
Homework_3_soln

February 12, 2025

1 PHYS 310 HW 3 Solutions
[1]: import numpy as np

import matplotlib.pyplot as plt
from scipy import stats

1.1 Calculus Approach
H & H : Table 4.2

𝑍(𝐴, 𝐵) = 𝑘 𝐴𝑛

𝐵𝑚

We will find the partial derivatives due to the two vairables, and combine in quadrature.

For A:
𝛼𝑍,𝐴 = 𝛼𝐴

𝜕𝑍
𝜕𝐴

𝜕𝑍
𝜕𝐴 = 𝑛𝑘𝐴𝑛−1

𝐵𝑚

𝛼𝑍,𝐴 = 𝛼𝐴𝑛𝑘𝐴𝑛−1

𝐵𝑚

For B:
𝛼𝑍,𝐵 = 𝛼𝐵

𝜕𝑍
𝜕𝐵

𝜕𝑍
𝜕𝐵 = −𝑚𝑘𝐴𝑛𝐵−𝑚−1

𝛼𝑍,𝐵 = −𝛼𝐵𝑚𝑘 𝐴𝑛

𝐵𝑚+1

Combine (squaring the negative number doesn’t matter, and we can take out the equation Z)

𝛼𝑧 = √(𝛼𝐴𝑛𝑘𝐴𝑛−1

𝐵𝑚)
2

+ (−𝛼𝐵𝑚𝑘 𝐴𝑛

𝐵𝑚+1)
2

𝛼𝑧 = 𝑘 𝐴𝑛

𝐵𝑚
√(𝛼𝐴𝑛 1

𝐴)
2

+ (𝛼𝐵𝑚 1
𝐵)

2

𝛼𝑧
𝑍 = √(𝑛𝛼𝐴

𝐴)
2

+ (𝑚𝛼𝐵
𝐵)

2

1

2 Functional Approach to Pendulum
When does it matter if we use the functional approach with 𝑇 + Δ𝑇 or 𝑇 − Δ𝑇 ?

[2]: def g(L,T):
return 4*np.pi**2 *L/T**2

L = 0.96
T = 1.970
DeltaT = 0.004

print('The best value of g:',g(L,T))
print('Δg(L,T+ΔT):',g(L,T+DeltaT) - g(L,T))
print('Δg(L,T-ΔT):',g(L,T-DeltaT) - g(L,T))

The best value of g: 9.765590687774262
Δg(L,T+ΔT): -0.03953676381878424
Δg(L,T-ΔT): 0.03977833230749894

It doesn’t matter to one significant digit.

[3]: DeltaT2 = 0.15

print('Δg(L,T+ΔT):',g(L,T+DeltaT2) - g(L,T))
print('Δg(L,T-ΔT):',g(L,T-DeltaT2) - g(L,T))

Δg(L,T+ΔT): -1.3330344177085962
Δg(L,T-ΔT): 1.6760470673830667

If the uncertainty is much bigger, then the first significant digit would be different in each case.

We can be a little more quantitative about this by considering higher order terms in our Taylor
series expansions of 𝑔(𝐿, 𝑇):

𝑔(𝐿, 𝑇 + Δ𝑇) ≃ 𝑔(𝐿, 𝑇) + 𝜕𝑔
𝜕𝑇 Δ𝑇 + 1

2
𝜕2𝑔
𝜕𝑇 2 Δ𝑇 2

𝑔(𝐿, 𝑇 − Δ𝑇) ≃ 𝑔(𝐿, 𝑇) − 𝜕𝑔
𝜕𝑇 Δ𝑇 + 1

2
𝜕2𝑔
𝜕𝑇 2 Δ𝑇 2.

These expressions will have the same magnitude when the terms quadratic in Δ𝑇 are small com-
pared to the linear terms, i.e.,

1
2

𝜕2𝑔
𝜕𝑇 2 Δ𝑇 2 ≪ 𝜕𝑔

𝜕𝑇 Δ𝑇 .

Rearranging this gives the condition on Δ𝑇 :

Δ𝑇 ≪ 2
𝜕𝑔
𝜕𝑇
𝜕2𝑔
𝜕𝑇 2

2

In this problem we have

𝜕𝑔
𝜕𝑇 = −8𝜋2𝐿

𝑇 3 and 𝜕2𝑔
𝜕𝑇 2 = 24𝜋2𝐿

𝑇 4

so our condition on the size of Δ𝑇 becomes

Δ𝑇 ≪ 2
3𝑇 .

