a general incident wave vector there will be no Bragg

peaks. One can, however, ensure that some Bragg peaks will be produced by several
techniques:

L. The Laue Method One can continue to scatter from a single crystal of fixed
orientation from a fixed incident direction fl, but can search for Bragg peaks by
using not a monochromatic X-ray beam, but one containing wavelengths from

1 up to 4. The Ewald sphere will then expand into the region contained between -
the two spheres determined by ko = 2nfi/A and k, = 2z/2,, and Bragg peaks
will be observed corresponding to any reciprocal lattice vectors lying within this
region (Figure 6.8). By making the spread in wavelengths sufficiently large, one
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Figure 6.8
The Ewald construction for
the Laue method. The crystal
. . . . . . . and incident X-ray direction
are fixed, and a continuous
range of wavelengths, corre-
. sponding to wave vectors
between k, and k, in magni-
tude, is present. The Ewald
spheres for all incident wave
vectors fill the shaded region
between the sphere centered
on the tip of the vector k,
and that centered on the tip
of k,. Bragg peaks will be
observed corresponding to
all reciprocal lattice points
lying within the shaded re-
gion. (For simplicity in illus-
tration, the incident direction
has been taken to lie in a
lattice plane, and only recip-
rocal lattice points lying in
that plane are shown.)
can be sure of finding some reciprocal lattice points within the region; whereas
by keeping it from getting too large, one can avoid too many Bragg reflections,
thereby keeping the picture fairly simple.
The Laue method is probably best suited for determining the orientation of
a single crystal specimen whose structure is known, since, for example, if the
incident direction lies along a symmetry axis of the crystal, the pattern of spots
produced by the Bragg reflected rays will have the same symmetry. Since solid
state physicists generally do study substances of known crystal structure, the
Laue method is probably the one of greatest practical interest.
The Rotating-Crystal Method This method uses monochromatic X rays, but
allows the angle of incidence to vary. In practice the direction of the X-ray beam
is kept fixed, and the orientation of the crystal varied instead. In the rotating
crystal method the crystal is rotated about some fixed axis, and all Bragg peaks
that occur during the rotation are recorded on a film. As the crystal rotates, the
reciprocal lattice it determines will rotate by the same amount about the sdme
axis. Thus the Ewald sphere (which is determined by the fixed incident wave
vector k) is fixed in k-space, while the entire reciprocal lattice rotates about the
axis of rotation of the crystal. During this rotation each reciprocal lattice point
traverses a circle about the rotation axis, and a Bragg reflection occurs whenever
this circle intersects the Ewald sphere. This is illustrated in Figure 6.9 for a
particularly simple geometry.
The Powder or Debye-Scherrer Method This is equivalent to a rotating crystal
experiment in which, in addition, the axis of rotation is varied over all possible
orientations. In practice this isotropic averaging of the incident direction is

A
i

B
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Figure 6.9 )
The Ewald construction for the rotating-crystal method. For

simplicity a case is shown in which the E&aﬂ: wave vector lies
in a lattice plane, and the axis of rotation is perpendicular to that
plane. The concentric circles are the orbits méo.vﬁ out under the
rotation by the reciprocal lattice vectors lying in Em plane per-
pendicular to the axis containing k. mmo.,r intersection of such a
circle with the Ewald sphere gives the wave vector of a mnumm
reflected ray. (Additional Bragg reflected wave vectors associated
with reciprocal lattice vectors in other planes are not shown.)

achieved by using a polycrystalline sample or a @oiaom mBEm of which are still
enormous on the atomic scale and therefore capable of aﬁnwocsm X rays. wnommmm
the crystal axes of the individual grains are randomly oriented, the a_amms‘oz
pattern produced by such a powder is what one would E.anum by combining
the diffraction patterns for all possible orientations ofa m_am_m crystal. .

The Bragg reflections are now determined by fixing 5.0 incident k vector, mn:
with it the Ewald sphere, and allowing the Sownwoom_ lattice to rotate through al
possible angles about the origin, so that each reciprocal _mﬁ.:ow vector K mmsﬂmﬁm
a sphere of radius K about the origin. Such a m@ro.am will intersect the Ewa
sphere in a circle (Figure 6.10a) provided that K is _m.mm than 2k. ,E.E vector
joining any point on such a circle with the tip of the incident vector kis a wave
vector k', for which scattered radiation will be observed. Thus omor :.WQEOoN;
lattice vector of length less than 2k generates a cone of scattered radiation at an
angle ¢ to the forward direction, where (Figure 6.10b)

K = 2k sin 3¢ (6.12)
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(b)

Figure 6.10 :

The Ewald construction for the powder method. (a) The Ewald sphere is the smaller sphere.
It is centered on the tip of the incident wave vector k with radius £, so that the origin O is on its
surface. The larger sphere is centered on the origin and has a radius K. The two spheres intersect
in a circle (foreshortened to an ellipse). Bragg reflections will occur for any wave vector k’ con-
necting any point on the circle of intersection to the tip of the vector k. The scattered rays
therefore lie on the cone that opens in the direction opposite to k. (b) A plane section of (a),
containing the incident wave vector. The triangle is isosceles, and thus K = 2k sin 3¢.

By measuring the angles ¢ at which Bragg reflections are observed, one therefore
learns the lengths of all reciprocal lattice vectors shorter than 2k. Armed with this
information, some facts about the macroscopic crystal symmetry, and the fact that
the reciprocal lattice is a Bravais lattice, one can usually construct the reciprocal
lattice itself (see, for example, Problem 1).

DIFFRACTION BY A MONATOMIC LATTICE WITH A BASIS;
THE GEOMETRICAL STRUCTURE FACTOR

The preceding discussion was based on the condition (6.7) that rays scattered from
each primitive cell should interfere constructively. If the crystal structure is that of
a monatomic lattice with an n-atom basis (for example, carbon in the diamond
structure or hexagonal close-packed beryllium, both of which have n = 2), then the
contents of each primitive cell can be further analyzed into a set of identical scatterers
at positions d,, ..., d, within the cell. The intensity of radiation in a given Bragg peak
will depend on the extent to which the rays scattered from these basis sites interfere
with one another, being greatest when there is complete constructive interference and
vanishing altogether should there happen to be complete destructive interference.
If the Bragg peak is associated with a change in wave vector k' — k = K, then the
path difference (Figure 6.4) between the rays scattered at d; and d; will be K - (d; — d 1)
and the phases of the two rays will differ by a factor e “~%, Thus the phases of the
rays scattered at dy, ..., d, are in the ratios e® % ¢*' % The net ray scattered by
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the entire primitive cell is the sum of the individual rays, and will therefore have an
amplitude containing the factor

Sk=Y e%'4. (6.13)

The quantity Sy, known as the geometrical structure factor, expresses the extent
to which interference of the waves scattered'from identical ions within the basis can
diminish the intensity of the Bragg peak associated with the reciprocal lattice vector
K. The intensity in the Bragg peak, being proportional to the square of the absolute
value of the amplitude, will contain a factor |Sy|>. It is important to note that this
is not the only source of K dependence to the intensity. Further dependence on the
change in wave vector comes both from the ordinary angular dependence of any
electromagnetic scattering, together with the influence on the scattering of the detailed
internal structure of each individual ion in the basis. Therefore the structure factor
alone cannot be used to predict the absolute intensity in a Bragg peak.® It can,
however, lead to a characteristic dependence on K that is easily discerned even though
other less distinctive K dependences have been superimposed upon it. The one case,
in which the structure factor can be used with assurance is when it vanishes. This
occurs when the elements of the basis are so arranged that there is complete destructive
interference for the K in question; in that case no features of the rays scattered by
the individual basis elements can prevent the net ray from vanishing.

