
The Binomial Distribution

In Chapter 3 of Measurements and their Uncertainties, Hughes and Hase discuss both

the Gaussian probability distribution function and the Poisson probability function. The

Poisson distribution is actually a special-case limit of a more general probability distribution,

the binomial distribution, which is the subject of these notes.

The binomial distribution is applicable when you have N independent events, each of

which has a probability p of success, and a corresponding probability of q (= 1 − p) of not

succeeding. As an example, consider rolling a fair die 10 times. The binomial distribution

helps answer questions such as “What is the probability that a 2 will show up exactly 4

times in the 10 rolls? (Here “success” in a trial means rolling a 2, N = 10, , p = 1/6, and

q = 5/6.)

The probability mass function of the binomial distribution is

fN,p(n) =

N
n

 pn(1− p)N−n

=

N
n

 pnqN−n, (1)

where N
n

 =
N !

n!(N − n)!
(2)

is the binomial coefficient. In Eq. (1) the factor pnqN−n gives the probability that the n

successes occur in a specific set of events, (e.g., the probabilty that the 2’s showed up in

rolls, 1, 4, 5, and 10) and the binomial coefficient gives the number of possible sequences of

events in which the successes could occur.

In the die-rolling example, the probability of getting a 2 on 5 of the rolls is

f10,1/6(5) =

10

5

 (
1

6

)4(
5

6

)6

=
10!

4!6!

(
1

6

)4(
5

6

)6

= 0.054, (3)

or a little more than 5%.
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The mean of the binomial distribution is

n̄ = np, (4)

and the standard deviation is

σ =
√
npq. (5)

Now consider an experiment in which the number of events occurring in some time interval

are counted, such as the number of radioactive decays recorded by a detector in some time

T . It assumed that the decays are independent, i.e., that the occurence of a decay does not

affect the probability of subsequent decays. Let’s consider as an example an experiment in

which the average number of detected decays λ is known, but the distribution of detected

values is unknown. (What is the probability of detecting no decays? exactly one decay? λ

decays? etc.)

We can, in principle, use the binomial distribution to answer this question. Break the

time interval T into N sub-intervals, where N is large enough to make the detection of 2 or

more decays in any sub-interval vanishingly small. Each sub-interval can then be considered

an independent trial, with a “success” being the detection of a decay with probability λ/N ,

and “failure” being no detection of a decay. As an example, consider an experiment in which

the average number of decays is λ = 1, and for our analysis we break the time interval into

50 sub-intervals. (This value of N = 50 is not really large enough to give exact results, but

it’s easy to work with, and the results are pretty good.)

The probability of detecting 0, 1, and 2 decays are thus

f50,1/50(0) '

50

0

 (
1

50

)0(
49

50

)50

= 0.364 (6)

f50,1/50(1) '

50

1

 (
1

50

)1(
49

50

)49

= 0.372 (7)

f50,1/50(2) '

50

2

 (
1

50

)2(
49

50

)48

= 0.186 (8)

As λ gets larger we need more sub-intervals for this scheme to work, and as N gets larger

the factorials quickly become intractable. To get around this problem we turn to math, and
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take the large N limit of the binomial distribution function fN,λ/N (while keeping λ fixed).

The result is the Poisson probability distribution given in Hughes and Hase Eq. (3.11):

P (n;λ) =
e−λλn

n!
. (9)

The Poisson distribution gives the following results for the detection of 0, 1, and 2 decays

in the previously considered example with λ = 1:

P (0, λ = 1) =
e−110

0!

= 0.367 (10)

P (1, λ = 1) =
e−111

1!

= 0.367 (11)

P (2, λ = 1) =
e−112

2!

= 0.184 (12)
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