This means that in this problem the two uncertainties will be the same when Δ𝑇 ≪ 2
3𝑇 , or when

Δ𝑇 is, say, less than a tenth of 2
3𝑇 ∼ 0.13. Guesses around 0.1 are close.

2.1 Functional Approach to van der Waals
H & H : Example 4.2.2

[4]: def P(Vm,T):
'''Returns pressure a function of measured volume and temperature'''
return R*T/(Vm - b) - a/Vm**2

[5]: R = 8.3145
Tbest = 298.0
alpha_T = 0.2
Vmbest = 2.000e-4
alpha_V = 0.003e-4
a = 1.408e-1
b = 3.913e-5

[6]: Pbest = P(Vmbest,Tbest)

#we can turn all the uncertainties due to each parameter into a vector u
u = np.zeros(2)
u[0] = P(Vmbest + alpha_V, Tbest)
u[1] = P(Vmbest, Tbest + alpha_T)
u = u - Pbest
print('P [MPa]:', Pbest/1e6,'/n')
print('uncertainties in P due to uncertainties in V and T:',u/1e6,'\n')
print('fractional uncertainties in P due to uncertainties in V and T:',u/

↪Pbest,'\n')
unc = np.sqrt(np.sum(u**2))
print('total uncertainty [MPa]:', unc/1.e6)

P [MPa]: 11.882007832411261 /n
uncertainties in P due to uncertainties in V and T: [-0.01813283 0.01033692]

fractional uncertainties in P due to uncertainties in V and T: [-0.00152607
0.00086996]

3

total uncertainty [MPa]: 0.020872267575327286

Thus:
𝛼𝑇

𝑃 ∼ 0.010 MPa,
𝛼𝑉

𝑃 ∼ 0.018 MPa,
𝑃(𝑉 𝑖𝑛, 𝑇) ± 𝛼𝑃 = 11.88 ± 0.02 MPa
As expected!

2.2 Calculus Approximation to van der Waals

𝑃(𝑉𝑚, 𝑇) = 𝑅𝑇
𝑉𝑚 − 𝑏 − 𝑎

𝑉 2𝑚

𝛼𝑃 = √(𝛼𝑇
𝑃)2 + (𝛼𝑉

𝑃)2

𝛼𝑇
𝑃 = (𝜕𝑃

𝜕𝑇) 𝛼𝑇 = 𝑅
𝑉𝑚 − 𝑏𝛼𝑇

𝛼𝑉
𝑃 = (𝜕𝑃

𝜕𝑉) 𝛼𝑉 = [𝑅𝑇 (−1
(𝑉𝑚 − 𝑏)2) − 𝑎(−2)

𝑉 3𝑚
] 𝛼𝑉 = [−𝑅𝑇

(𝑉𝑚 − 𝑏)2 + 2𝑎
𝑉 3𝑚

] 𝛼𝑉

𝛼𝑃 = √(𝑅
𝑉𝑚 − 𝑏𝛼𝑇)

2
+ ([−𝑅𝑇

(𝑉𝑚 − 𝑏)2 + 2𝑎
𝑉 3𝑚

] 𝛼𝑉)
2

[7]: # Using the information stored above
print('P [MPa]:', P(Vmbest,Tbest)/1e6,'/n')
alphaPV = (-R*Tbest/((Vmbest - b)**2) + 2*a/Vmbest**3)*alpha_V
alphaPT = (R/(Vmbest - b))*alpha_T

print('uncertainties in P due to uncertainties in V and T:',alphaPV/1e6,alphaPT/
↪1e6,'\n')

unc = np.sqrt(alphaPV**2+alphaPT**2)
print('total uncertainty [MPa]:', unc/1.e6)

P [MPa]: 11.882007832411261 /n
uncertainties in P due to uncertainties in V and T: -0.018162585626427412
0.010336918008329707

total uncertainty [MPa]: 0.020898119306488768

Thus:
𝛼𝑇

𝑃 ∼ 0.010 MPa,
𝛼𝑉

𝑃 ∼ 0.018 MPa,
𝑃(𝑉 𝑖𝑛, 𝑇) ± 𝛼𝑃 = 11.88 ± 0.02 MPa
As expected!

