PHYS 310 - Homework \#3

Reading:

- Hughes \& Hase Ch 4 has already been assigned, but you might review this (and class notes) for the homework problems below.
- Before the next class, read Hughes and Hase, Chapter 5.

Problems:

1. In Table 4.2 on p. 44 , Hughes \& Hase claim that for the function

$$
Z(A, B)=k \frac{A^{n}}{B^{m}}
$$

the fractional uncertainty in Z is given by

$$
\frac{\alpha_{Z}}{Z}=\sqrt{\left(n \frac{\alpha_{A}}{A}\right)^{2}+\left(m \frac{\alpha_{B}}{B}\right)^{2}} .
$$

Use the calculus approach to prove this result.
2. In the PHYS 211/212 appendix we discuss the uncertainty in the measurement of g with a pendulum. We say that the uncertainty in the value of g due to our uncertainty in the measurement of the period T is given by

$$
\Delta g_{T}=g(L, T+\Delta T)-g(L, T)
$$

(This is H\&H's functional approach. It's just as reasonable to use

$$
\Delta g_{T}=g(L, T-\Delta T)-g(L, T)
$$

Let's assume that $L=0.96 \mathrm{~m}$ and $T=1.970 \pm 0.004 \mathrm{~s}$. Does it matter which definition for Δg_{T} you use? For what values of ΔT will it matter?
3. Section 4.2.2 in Hughes \& Hase is a worked example of the determination of pressure and its uncertainty using the van der Waals equation of state and the functional approach for determining uncertainties. Repeat these calculations for yourself, determining $P\left(\bar{V}_{\mathrm{in}}, \bar{T}\right), \alpha_{P}^{T}, \alpha_{P}^{V}$, and α_{P}. (Note: there are slight numerical errors for some of the values given in early printings of the text.)
4. Repeat the calculation of the uncertainty α_{P} in problem \#3 using the "calculus approximation" of the uncertainties.
5. Repeat the calculation of the uncertainty α_{P} in problem \#3 using Monte Carlo simulations of the data.
6. Hughes and Hase, Problem 4.8
7. Hughes and Hase, Problem 4.10
8. In homework set $\# 2$, problem 8, you simulated the results for a single PHYS 211 lab section doing the $\mathrm{M} \& \mathrm{M}$ experiment. Now simulate the results from 200 lab sections, recording the mean number of brown M\&Ms in a bag for each section. Make a histogram of the 200 means, and calculate the standard deviation of those means. Are your results consistent with the predictions of the Central Limit Theorem?