We illustrate the importance of a vanishing structure factor in two cases®:

1. Body-Centered Cubic Considered as Simple Cubic with a Basis Since the body-
centered cubic lattice is a Bravais lattice, we know that Bragg reflections will occur
when the change in wave vector K is a vector of the reciprocal lattice, which is face-
centered cubic. Sometimes, however, it is convenient to regard the bcc lattice as a
simple cubic lattice generated by primitive vectors aR, ay, and a2, with a two-point
basis consisting of d; = 0 and d;, = (a/2)(R + § + 2). From this point of view the
reciprocal lattice is also simple cubic, with a cubic cell of side 2rx/a. However, there
will now be a structure factor Sg associated with each Bragg reflection. In the present
case, (6.13) gives

Sk=1+exp[iK-3aX + 7 + )] 6.14)
A general vector in the simple cubic reciprocal lattice has the form
2
K= MAS—N + n,y + Suwv. Am.ﬂmv

Substituting this into (6.14), we find a structure factor
Sg = 1 4 emmtnatnd | 4 (_pyrtaztas

2, n + ny + ny even, (6.16)

0, ny + ny + ny odd.

8 A brief but thorough discussion of the scattering of electromagnetic radiation by crystals, including
the derivation of detailed intensity formulas for the various experimental geometries described above, is
given by Landau and Lifshitz, Electrodynamics of Continuous Media, Chapter 15, Addison-Wesley,
Reading, Mass., 1966. '

9 Further examples are given in Problems 2 and 3.
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N

Thus those points in the simple cubic reciprocal lattice, the sum of whose coor-
dinates with respect to the cubic primitive vectors are odd, will actually have no
Bragg reflection associated with them. This converts the simple cubic reciprocal lattice
into the face-centered cubic structure that we would have had if we had treated the
body-centered cubic direct lattice as a Bravais lattice rather than as a lattice with
a basis (see Figure 6.11).

Figure 6.11

Points in the simple cubic reciprocal lattice of side 2x/q,
for which the structure factor (6.16) vanishes, are those
(white circles) that can be reached from the origin by
moving along an odd number of nearest-neighbor bonds.
When such sites are eliminated, the remaining sites
(black circles) constitute a face-centered cubic lattice
with cubic cell of side 4r/a.

Thus if, either inadvertently or for reasons of greater symmetry in description, one
chooses to describe a Bravais lattice as a lattice with a basis, one still recovers the
correct description of X-ray diffraction, provided that the vanishing of the structure
factor is taken into account.

2. Monatomic Diamond Lattice The monatomic diamond lattice (carbon, silicon,
germanium, or grey tin) is not a Bravais lattice and must be described as a lattice
with a basis. The underlying Bravais lattice is face-centered cubic, and the basis can
be taken to be d; = 0, d, = (a/4) (X + § + %), where &, 9, and 2, are along the cubic
axes and a is the side of the conventional cubic cell. The reciprocal lattice is body-
centered cubic with conventional cubic cell of side 4n/a. If we take as primitive
vectors
2

N
b= T +2-%, b= 2@ +x-9) b= 2R+ -2, 61

then the structure factor (6.13) for K = Zn;b; is

Sk =1+ exp [3in(n, + n, + n3)]
2, n, + n, + n twice an even number, ,~
=<1+ n; + ny, + nzodd, (6.18)
0, n, + n, + ns twice an odd number. %

To interpret these conditions on Zn; geometrically, note that if we substitute (6.17)
into K = Znb;, we can write the general reciprocal lattice vector in the form

4

K = (nR + 23 + vad), (6.19)
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where s
v; = §(m + nz + m3) — .MU_ v; = ¥ + nz + n3) (6.20)
=
We know (see Chapter 5) that the reciprocal to the fcc lattice .E:: cubic cell of side
4 is a bee lattice with cubic cell of side 4n/a. Let us ‘Homm& this as moawomoa of two
simple cubic lattices of side 4m/a. The first, contalning the origin K=0), ::._mm
have all v; integers (according to (6.19)) and must 5086% be m_mon by K 2:&
ny + ny + ns even (according to 6.20)). 1—4:,\.%\8:&v oon_SEEm Eo coaw-oo:ﬁonoa
point” 4n/a)3(& + ¥ + %), must have all v; integers + 3 Amooo.&:_m to (6.19)) an
must therefore be given by K with ny + nz + 13 o.n_a Amo.oo&_:m to (6.20)). .
Comparing this with (6.18), we find that the points S:W:m::.ogno factor 1 + i
are those in the simple cubic sublattice of :coaw-ooamnwa onﬁm..ﬁHOmo Ernmo
structure factor S is 2 or 0 are in the simple cubic sublattice oo.Em_E.:m the origin,
wheré Zv; is even when § = 2 and odd when S = 0. Thus E.m points s:.E N.o8 struc-
ture factor are again removed by applying the construction illustrated in Figure 6.11

to the simple cubic sublattice containing the origin, converting it to a face-centered
cubic structure (Figure 6.12).

Figure 6.12 .
The body-centered cubic lattice with cubic mo: mﬂ.an
4m/a that is reciprocal to a face-centered cubic lattice
with cubic cell side a. When the fcc lattice is that under-
lying the diamond structure, then the white circles
indicate sites with zero structure factor. (The black
circles are sites with structure factor 2, and the gray ones
are sites with structure factor 1 £ i.)