4

2.3 Monte Carlo Simulation of van der Waals
[8]: numExp = 1000 # Number of Monte Carlo "experiments"

Tvalues = stats.norm.rvs(Tbest, alpha_T, size=numExp)
Vvalues = stats.norm.rvs(Vmbest, alpha_V, size=numExp)
simData = P(Vvalues,Tvalues) # simulate a bunch of pressures
Pbest = np.mean(simData)
alphaP = np.std(simData, ddof = 1)
Pbest/1e6, alphaP/1e6

[8]: (np.float64(11.881505136113706), np.float64(0.020050128301167494))

Thus:
𝑃(𝑉 𝑖𝑛, 𝑇) ± 𝛼𝑃 = 11.88 ± 0.02 MPa
As expected!
Note: We don’t get information about how much 𝑇 and 𝑉𝑖𝑛 affect the pressure individually.

2.4 H & H : 4.8
The volume flow rate is given by

𝑑𝑉
𝑑𝑡 = 𝜋𝜌𝑔ℎ𝑟4

8𝜂𝐿 ,

First, we need to rewrite this relation in terms that will enable us to calculate the viscosity 𝜂 from
the length 𝐿, the radius 𝑟 and the slope of a plot of flow rate 𝐹 = 𝑑𝑉 /𝑑𝑡 versus ℎ. Let’s call that
slope 𝑚 to simplify the notation.

The slope of the flow rate vs. ℎ graph 𝑑𝑉 /𝑑𝑡 = 𝑚ℎ is

𝑚 = 𝜋𝜌𝑔𝑟4

8𝜂𝐿 ,

and solving for the viscosity gives

𝜂 = 𝜋𝜌𝑔𝑟4

8𝑚𝑙 .

Since we know the fractional uncertainties and the equation, we are using the calculus approxima-
tion. The uncertainty in the viscosity is therefore given by

𝛼2
𝜂 = (𝜕𝜂

𝜕𝑚)
2

𝛼2
𝑚 + (𝜕𝜂

𝜕𝐿)
2

𝛼2
𝐿 + (𝜕𝜂

𝜕𝑟)
2

𝛼2
𝑟

= (−𝜂
𝑚)

2
𝛼2

𝑚 + (−𝜂
𝐿)

2
𝛼2

𝐿 + (4𝜂
𝑟)

2
𝛼2

𝑟,

and the fractional uncertainty is given by

5

(𝛼𝜂
𝜂)

2
= (𝛼𝑚

𝑚)
2

+ (𝛼𝐿
𝐿)

2
+ (4𝛼𝑟

𝑟)
2

[9]: Frac_alpha_m = 0.07 # Fractional uncertainty in slope
Frac_alpha_L = 0.005 # Fractional uncertainy in L
Frac_alpha_r = 0.08 # Fractional uncertainty in r
Frac_alpha_eta = np.sqrt(Frac_alpha_m**2+Frac_alpha_L**2+(4*Frac_alpha_r)**2)
print(Frac_alpha_eta)

0.32760494501762333

So, the fractional precision to which the viscosity is known is 33%. Note that this is dominated
by the error in the radius measurement. If the fractional error were zero for both the slope and
the length L measurement, we’d get a fractional uncertainty of 32% with the radius measurement
alone because of the factor of 4 that comes in from the fact that we take the 4th power of 𝑟 in the
relation.

So, clearly if we want to improve the measurement, the radius of the tube (iii) is the thing that we
need to work on – that dominates the error.

2.5 H & H : 4.10
To combine the students’ data best, we need a weighted mean.

𝑤𝑖 = 1
𝛼2

𝑖

𝑥 = ∑𝑖 𝑤𝑖𝑥𝑖
∑𝑖 𝑥2

𝑖

1
𝛼2𝑥

= ∑
𝑖

𝑤𝑖

[10]: speeds = np.array([3.03, 2.99, 2.99, 3.00, 3.05, 2.97])
uncertainties = np.array([0.04, 0.03, 0.02, 0.05, 0.04, 0.02])
weights = 1/uncertainties**2
weightedAvg = np.dot(speeds,weights)/np.sum(weights)

alpha_speeds = np.sqrt(1/np.sum(weights))
print(weightedAvg, alpha_speeds)

2.9921259842519685 0.011351102608219766

An average of (2.99 ± 0.01) × 108 m/s is pretty good. Adding (3.0 ± 0.3) is not going to be doing
much because the large uncertainty causes it to be weighted lower, and it’s close to the average.
(4.01 ± 0.01) is going to affect it more because the claimed small uncertainty will cause it to be
weighted more, and it’s very far from the current average.

