The Binomial Distribution

In Chapter 3 of Measurements and their Uncertainties, Hughes and Hase discuss both the Gaussian probability distribution function and the Poisson probability function. The Poisson distribution is actually a special-case limit of a more general probability distribution, the binomial distribution, which is the subject of these notes.

The binomial distribution is applicable when you have N independent events, each of which has a probability p of success, and a corresponding probability of $q(=1-p)$ of not succeeding. As an example, consider rolling a fair die 10 times. The binomial distribution helps answer questions such as "What is the probability that a 2 will show up exactly 4 times in the 10 rolls? (Here "success" in a trial means rolling a $2, N=10, p=1 / 6$, and $q=5 / 6$.)

The probability mass function of the binomial distribution is

$$
\begin{align*}
f_{N, p}(n) & =\binom{N}{n} p^{n}(1-p)^{N-n} \\
& =\binom{N}{n} p^{n} q^{N-n}, \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
\binom{N}{n}=\frac{N!}{n!(N-n)!} \tag{2}
\end{equation*}
$$

is the binomial coefficient. In Eq. (1) the factor $p^{n} q^{N-n}$ gives the probability that the n successes occur in a specific set of events, (e.g., the probabilty that the 2's showed up in rolls, $1,4,5$, and 10) and the binomial coefficient gives the number of possible sequences of events in which the successes could occur.

In the die-rolling example, the probability of getting a 2 on 5 of the rolls is

$$
\begin{align*}
f_{10,1 / 6}(5) & =\binom{10}{5}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{6} \\
& =\frac{10!}{4!6!}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{6} \\
& =0.054 \tag{3}
\end{align*}
$$

or a little more than 5%.

The mean of the binomial distribution is

$$
\begin{equation*}
\bar{n}=n p, \tag{4}
\end{equation*}
$$

and the standard deviation is

$$
\begin{equation*}
\sigma=\sqrt{n p q} \tag{5}
\end{equation*}
$$

Now consider an experiment in which the number of events occurring in some time interval are counted, such as the number of radioactive decays recorded by a detector in some time T. It assumed that the decays are independent, i.e., that the occurence of a decay does not affect the probability of subsequent decays. Let's consider as an example an experiment in which the average number of detected decays λ is known, but the distribution of detected values is unknown. (What is the probability of detecting no decays? exactly one decay? λ decays? etc.)

We can, in principle, use the binomial distribution to answer this question. Break the time interval T into N sub-intervals, where N is large enough to make the detection of 2 or more decays in any sub-interval vanishingly small. Each sub-interval can then be considered an independent trial, with a "success" being the detection of a decay with probability λ / N, and "failure" being no detection of a decay. As an example, consider an experiment in which the average number of decays is $\lambda=1$, and for our analysis we break the time interval into 50 sub-intervals. (This value of $N=50$ is not really large enough to give exact results, but it's easy to work with, and the results are pretty good.)

The probability of detecting 0,1 , and 2 decays are thus

$$
\begin{align*}
f_{50,1 / 50}(0) & \simeq\binom{50}{0}\left(\frac{1}{50}\right)^{0}\left(\frac{49}{50}\right)^{50} \\
& =0.364 \tag{6}\\
f_{50,1 / 50}(1) & \simeq\binom{50}{1}\left(\frac{1}{50}\right)^{1}\left(\frac{49}{50}\right)^{49} \\
& =0.372 \tag{7}\\
f_{50,1 / 50}(2) & \simeq\binom{50}{2}\left(\frac{1}{50}\right)^{2}\left(\frac{49}{50}\right)^{48} \\
& =0.186 \tag{8}
\end{align*}
$$

As λ gets larger we need more sub-intervals for this scheme to work, and as N gets larger the factorials quickly become intractable. To get around this problem we turn to math, and
take the large N limit of the binomial distribution function $f_{N, \lambda / N}$ (while keeping λ fixed). The result is the Poisson probability distribution given in Hughes and Hase Eq. (3.11):

$$
\begin{equation*}
P(n ; \lambda)=\frac{e^{-\lambda} \lambda^{n}}{n!} . \tag{9}
\end{equation*}
$$

The Poisson distribution gives the following results for the detection of 0,1 , and 2 decays in the previously considered example with $\lambda=1$:

$$
\begin{align*}
P(0, \lambda=1) & =\frac{e^{-1} 1^{0}}{0!} \\
& =0.367 \tag{10}\\
P(1, \lambda=1) & =\frac{e^{-1} 1^{1}}{1!} \\
& =0.367 \tag{11}\\
P(2, \lambda=1) & =\frac{e^{-1} 1^{2}}{2!} \\
& =0.184 \tag{12}
\end{align*}
$$