DIFFRACTION BY A POLYATOMIC CRYSTAL;
THE ATOMIC FORM FACTOR

If the ions in the basis are not identical, the structure factor (6.13) assumes the form

n
Sy = Y f1{K)e* Y, (6.21)
=1

where f;, known as the atomic form factor, is o:mHoG aoanﬂwcwa by 5@.589&
structure of the ion that occupies position d; in the basis. Identical ions have identical
form factors (regardless of where they are placed), so (6.21) reduces cmow to (6.13),

multiplied by the common value of the form factors, 5. the monatomic case.
In elementary treatments the atomic form factor associated with a Bragg reflection
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given by the reciprocal lattice vector K is taken to be proportional to the Fourier
transform of the electronic charge distribution of the corresponding ion'?:

1

e

K r

bﬁ@ = -

dr e™'" pi(r). 6.22)
Thus the atomic form factor f; depends on K and on the detailed features of the
charge distribution of the ion that occupies position d; in the basis. As a result. one
«5:5 not expect the structure factor to vanish for any K unless there is moBm for-
tuitous @m&ou between form factors of different types. By making reasonable
mmmﬁ.::wﬁ._o:m about the K dependence-of the different form factors, one can often
a_m:zmsmv @.::m conclusively between various possible crystal mﬁcoE,Sm on the basis
of the variation with K of the Bragg peak intensities (see, for example, Problem 5).

u,r._.m concludes our discussion of the Bragg reflection of X rays. Qur analysis has
exploited no properties of the X rays other than their wave nature.!! Consequently
we shall find many of the concepts and results of this chapter reappearing in sub-

sequent discussions of other wave phenomena in solid
s, such as electro
and neutrons (Chapter 24).12 ne (Chapter)

PROBLEMS

1. Powder m@on::w:m of three different monatomic cubic crystals are analyzed with a Debye-
Scherrer camera. It is known that one sample is face-centered cubic, one is body-centered cubic

wsn_ one has the diamond structure, The approximate positions of the first four diffraction rings
In each case are (see Figure 6.13):

VALUES OF ¢ FOR SAMPLES

A B c
42.2° 28.8° 42.8°
49.2 41.0 732
72.0 50.8 89.0
873 59.6 115.0

(@) Identify the crystal structures of A, Bjand C.

(b) Ifthe wavelength of the incident X. ra i i
. -ray beam is 1.5 A, what is the length i
conventional cubic cell in each case? e ol theside ofthe

. ) If En. diamond structure were replaced by a zincblende structure with a cubic unit cell
of the same side, at what angles would the first four rings now occur?

10 ; H :
The electronic charge density p,(r) is that of an ion of type j placed at r = 0; thus the contribution

on the ion at R + d; to the electronic charge density of the crystal is py(r — [R + d;]). (The electronic
c uwmm Mcmzm__w factored out of the atomic form factor to make it dimensjonless.) ’
s a result we have been unable to make i .
e precise statements about the absolute intensity of the
Bragg peaks, or about the diffuse background of radiation in directions not allowed by the Bragg noma:_‘oz

Considered quantum mechani i i
lengith 2 = 1o q anically, a particle of momentum p can be viewed as a wave of wave-
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Figure 6.13
Schematic view of a Debye-Scherrer camera.
Diffraction peaks are recorded on the film strip. Incident beam &
&
Sample
“Film

2. Itis often convenient to represent a face-centered cubic Bravais lattice as simple cubic, with
a cubic primitive cell of side a and a four-point basis.
(a) Show that the structure factor (6.13) is then either 4 or 0 at all points of the simple cubic

reciprocal lattice.
(b) Show that when points with zero structure factor, are removed, the remaining points of
the reciprocal lattice make up a body-centéred cubic lattice with conventional cell of side 4x/a.

Why is this to be expected?

3. (a) Show that the structure factor for a monatomic hexagonal close-packed crystal structure
can take on any of the six values 1 + ™3, n = 1, .., 6, as K ranges through the points of the

simple hexagonal reciprocal lattice.
(b) Show that all reciprocal lattice points have nonvanishing structure factor in the plane

perpendicular to the c-axis containing K = 0.

(¢) Show that points of zero structure factor are found in alternate planes in the family of
reciprocal lattice planes perpendicular to the c-axis.

(d) Show that in such a plane the point that is displaced from K = 0 by a vector parallel to

the c-axis has zero structure factor.
() Show that the removal of all points of zero structure factor from such a plane reduces the

triangular network of reciprocal lattice points to a honeycomb array (Figure 4.3).

4. Consider a lattice with an n-ion basis. Suppose that the ith ion in the basis, when translated

“tor = 0, can be regarded as composed of m; point particles of charge — z;;e, located at positions

bj=1,....,m
(a) Show that the atomic form factor f; is given by

o= 3z
=1

(b) Show that the total structure factor (6.21) implied by (6.23) is identical to the structure
factor one would have found if the lattice were equivalently described as having a basis of
my + -+ + m, point ions.

- 6.23)

5. (a) The sodium chloride structure (Figure 4.24) can be regarded as an fcc Bravais
lattice of cube side a, with a basis consisting of a positively charged ion at the origin and a negatively
charged jon at (a/2)X. The reciprocal lattice is body-centered cubic, and the general reciprocal
lattice vector has the form (6.19), with all the coefficients v either integers or integers + 4. If the
atomic form factors for the two ions are f and f_, show that the structure factoris S = fy + /-,
if the v; are integers, and f, — f_, if the v; are integers + &. (Why does S vanish in the latter
case when f, = f.7)

(b) Thezincblende structure (Figure 4.18) is also a face-centered cubic Bravais lattice of cube
side a, with a basis consisting of a positively charged ion at the origin and a negatively charged
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ion at (a/4)Y% + § + 2). Show that the structure factor Sx is f, + if_ if the v, are integers +4,
+ + /- if the v; are integers and Zv;iseven, and fy — f_ if the v, are integers and Zv; is odd.

(¢) Suppose that a cubic crystal is known to be composed of closed-shell (and hence spheri-
cally symmetric) ions, so that f; (K) depends only on the magnitude of K. The positions of the Bragg
peaks reveal that the Bravais lattice is face-centered cubic, Discuss how one might determine,
from the structure factors associated with the Bragg peaks, whether the crystal structure was
likely to be of the sodium chloride or zincblende type.

Classification Q\.
Bravais Lattices

and Crystal
Structures

Symmetry Operations and the Classification of
Bravais Lattices

The Seven Crystal Systems and Fourteen Bravais
Lattices
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In Chapters 4 and 5, only the translational symmetries of Bravais lattices were
described and exploited. For example, the existence and basic properties of the
reciprocal lattice depend only on the existence of three primitive direct lattice vectors
a;, and not on any special relations that may hold among them.! The translational
symmetries are by far the most important for the general theory of solids. It is never-
theless clear from examples already described that Bravais lattices do fall naturally
into categories on the basis of symmetries other than translational. Simple hexagonal
Bravais lattices, for example, regardless of the c/a ratio, bear a closer resemblance
to one another than they do to any of the three types of cubic Bravais lattice we
have described. ’

It is the subject of crystallography to make such distinctions systematic and
precise.2 Here we shall only indicate the basis for the rather elaborate crystallographic
classifications, giving some of the major categories and the language by which they
are described. In most applications what matters are the features of particular cases,
rather than a systematic general theory, so few solid state physicists need master the
full analysis of crystallography. Indeed, the reader with little taste for the subject can
skip this chapter entirely with little loss in understanding what follows, referring
back to it on occasion for the elucidation of arcane terms.