[11]: speeds = np.array([3.03, 2.99, 2.99, 3.00, 3.05, 2.97, 3.0])
uncertainties = np.array([0.04, 0.03, 0.02, 0.05, 0.04, 0.02, 0.3])

6

weights = 1/uncertainties**2
weightedAvg = np.dot(speeds,weights)/np.sum(weights)

alpha_speeds = np.sqrt(1/np.sum(weights))
print(weightedAvg, alpha_speeds)

2.992137240886347 0.011342985980361566

(2.99 ± 0.01) × 108 m/s is no change.

[12]: speeds = np.array([3.03, 2.99, 2.99, 3.00, 3.05, 2.97, 3.0, 4.01])
uncertainties = np.array([0.04, 0.03, 0.02, 0.05, 0.04, 0.02, 0.3, 0.01])
weights = 1/uncertainties**2
weightedAvg = np.dot(speeds,weights)/np.sum(weights)

alpha_speeds = np.sqrt(1/np.sum(weights))
print(weightedAvg, alpha_speeds)

3.564864020006252 0.007501172149729748

This really changed things (3.565 ± 0.008) × 108 m/s

2.6 M & M - 200 sections
We’re building on last week’s simulation, and extending it to 200 lab sections.

[13]: nmms = 60 # number of M&Ms per bag
nb = 24 # number of bags (students) per section
nsections = 200 # number of sections

#initialize arrays to write data:
mm_means = np.zeros(nsections)
mm_uncs = np.zeros(nsections)

for s in range(nsections):
#For nb bags per section, of the nmms per bag that come in six random␣

↪colors, count color [0] = brown M&Ms
data_section = np.array([np.bincount(stats.randint.rvs(0,6,size=nmms))[0]␣

↪for i in range(nb)])
mm_means[s] = np.mean(data_section)
mm_uncs[s] = np.std(data_section,ddof = 1)/np.sqrt(nb)

[14]: binned = np.linspace(7,13,10) #define the bin edges to make it look nice

plt.hist(mm_means,bins = binned,histtype = 'step', color = 'black')
plt.xlabel('Average Brown M&Ms per Section')
plt.ylabel('Occurances')

7

plt.show()

Check the Central Limit Theorem

The standard deviation 𝜎 of the means should be equivalend to the standard error of the mean 𝛼
of one section:

𝜎averages = 𝜎√
𝑁

[15]: print(np.std(mm_means,ddof=1), np.mean(mm_uncs))
print('The standard deviation of the means is: %.1f brown M&Ms' %(np.

↪std(mm_means,ddof=1)))
print('The typical standard error of the mean for the sections is: %.1f brown␣

↪M&Ms' %(np.mean(mm_uncs)))

0.6010061807496443 0.5831440892769958
The standard deviation of the means is: 0.6 brown M&Ms
The typical standard error of the mean for the sections is: 0.6 brown M&Ms

The equivalence is supported.

8

We can also check the shape of the distribution of the means by comparing the results to the
histrogram predicted by the Central Limit Theorem with a normal distribution using the mean
and standard deviation.

[16]: plt.hist(mm_means,bins = binned, density = True, histtype = 'step', color =␣
↪'black', label = 'simulation') # density = True to compare to stats.norm.pdf

xs = (binned[1:] + binned[:-1])/2 #Get x locations in the middle of the bins
plt.plot(xs, stats.norm.pdf(xs,np.mean(mm_means),np.std(mm_means, ddof =␣

↪1)),linestyle = ' ',marker = 'o', color = 'firebrick', label ='CLT') # Where␣
↪the CLT shows up with the bins

plt.plot(np.linspace(7,13,100), stats.norm.pdf(np.linspace(7,13,100),np.
↪mean(mm_means),np.std(mm_means, ddof = 1)), color = 'firebrick') # The␣
↪underlying distribution

plt.xlabel('Average Brown M&Ms per Section')
plt.ylabel('Occurances')
plt.legend()
plt.show()

[17]: %load_ext version_information

9

[18]: version_information numpy, scipy, matplotlib
[18]: Software Version

Python 3.12.8 64bit [Clang 14.0.6]
IPython 8.30.0
OS macOS 15.3 arm64 arm 64bit
numpy 2.2.2
scipy 1.15.1
matplotlib 3.10.0
Wed Feb 12 18:26:27 2025 EST

[]:

10

	PHYS 310 HW 3 Solutions
	Calculus Approach

	Functional Approach to Pendulum
	Functional Approach to van der Waals
	Calculus Approximation to van der Waals
	Monte Carlo Simulation of van der Waals
	H & H : 4.8
	H & H : 4.10
	M & M - 200 sections

