
Weighted Means and an Introduction to Maximum Likelihood Estimation

I. INTRODUCTION

Hughes and Hase don’t talk about the origin of the formula for the weighted mean. It’s

easy to derive the formula, and the derivation provides a simple introduction to the ideas

behind the curve fitting that will be the next topic in our data analysis classes, so I’ll do the

derivation here. But before getting to that I’m going to do start with a simpler question:

Why does averaging results give us the best estimate of the mean of the parent distribution?

It seems intuitive, but there is a mathematical justification.

II. SAMPLE MEAN AS MAXIMUM-LIKELIHOOD ESTIMATOR

Assumption: The data, x1, x2, . . . , xN , are random samples from a normal distribution

with known standard deviation α, and unknown mean x̄ that we are trying to determine

from the data.

If the mean is x̄, the probability of obtaining a value of x in the range xi to xi + dx

p(xi|x̄) =
1

α
√

2π
exp

[
−(xi − x̄)2

2α2

]
dx, (1)

and the probability of getting the whole data set, if the mean is x̄, is proportional to

P (x1, . . . , xN) = p(x1|x̄)× p(x2|x̄)× · · · × p(xN |x̄)

=
1

α
√

2π
exp

[
−(x1 − x̄)2

2α2

]
× · · · × 1

α
√

2π
exp

[
−(xN − x̄)2

2α2

]
,

=

(
dx

α
√

2π

)N
exp

[
− dx

2α2

N∑
i=1

(xi − x̄)2

]
(2)

The maximum-likelihood estimate of x̄ is that value of x̄ that makes the probability P of

Eq. (2) the largest. The constants out front are irrelevant, so this is the value of x̄ that

makes the magnitude of the argument of the exponential the smallest; you can see why this

is called a least squares estimate.

To minimize the exponent, take a derivative with respect to x̄, and set it equal to zero:

dP

dx̄
= 0 −→ dP

dx̄
=

(
dx

α
√

2π

)N
exp

[
− dx

2α2

N∑
i=1

(xi − x̄)2

](
− dx

2α2

N∑
i=1

2(xi − x̄)(−1)

)
= 0

(3)
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It follows that

N∑
i=1

(xi − x̄) = 0 −→
N∑
i=1

xi − x̄
N∑
i=1

1 = 0 (4)

Solving this gives

(x̄)MLE =
1

N

N∑
i=1

xi = sample mean. (5)

The maximum-likelihood estimate of the parent mean is the sample mean. (Technically I

should demonstrate that the extremum is a minimum, but I’ll leave that up to you.)

III. WEIGHTED MEAN AS MAXIMUM-LIKELIHOOD ESTIMATOR

Assumption: The data x1, x2, . . . , xN , are random samples from normal distributions with

the same unknown mean x̄ that we are trying to determine from the data, but the normal

distributions do not have the same standard deviation. The standard deviations α1, α2, etc.

are known.

In this case the probability P of obtaining the whole data set, if the mean is x̄, is

P (x1, . . . , xN) = p(x1|x̄)× p(x2|x̄)× · · · × p(xN |x̄)

=
dx

α1

√
2π

exp

[
−(x1 − x̄)2

2α2
1

]
× · · · × dx

αN
√

2π
exp

[
−(xN − x̄)2

2α2
N

]
,

=
N∏
i=1

(
dx

αi
√

2π

)
× exp

[
−1

2

N∑
i=1

(xi − x̄)2

α2
i

]
(6)

Again, this probability is maximized by minimizing the exponent. In this case when we set

dP
dx̄

= 0 we obtain

0 =
∑
i=1

(xi − x̄)

α2
i

=
N∑
i=1

xi
α2
i

− x̄
N∑
i=1

1

α2
i

. (7)

Solving for x̄ gives

(x̄)MLE =

∑
xi
α2
i∑

1
α2
i

= xCE =

∑
wixi∑
wi

. (8)

where wi = 1
α2
i
. This is Eq. (4.30) in Hughes and Hase. In this case the maximum-likelihood

estimate of the parent mean is the weighted mean.
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IV. GENERALIZE MAXIMUM-LIKELIHOOD ESTIMATOR

We can now generalize the insight we got from Eq. (6). So far we had on the x-axis the

label i and on the y-axis xi and our fit function was x̄. Next we generalize to having data

points (x1, y1), (x2, y2), . . . , (xN , yN) and any fit function f(x; c1, c2, . . .), where c1, c2 etc. are

the fit parameters. In the case of a line fit f(x) = a+mx, so c1 = a and c2 = m. For a fit

we try to determine the best fit parameters. For a line the best a and m, and in the general

case the best fit parameters c1, c2, . . .. The argument which led to Eq.(6) is the same, we

determine P ((x1, y1), . . . , (xN , yN)), the probability for obtaining for the data point at xi the

measurement yi compared to the function value y = f(xi; c1, c2, . . .). In Eq. (6) we therefore

replace xi with yi and x̄ with f(xi; c1, c2, . . .)

P (x1, . . . , xN) =
N∏
i=1

(
dx

αi
√

2π

)
× exp

[
−1

2

N∑
i=1

(yi − f(xi; c1, c2, . . .))
2

α2
i

]

=
N∏
i=1

(
dx

αi
√

2π

)
× exp

[
−1

2

N∑
i=1

(yi − y(xi))
2

α2
i

]

=
N∏
i=1

(
dx

αi
√

2π

)
× exp

[
−1

2
χ2

]
(9)

Therefore when we search for the parameters (c1, c2, . . .) for which the probability P is

largest, so maximizing P , corresponds to minimizing χ2.

Note that with the above approach you can derive the equations for the weighted least

squares fit, that is Eqs. (6.3)—(6.7) of Hughes and Hase.
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