THE CLASSIFICATION OF BRAVAIS LATTICES

The problem of classifying all possible crystal structures is too complex to approach
directly, and we first consider only the classification of Bravais lattices.> From the
point of view of symmetry, a Bravais lattice is characterized by the specification of
all rigid operations* that take the lattice into itself. This set of operations is known
as the symmetry group or space group of the Bravais lattice.’

The operations in the symmetry group of a Bravais lattice include all translations
through lattice vectors. In addition, however, there will in general be rotations,
reflections, and inversions® that take the lattice into itself. A cubic Bravais lattice,
for example, is taken into itself by a rotation through 90° about a line of lattice points
in a {100) direction, a rotation through 120° about a line of lattice points in a {111)
direction, reflection of all points in a {100} lattice plane, etc.; a simple hexagonal
Bravais lattice is taken into itself by a rotation through 60° about a line of lattice
points parallel to the c-axis, reflection in a lattice plane perpendicular to the c-axis, etc.

! An example of such a relation is the orthonormality condition a; * a; = a?4;;, holding for the
appropriate primitive vectors in a simple cubic Bravais lattice.

2 A detailed view of the subject can be found in M. J. Buerger, Elementary Crystallography, Wiley,
New York, 1963. ’

3 In this chapter a Bravais lattice is viewed as the crystal structure formed by placing at each point
of an abstract Bravais lattice a basis of maximum possible symmetry (such as a sphere, centered on the
lattice point) so that no symmetries of the point Bravais lattice are lost because of the insertion of the basis.

4 Operations that preserve the distance between all lattice points.

*  We shall avoid the language of mathematical group theory, since we shall make no use of the
analytical conclusions to which it leads.

6 Reflection in a plane replaces an object by its mirror image in that plane; inversion in a point P
takes the point with coordinates r (with respect to P as origin) into —r. All Bravais lattices have inversion
symmetry in any lattice point (Problem 1).
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Any symmetry operation of a Bravais lattice can be compounded out of a trans-
lation Ty through a lattice vector R and a rigid operation leaving at least one lattice
point fixed.” This is not immediately obvious. A simple cubic Bravais lattice, for
example, is left fixed by a rotation through 90° about a {100} axis that passes through
the center of a cubic primitive cell with lattice points at the eight vertices of the
cube. This is a rigid operation that leaves no lattice point fixed. However, it can be
compounded out of a translation through a Bravais lattice vector and a rotation

O O ® 6

90°
[ ¥ o\ epr

®@ © ONENO)

@)

90°

(b)

Figure 7.1

(a) A simple cubic lattice is carried into itself by a rotation through 90°
about an axis that contains no lattice points. The rotation axis is perpen-
dicular to the page, and only the four lattice points closest to the axis in
a single lattice plane are shown. (b) Illustrating how the same final result
carrbe compounded out of (at left) a translation through a lattice constant
and (at right) a rotation about the lattice point numbered 1.

about a line of lattice points, as illustrated in Figure 7.1. That such a representation
is always possible can be seen as follows:

Consider a symmetry operation S that leaves no lattice point fixed. Suppose it
takes the origin of the lattice O into the point R. Consider next the operation one gets
by first applying S, and then applying a translation through —R, which we denote
by T_. The composite operation, which we call T_gS, is also a symmetry of the lattice,
but it leaves the origin fixed, since S transports the origin to R while T y carries R
back to the origin. Thus T.,S is an operation that leaves at least one lattice point
(namely the origin) fixed. If, however, after performing the operation T RS we then
perform the operation Ty, the result is equivalent to the operation S alone, since the
final application of T; just undoes the preceding application of T . Therefore S can
be compounded out of T .S, which leaves a point fixed, and Ty, which is a pure
translation.

7 Note that translation through a lattice vector (other than O) leaves no point fixed.
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Thus the full symmetry group of a Bravais lattice® contains only operations of
the following form:

1. Translations through Bravais lattice vectors;

2. Operations that leave a particular point of the lattice fixed;

3. Operations that can be constructed by successive applications of the operations
of type (1) or (2).

The Seven Crystal Systems

When examining nontranslational symmetries, one often considers not the entire
space group of a Bravais lattice, but only those operations that leave a particular
point fixed (i.e., the operations in category (2) above). This subset of the full symmetry
group of the Bravais lattice is called the point group of the Bravais lattice.

There turn out to be only seven distinct point groups that a Bravais lattice can
have.® Any crystal structure belongs to one of seven crystal systems, depending on
which of these seven point groups is the point group of its underlying Bravais lattice.
The seven crystal systems are enumerated in the next section.

(a) (b)

Figure 7.2

(a) Every symmetry operation of a cube is also a symmetry operation
of a regular octahedron, and vice versa. Thus the cubic group is
identical to the octahedral group. (b) Not every symmetry operation
of a cube is a symmetry operation of a regular tetrahedron. For
example, rotation through 90° about the indicated vertical axis takes
the cube into itself, but not the tetrahedron.

¥ We shall see below that a general crystal structure can have additional symmetry operations that

are not of types (1), (2), or (3). They are known as “‘screw axes™ and “glide planes.”

® Two point groups are identical if they contain precisely the same operations. For example, the set
of all symmetry operations of a cube is identical to the set of all symmetry operations of a regular octahe-
dron, as can readily be seen by inscribing the octahedron suitably in the cube (Figure 7.2a). On the other
hand, the symmetry group of the cube is not equivalent to the symmetry group of the regular tetrahedron.
The cube has more symmetry operations (Figure 7.2b).
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The Fourteen Bravais Lattices

When one relaxes the restriction to point operations and considers the full symmetry
group of the Bravais lattice, there turn out to be fourteen distinct space groups that
a Bravais lattice can have.'® Thus, from the point of view of symmetry, there are
fourteen different kinds of Bravais lattice. This enumeration was first done by M. L.
Frankheim (1842). Frankheim miscounted, however, reporting fifteen possibilities.
A. Bravais (1845) was the first to count the categories correctly.

Enumeration of the Seven Crystal Systems and Fourteen Bravais Lattices

We list below the seven crystal systems and the Bravais:Iattices belonging to each.
The number of Bravais lattices in a system is given in parentheses after the name of
the system:

Cubic (3) The cubic system contains those Bravais lattices whose point group is just
the symmetry group of a cube (Figure 7.3a). Three Bravais lattices with nonequivalent
space groups all have the cubic point group. They are the simple cubic, body-centered
cubic, and face-centered cubic. All three have been described in Chapter 4.

Tetragonal (2) One can reduce the symmetry of a cube by pulling on two opposite
faces to stretch it into a rectangular prism with a square base, but a height not equal
to the sides of the square (Figure 7.3b). The symmetry group of such an object is the
tetragonal group. By so stretching the simple cubic Bravais lattice one constructs the
simple tetragonal Bravais lattice, which can be characterized as a Bravais lattice
generated by three mutually perpendicular primitive vectors, only two of which
are of equal length. The third axis is called the c-axis. By similarly stretching the
body-centered and face-centered cubic lattices only one more Bravais lattice of the
tetragonal system is constructed, the centered tetragonal.

