
HH-2-2_soln

January 16, 2022

0.0.1 Hughes and Hase, Problem 2.2

[1]: import numpy as np

Twelve data points given. Enter them into a numpy array:

[2]: data = np.array([5.33, 4.95, 4.93, 5.08, 4.95, 4.96, 5.02, 4.99, 5.24, 5.25, 5.
↪→23, 5.01])

i) Calculating the mean: µ = 1
N

∑
i xi

[3]: print('mean = ', np.sum(data)/len(data))

mean = 5.078333333333334

OR

[4]: print('mean = ', np.mean(data))

mean = 5.078333333333334

ii) Calculating standard deviation: σN−1 =
√

1
N−1

∑
i(xi − µ)2

[5]: print("standard deviation = ",np.sqrt(np.sum((data-np.mean(data))**2)/
↪→(len(data)-1)))

standard deviation = 0.14357977404617803

OR

[6]: print("standard deviation = ",np.std(data))

standard deviation = 0.13746716779734078

These results do not agree!!

By default the numpy std function calculates σN , which is similar to the σN−1 given in Eq. (2.3) of
H&H, except the denominator is N instead of N−1. The difference doesn’t usually matter, and we
won’t go into this in any depth now. But if we set the ddof=1 option, numpy will calculate σN−1.

Remember: you can see all the details of np.std by typing np.std?.

1

[7]: print("standard deviation = ", np.std(data, ddof=1))

standard deviation = 0.14357977404617803

iii) Standard error, or standard deviation of the mean Use Eq. (2.7):

α =
σN−1√

N
.

[8]: print("standard error =", np.std(data, ddof=1)/np.sqrt(len(data)))

standard error = 0.04144791059787326

iv) Formatted result: Sensitivity = 5.08± 0.04A/W

Version information version_information is from J.R. Johansson (jrjohansson at gmail.com);
see Introduction to scientific computing with Python for more information and instructions for
package installation.

version_information is installed on the linux network at Bucknell

[9]: %load_ext version_information

[10]: %version_information numpy

[10]: Software Version
Python 3.7.8 64bit [GCC 7.5.0]
IPython 7.17.0
OS Linux 3.10.0 1127.19.1.el7.x86_64 x86_64 with centos 7.9.2009 Core
numpy 1.19.1
Sun Jan 16 14:26:17 2022 EST

[]:

2

HH-2-3_soln

January 16, 2022

0.0.1 Hughes & Hase Problem 2.3

The standard error, or standard deviation of the mean, is given by Eq.(2.7):

α =
σN−1√

N
.

To decrease α by a factor of 10, the denominator must be increased by the same factor, which means
that N must increase by a factor of 100. Translating to the described experiment, this means that
data should be collected for 100 minutes (assuming that everything in the experiment is stable for
that length of time).

[]:

1

pendulum_soln

January 16, 2022

0.0.1 Pendulum problem

[1]: import numpy as np

Data Data for pendulum swings: + Standard deviation for any set of timing measurements =
0.04 s + Experiment A: 12 sets of 10 swings; average time for 10 swings T10 = 28.39 s + Experiment
B: 1 set of 120 swings; time for 120 swings T120 = 340.61 s

Period from Experiment A: The standard error (standard deviation of the mean) for the time
for 10 swings is

α =
σ√
N

=
0.04√
12

The time for one swing is the time for 10 swings divided by 10:

T1 =
T10

10

=
28.39± 0.04√

12

10

= 2.839± 0.04

10
√
12

= 2.839± 0.001155

The presentation form of this result is

T1 = 2.839± 0.001 s.

[2]: t10 = 28.39
alpha10 = 0.04/np.sqrt(12)
t1 = t10/10
alpha1 = alpha10/10

print('T1 =',t1,'+/-',alpha1)

T1 = 2.839 +/- 0.0011547005383792516

1

Period from Experiment B: The standard error (standard deviation of the mean) for the time
for 120 swings is

α =
σ√
N

=
0.04√

1

The time for one swing is the time for 120 swings divided by 120:

T1 =
T120

120

=
340.61± 0.04

1

120

= 2.838417± 0.04

120
√
1

= 2.838417± 0.000333

The presentation form of this result is

T1 = 2.8384± 0.0003 s.

[3]: t120 = 340.61
alpha120 = 0.04/np.sqrt(1)
t1 = t120/120
alpha1 = alpha120/120

print('T1 =',t1,'+/-',alpha1)

T1 = 2.838416666666667 +/- 0.0003333333333333333

[]:

2

estimate_mean_sd_1_soln

January 16, 2022

0.0.1 Estimating mean and standard deviation from numerical data

One method is to look for the median. There are 15 data points. The middle value is 4.19365,
meaning 7 values are larger than this and 7 are smaller. The median can be a poor estimate for
the mean if the distribution is very asymmetric, but these numbers go up to 4.5 and down to 3.9,
so it looks like they are fairly well centered on 4.2.

Using H&H’s “rough and ready” estimate (p. 11) for the standard deviation, we find that the
maximum value minus the mean is about 0.3. Taking 2/3 of that gives a estimated standard
deviation of 0.2.

Quantitative check
[1]: import numpy as np

[2]: data = np.array([4.1075, 4.39831, 4.19365, 4.20259,
4.26921, 4.13037, 3.97548, 4.51314, 4.01286, 4.0101, 4.15578, 4.35153,
4.30801, 4.21082, 3.94315])

[3]: np.std(data,ddof=1)

[3]: 0.1640200187259383

Not too bad!

[4]: %load_ext version_information
%version_information numpy

[4]: Software Version
Python 3.7.8 64bit [GCC 7.5.0]
IPython 7.17.0
OS Linux 3.10.0 1127.19.1.el7.x86_64 x86_64 with centos 7.9.2009 Core
numpy 1.19.1
Sun Jan 16 15:32:31 2022 EST

[]:

1