To see why there is no distinction between body-centered and face-centered te-
tragonal, consider Figure 7.4a, which is a representation of a centered tetragonal
Bravais lattice viewed along the c-axis. The points 2 lie in a lattice plane a distance

10 The equivalence of two Bravais lattice space groups is a somewhat more subtle notion than the
equivalence of two point groups {although both reduce to the concept of “isomorphism” in abstract group
theory). It is no longer enough to say that two space groups are equivalent if they have the same operations,
for the operations of identical space groups can differ in inconsequential ways. For example, two simple
cubic Bravais lattices with different lattice constants, a and a’, are considered to have the same space
groups even though the translations in one are in steps of a, whereas the translations in the other are in
steps of @’. Similarly, we would like to regard all simple hexagonal Bravais lattices as having identical space
groups, regardless of the value of c/a, which is clearly irrelevant to the total symmetry of the structure.

‘We can get around this problem by noting that in such cases one can continuously deform a structure
of a given type into another of the same type without ever losing any of the symmetry operations along
the way. Thus one can uniformly expand the cube axes from a to @', always maintaining the simple cubic
symmetry, or one can stretch (or shrink) the c-axis (or a-axis), always maintaining the simple hexagonal

- symmetry. Therefore two Bravais lattices can be said to have the same space group if it is possible con-

tinuously to transform one into the other in such a way that every symmetry operation of the first is con-
tinuously transformed into a symmetry operation of the second, and there are no additional symmetry
operations of the second not so obtained from symmetry operations of the first.
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Figiire 7.3
Objects whose symmetries
are the point-group symme-
tries of Bravais lattices be-
longing to the seven crystal
systems: (a) cubic; (b) te-
tragonal; (c) orthorhombic;
(d) monoclinic; (e) triclinic;
M |
| @
n.
.a 1&

(f) trigonal; (g) hexagonal.
a

() (2 _

¢/2 from the lattice plane containing the points 1. If ¢ = g, the structure is nothing
but a body-centered cubic Bravais lattice, and for general c it can evidently be viewed
as the result of stretching the bec lattice along the c-axis. However, precisely the same
lattice can also be viewed along the c-axis, as in Figure 7.4b, with the lattice planes
regarded as centered square arrays of side a’ = /\| alfc=d/2 = a\/\\ the struc-
ture is nothing but a face-centered cubic Bravais lattice, and for general ¢ it can
therefore be viewed as the result of stretching the fcc lattice along the c-axis.

Putting it the other way around, face-centered cubic and body-centered cubic are
both special cases of centered tetragonal, in which the particular value of the ¢/a
ratio introduces extra symmetries that are revealed most clearly when one views the
lattice as in Figure 7.4a (bee) or Figure 7.4b (fcc).

Orthorhombic (4) Continuing to still less symmetric deformations of the cube, one
can reduce tetragonal symmetry by deforming the square faces of the object in Figure
7.3b into rectangles, producing an object with mutually perpendicular sides of three
unequal lengths (Figure 7.3c). The orthorhombic group is the symmetry group of
such an object. By stretching a simple tetragonal lattice along one of the a-axes
(Figure 7.5a and b), one produces the simple orthorhombic Bravais lattice. However,
by stretching the simple tetragonal lattice along a square diagonal (Figure 7.5¢ and
d) one produces a second Bravais lattice of orthorhombic point group symmetry, the
base-centered orthorhombic.
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(b)

Figure 7.4

Two ways of viewing the same centered tetragonal Bravais lattice. The view is along the
c-axis. The points labeled { lie in a lattice plane perpendicular to the c-axis, and the points
labeled 2 lie in a parallel lattice plane a distance ¢/2 away. In (a) the points 1 are viewed
as a simple square array, stressing that centered tetragonal is a distortion of body-centered
cubic. In (b) the points 1 are viewed as a centered square array, stressing that centered
tetragonal is also a distortion of face-centered cubic.

Figure 7.5

Two ways of deforming the same simple tetragonal Bravais lattice. The view is along
the c-axis, and a single lattice plane is shown. In (a) bonds are drawn to emphasize that
the points in the plane can be viewed as a simple square array. Stretching along a side
of that array leads to the rectangular nets (b), stacked directly above one another. The
resulting Bravais lattice is simple orthorhombic. In (c) lines are drawn to emphasize
that the same array of points as shown in (a) can also be viewed as a centered square
array. Stretching along a side of that array (i.e., along a diagonal of the square array
emphasized in (a)) yields the centered rectangular nets (d), stacked directly above one
another. The resufting Bravais lattice is base-centered orthorhombic.
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In the same way, one can reduce the point symmetry of the centered tetragonal
lattice to orthorhombic in two ways, stretching either along one set of parallel lines
drawn in Figure 7.4a to produce body-centered orthorhombic, or along one set of
parallel lines in Figure 7.4b, producing face-centered orthorhombic.

These four Bravais lattices exhaust the orthorhombic system.

Moenoclinic (2) One can reduce orthorhombic symmetry by distorting the rectan-
gular faces perpendicular to the c-axis in Figure 7.3c into general parallelograms.
The symmetry group of the resulting object (Figure 7.3d) is the monoclinic group.
By so distorting the simple orthorhombic Bravais lattice one produces the simple
monoclinic Bravais lattice, which has no symmetries other than those required by the
fact that it can be generated by three primitive vectors, one of which is perpendicular
to the plane of the other two. Similarly, distorting the base-centered orthorhombic
Bravais lattice produces a lattice with the same simple monoclinic space group. How-
ever, so distorting either the face-centered or body-centered orthorhombic Bravais
lattices produces the centered monoclinic Bravais lattice (Figure 7.6).
Figure 7.6
View along the ¢-axis of a centered monoclinic
Bravais lattice. The points labeled 1 lie in a
lattice plane perpendicular to the c-axis. The
points labeled 2 lie in a parallel lattice plane a
@ @ distance ¢/2 away, and are directly above the
centers of the parallelograms formed by the

®
® N\ ® N\ ® points 1.

Note that the two monoclinic Bravais lattices correspond to the two tetragonal
ones. The doubling in the orthorhombic case reflects the fact that a rectangular net
and a centered rectangular net have distinct two-dimensional symmetry groups, while
a square net and centered square net are not distinct, nor are a parallelogram net
and centered parallelogram net.

Triclinic (1) The destruction of the cube is completed by tilting the c-axis in Figure
7.3d so that it is no longer perpendicular to the other two, resulting in the object
pictured in Figure 7.3e, upon which there are no restrictions except that pairs of oppo-
site faces are parallel. By so distorting either monoclinic Bravais lattice one constructs
the triclinic Bravais lattice, This is the Bravais lattice generated by three primitive
vectors with no special relationships to one another, and is therefore the Bravais
lattice of minimum symmetry. The triclinic point group is not, however, the group
of an object without any symmetry, since any Bravais lattice is invariant under an
inversion in a lattice point. That, however, is the only symmetry required by the
general definition of a Bravais lattice, and therefore the only operation!! in the
triclinic point group.

By so torturing a cube we have arrived at twelve of the fourteen Bravais lattices
and five of the seven crystal systems. We can find the thirteenth and sixth by returning
to the original cube and distorting it differently:

11 Other than the identity operation (which leaves the lattice where it is), which is always counted
among the members of a symmetry group.
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Trigonal (1) The trigonal point group describes the symmetry of the object one
produces by stretching a cube along a body diagonal (Figure 7.3f). The lattice made
by so distorting any of the three cubic Bravais lattices is the rhombohedral (or trigonal)
Bravais lattice. It is generated by three primitive vectors of equal length that make
equal angles with one another.!?

Finally, unrelated to the cube, is:

Hexagonal (1) The hexagonal point group is the symmetry group of a right prism
with a regular hexagon as base (Figure 7.3g). The simple hexagonal Bravais lattice
(described in Chapter 4) has the hexagonal point group and is the only Bravais lattice
in the hexagonal system.!? v

The seven crystal systems and fourteen Bravais lattices described above exhaust
the possibilities. This is far from obvious (or the lattices would have been known as
Frankheim lattices). However, it is of no practical importance to understand why
these are the only distinct cases. It is enough to know why the categories exist, and
what they are.

THE CRYSTALLOGRAPHIC POINT GROUPS AND SPACE GROUPS

We next describe the results of a similar analysis, applied not to Bravais lattices but
to general crystal structures. We consider the structure obtained by translating an
arbitrary object through the vectors of any Bravais lattice, and try to classify the
symmetry groups of the arrays so obtained. These depend both on the symmetry of
the object and the symmetry of the Bravais lattice. Because the objects are no longer
required to have maximum (e.g., spherical) symmetry, the number of symmetry groups
is greatly increased: there turn out to be 230 different symmetry groups that a lattice
with a basis can have, known as the 230 space groups. (This is to be compared with
the fourteen space groups that result when the basis is required to be completely
symmetric.) .

The possible point groups of a general crystal structure have also been enumerated.
These describe the symmetry operations that take the crystal structure into itself
while leaving one point fixed (i.e., the nontranslational symmetries). There are thirty-
two distinct point groups that a crystal structure can have, known as the thirty-two
crystallographic point groups. (This is to be compared with the seven point groups
one can have when the basis is required to have full symmetry.)

These various numbers and their relations to one another are summarized in
Table 7.1.

The thirty-two crystallographic point groups can be constructed out of the seven
Bravais lattice point groups by systematically considering all possible ways of re-
ducing the symmetry of the objects (Figure 7.3) characterized by these groups.

Each of the twenty-five new groups constructed in this way is associated with one

12 Special values of that angle may introduce extra symmetries, in which case the lattice may actually
be one of the three cubic types. See, for example, Problem 2(a).

12 If one tries to produce further Bravais lattices from distortions of the simple hexagonal, one finds
that changing the angle between the two primitive vectors of equal length perpendicular to the c-axis yields a
base-centered orthorhombic lattice, changing their magnitudes as well leads to monoclinic, and tilting
the c-axis from the perpendicular leads, in general, to triclinic.
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Table 7.1
POINT AND SPACE GROUPS OF BRAVAIS LATTICES AND CRYSTAL STRUCTURES
BRAVAIS LATTICE CRYSTAL STRUCTURE
(BASIS OF SPHERICAL SYMMETRY)  (BASIS OF ARBITRARY SYMMETRY)
Number of 7 32
point groups: (““the 7 crystal systems’”) (““the 32 crystallographic point groups™)
Number of 14 230
space groups: (“the 14 Bravais lattices™) (“the 230 space groups”)

of the seven crystal systems according to the following rule: Any group constructed
by reducing the symmetry of an object characterized by a particular crystal system
continues to belong to that system until the symmetry has been reduced so far that
all of the remaining symmetry operations of the object are also found in a less sym-
metrical crystal system; when this happens the symmetry group of the object is
assigned to the less symmetrical system. Thus the crystal system of a crystallographic
point group is that of the least symmetric** of the seven Bravais lattice point groups
containing every symmetry operation of the crystallographic group.

Cubic Figure 7.7
« The hierarchy of symmetries among the seven crystal systems.
Hexagonal Tetragonal  Each Bravais lattice point group contains all those that can be
g « * « . reached from it by moving in the direction of the arrows.
Trigonal Orthorhombic

_,|VZo=Wn:in
.D.m%man
Objects with the symmetries of the five crystallographic point groups in the cubic
system are pictured in Table 7.2. Objects with the symmetries of the twenty-seven
noncubic crystallographic groups are shown in Table 7.3.
Crystallographic point groups may contain the following kinds of symmetry
operations:

1. Rotations through Integral Multiples of 2r/n about Some Axis The axis is called
an n-fold rotation axis. It is easily shown (Problem 6) that a Bravais lattice can

14 The notion of a hierarchy of crystal system symmetries needs some elaboration. In Figure 7.7 each
crystal system is more symmetric than any that can be reached from it by moving along arrows; i.e., the
corresponding Bravais lattice point group has no operations that are not also in the groups from which it
can be so reached. There appears to be some ambiguity in this scheme since the four pairs cubic-hexagonal,

tetragonal-hexagonal, tetragonal-trigonal, and orthorhombic-trigonal are not ordered by the arrows. .

Thus one might imagine an object all of whose symmetry operations belonged to both the tetragonal and
trigonal groups but to no group lower than both of these. The symmetry group of such an object could
be said to belong to either the tetragonal or trigonal systems, since there would be no unique system of
lowest symmetry. It turns out, however, both in this and the other three ambiguous cases, that all symmetry
elements common to both groups in a pair also belong to a group that is lower than both in the hierarchy.
(For example, any element common to both the tetragonal and the trigonal groups also belongs to the
monoclinic group.) There is therefore always a unique group of lowest symmetry.
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Table 7.2
OBJECTS WITH THE SYMMETRY OF THE FIVE CUBIC CRYSTALLOGRAPHIC

POINT GROUPS*

“To the left of each object is the Schoenflies name of its symmetry group and to the right is the
international name. The unpictured faces may be deduced from the fact that rotation about a
body diagonal through 120° is a symmetry operation for all five objects. (Such an axis is shown
on the undecorated cube.)

contain only 2-, 3-, 4-, or 6-fold axes. Since the crystallographic point groups are
contained in the Bravais lattice point groups, they too can only have these axes.

2. Rotation-Reflections Even when a rotation through 2z/n is not a symmetry
element, sometimes such a rotation followed by a reflection in a plane perpen-
dicular to the axis may be. The axis is then called an n-fold rotation-reflection
axis. For example, the groups S¢ and S, (Table 7.3) have 6- and 4-fold rotation-
reflection axes. .

3. Rotation-Inversions Similarly, sometimes a rotation through 2n/n followed by an
inversion in a point lying on the rotation axis is a symmetry element, even though
such a rotation by itself is not. The axis is then called an n-fold rotation-inversion
axis. The axis in S, (Table 7.3), for example, is also a 4-fold rotation-inversion
axis. However, the axis in Ss is only a 3-fold rotation-inversion axis.

4. Reflections A reflection takes every point into its mirror image in a plane, known
as a mirror plane.
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Table 7.3

THE NONCUBIC CRYSTALLOGRAPHIC POINT GROUPS*

£

SCHOEN- ORTHO- INTER-
FLIES HEXAGONAL |[TETRAGONAL| TRIGONAL RHOMBIC MONOCLINIC | TRICLINIC NATIONAL
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Dig _ (3m) nZ
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“ Table caption on p. 123.
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Table 7.3 (continued)

The unpictured faces can be deduced by imagining the representative objects to be rotated about
the n-fold axis, which is always vertical. The Schoenflies name of the group is given to the left
of the representative object, and the international designation the right. The groups are organized
into vertical columns by crystal system, and into horizontal rows by the Schoenflies or inter-
national type. Note that the Schoenflies categories (given on the extreme left of the table) divide
up the groups somewhat differently from the international categories (given on the extreme right).
In most (but not all) cases the representative objects have been made by simply decorating in the
appropriate symmetry reducing manner the faces of the objects used to represent the crystal
systems (Bravais lattice point groups) in Figure 7.3. Exceptions are the trigonal groups and two
of the hexagonal groups, where the figures have been changed to emphasize the similarity within
the (horizontal) Schoenflies categories. For a representation of the trigonal groups by decorations
of the object in Figure 7.3f, see Problem 4.

5. Inversions An inversion has a single fixed point. If that point is taken as the
origin, then every other point r is taken into —r.

Point-Group Nomenclature

Two nomenclatural systems, the Schénflies and the international, are in wide use.
Both designations are given in Tables 7.2 and 7.3.

Schoenflies Notation for the Noncubic Crystallographic Point Groups The Schoenflies
categories are illustrated by grouping the rows in Table 7.3 according to the labels
given on the left side. They are:13

C,: These groups contain only an n-fold rotation axis.

C In addition to the n-fold axis, these groups have a mirror plane that contains

the axis of rotation, plus as many additional mirror planes as the existence of

the n-fold axis requires.

These groups contain in addition to the n-fold axis, a single mirror plane that

is perpendicular to the axis.

S,: These groups contain only an n-fold rotation-reflection axis.

D,. In addition to an n-fold rotation axis, these groups contain a 2-fold axis
perpendicular to the n-fold axis, plus as many additional 2-fold axes as are
required by the existence of the n-fold axis.

D,,: These (the most symmetric of the groups) contain all the elements of D, plus
a mirror plane perpendicular to the n-fold axis.

D,,: These contain the elements of D, plus mirror planes containing the n-fold
axis, which bisect the angles between the 2-fold axes.

no-*

It is instructive to verify that the objects shown in Table 7.3 do indeed have the
symmetries required by their Schoenflies names.

International Notation for the Noncubic Crystallographic Point Groups The interna-
tional categories are illustrated by grouping the rows in Table 7.3 according to

15 C stands for “cyclic,” D for “dihedral,” and S [or “Spiegel” (mirror). The subscripts h, v, and d stand

for “horizontal,” “vertical,” and “diagonal,” and refer to the placement ol the mirror planes with respect
to the n-fold axis, considered to be vertical. (The “diagonal” planes in D,, are vertical and bisect the angles

between the 2-fold axes.)
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the labels given on the right side. Three categories are identical to the Schoenflies
categories:

n is the same as C,,.

nmm is the same as C,,. The two m’s refer to two distinct types of mirror planes
containing the n-fold axis. What they are is evident from the objects illustrating 6mm,
4mm, and 2mm. These demonstrate that a 2j-fold axis takes a vertical mirror plane
into j mirror planes, but in addition j others automatically appear, bisecting the
angles between adjacent planes in the first set. However, a (2j + 1)-fold axis takes a
mirror plane into 2j + 1 equivalent ones, and therefore’® Cs, is only called 3m.

n22 is the same as D,,. The discussion is the same as for nmm, but now perpendicular
2-fold axes are involved instead of vertical mirror planes.

The other international categories and their relation to those of Schoenflies are
as follows:

n/m is the same as C,;, except that the international system prefers to regard Cs,
as containing a 6-fold rotation-inversion axis, making it 6 (see the next category).
Note also that C,;, becomes simply m, rather than 1/m.

7 is a group with an n-fold rotation-inversion axis. This category contains Csy,
disguised as 6. It also contains S,, which goes nicely into 4. However, S¢ becomes
3 and §, becomes 1 by virtue of the difference between rotation-reflection and
rotation-inversion axes.

£22 abbreviated n/mmm, is just Dy, except that the international system prefers to
regard D3, as containing a 6-fold rotation-inversion axis, making it 62m (see the next
category, and note the similarity to the ejection of Cs;, from n/m into 7). Note also
that 2/mmm is conventionally abbreviated further into mmm. The full-blown inter-
national title is supposed to remind one that D, can be viewed as an n-fold axis with
a perpendicular mirror plane, festooned with two sets of @on@n:&n:_mn 2-fold axes,
each with its own perpendicular mirror planes.

7i2m is the same as D, except that D, is included as 62m. The name is intended

to suggest an n-fold rotation-inversion axis with a perpendicular 2-fold axis and a.

vertical mirror plane. The n = 3 case is again exceptional, the full name being 32
(abbreviated 3m) to emphasize the fact that in this case the vertical mirror plane is
perpendicular to the 2-fold axis.

Nomenclature for the Cubic Crystallographic Point Groups The Schoenflies and in-
ternational names for the five cubic groups are given in Table 7.2. O, is the full
symmetry group of the cube (or octahedron, whence the O) including improper
operations,!” which the horizontal reflection plane (/) admits. O is the cubic (or
octahedral) group without improper operations. Ty is the full symmetry group of the
regular tetrahedron including all improper operations, T'is the group of the regular
tetrahedron excluding all improper operations, and 7T, is what results when an
inversion is added to 7.

1 In emphasizing the differences between odd- and even-fold axes, the international system, unlike
the Schoenflies, treats the 3-fold axis as a special case.

17 Any operation that takes a right-handed object into a left-handed one is called improper. All others
are proper. Operations containing an odd number of inversions or mirrorings are improper.
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The international names for the cubic groups are conveniently distinguished from
those of the other crystallographic point groups by containing 3 as a second number,
referring to the 3-fold axis present in all the cubic groups.

The 230 Space Groups

We shall have mercifully little to say about the 230 space groups, except to point
out that the number is larger than one might have guessed. For each crystal system
one can construct a crystal structure with a different space group by placing an object
with the symmetries of each of the point groups of the system into each of the Bravais
lattices of the system. In this way, however, we find only 61 space groups, as shown
in Table 7.4.

Table 7.4
ENUMERATION OF SOME SIMPLE SPACE GROUPS

SYSTEM NUMBER OF POINT GROUPS NUMBER OF BRAVAIS LATTICES PRODUCT

Cubic 5 3 15
Tetragonal 7 2 14
Orthorhombic 3 4 12
Monoclinic 3 2 6
Triclinic 2 1 N 2
Hexagonal 7 1 7
Trigonal 5 1 5
Totals 32 14 61

We can eke out five more by noting that an object with trigonal symmetry yields
a space group not yet enumerated, when placed in a hexagonal Bravais lattice.'8

'8 Although the trigonal point group is contained in the hexagonal point group, the trigonal Bravais
lattice cannot be obtained from the simple hexagonal by an infinitesimal distortion. (This is in contrast
to all other pairs of systems connected by arrows in the symmetry hierarchy of Figure 7.7.) The trigonal
point group is contained in the hexagonal point group because the trigonal Bravais lattice can be viewed
as simple hexagonal with a three-point basis consisting of

. 1 1 1. 2 2 2
0; 3a;,3a;,3¢; and %a;, %a,, 3c

As a result, placing a basis with a trigonal point group into a hexagonal Bravais lattice results in a different
space group from that obtained by placing the same basis into a trigonal lattice. In no other case is this
s0. For example, a basis with tetragonal symmetry, when placed in a simple cubic lattice, yields exactly the
same space group as it would if placed in a simple tetragonal lattice (unless there happens to be a special
relation between the dimensions of the object and the length of the c-axis). This is reflected physically in the
fact that there are crystals that have trigonal bases in hexagonal Bravais lattices, but none with tetragonat
bases in cubic Bravais lattices. In the latter case there would be nothing in the structure of such an object
to require the c-axis to have the same length as the a-axes; if the lattice did remain cubic it would be a
mere coincidence. In contrast, a simple hexagonal Bravais lattice cannot distort continuously into a trigonal
one, and can therefore be held in its simple hexagonal form even by a basis with only trigonal symmetry.

Because trigonal point groups can characterize a crystal structure with a hexagonal Bravais lattice,
crystallographers sometimes maintain that there are only six crystal systems. This is because crystal-
lography emphasizes the point symmetry rather than the translational symmetry. From the point of view
of the Bravais lattice point groups, however, there are unquestionably seven crystal systems: the point
groups D4 and D, are both the point groups of Bravais lattices, and are not equivalent.
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Table 7.7
ELEMENTS WITH ORTHORHOMBIC BRAVAIS LATTICES?
ELEMENT a(A) b (A) c(A)
Ga 4,511 4.517 7.645
P (black) 3.31 4.38 10.50
Cl (113 K) 6.24 8.26 4.48
Br(123K) 6.67 8.72 4.48
I 7.27 9.79 . 4.79
S (rhombic) 10.47 12.87 24.49

¢ The lengths of the three mutually perpendicular primitive vectors are
a, b, and c. The structure of rhombic sulfur is complex, with 128 atoms
per unit cell. The others can be described in terms of an eight-atom unit
cell. For details the reader is referred to Wyckoff.

PROBLEMS

1. (a) Prove that any Bravais lattice has inversion symmetry in a lattice point. (Hint: Express
the lattice translations as linear combinations of primitive vectors with integral coefficients.)
(b) Prove that the diamond structure is invariant under an inversion in the midpoint of any
nearest neighbor bond.
() Show that the diamond structure is not invariant under inversions in any other points.

2. (a) If three primitive vectors for a trigonal Bravais lattice are at angles of 90° to one another,
the lattice obviously has more than trigonal symmetry, being simple cubic. Show that if the
angles are 60° or arc cos (—3%) the lattice again has more than trigonal symmetry, being face-
centered cubic or body-centered cubic.

(b) Show that the simple cubic lattice can be represented as a trigonal lattice with primitive
vectors a; at 60° angles to one another, with a two-point basis +#4(a, + a, 4 as). (Compare
these numbers with the crystal structures in Table 7.5.)

(c) What structure results if the basis in the same trigonal lattice is taken to be +#(a, +
a; + a3)?

3. If two systems are connected by arrows in the symmetry hierarchy of Figure 7.7, then a
Bravais lattice in the more symmetric system can be reduced to one of lower symmetry by an
infinitesimal distortion, except for the pair hexagonal-trigonal. The appropriate distortions have
been fully described in the text in all cases except hexagonal-orthorhombic and trigonal-
monoclinic.

(a) Describe an infinitesimal distortion that reduces a simple hexagonal Bravais lattice to
one in the orthorhombic system.

(b) What kind of orthorhombic Bravais lattice can be reached in this way?

(c) Describe an infinitesimal distortion that reduces a trigonal Bravais lattice to one in the
monoclinic system.

(d) What kind of monoclinic Bravais lattice can be reached in this way?
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4. (a) Which of the trigonal point groups described in Table 7.3 is the point group of the
Bravais lattice? That is, which of the representative objects has the symmetry of the object shown
in Figure 7.3f{7

(b) In Figure 7.9 the faces of the object of Figure 7.3f are decorated in various symmetry-
reducing ways to produce objects with the symmetries of the remaining four trigonal point groups.
Referring to Table 7.3, indicate the point-group symmetry of each object.

Figure 7.9

Objects with the symmetries
of the trigonal groups of
lower symmetry. Which is
which?

(a) (b) (©) ()

5. Which of the 14 Bravais lattices other than face-centered cubic and body-centered cubic do
not have reciprocal lattices of the same kind ?

6. (a) Show that there is a family of lattice planes perpendicular to any n-fold rotation axis
of a Bravais lattice, n > 3. (The result is also true when n = 2, but requires a somewhat more
elaborate argument (Problem 7).)

(b) Deduce from (a) that an n-fold axis cannot exist in any three-dimensional Bravais lattice
unless it can exist in some two-dimensional Bravais lattice.

() Prove that no two-dimensional Bravais lattice can have an n-fold axis with n = 5 or
n > 7. (Hint: First show that the axis can be chosen to pass through a lattice point. Then argue
by reductio ad absurdum, using the set of points into which the nearest neighbor of the fixed point
is taken by the 1 rotations to construct a point closer to the fixed point than its “nearest neighbor.”
(Note that the case n = 5 requires slightly different treatment from the others).)

7. (a) Show that if a Bravais lattice has a mirror plane, then there is a family of lattice planes
parallel to the mirror plane. (Hint: Show from the argument on page 113 that the existence of a
mirror plane implies the existence of a mirror plane containing a lattice point. It is then enough to
prove that that plane contains two other lattice points not collinear with the first.)

(b) Show that if a Bravais lattice has a 2-fold rotation axis then there is a family of lattice
planes perpendicular to the axis.





