
Robert M. Nickel MATLAB – Handout #1

Signals & Systems – Handout #1
MATLAB – A Brief Introduction

H-1.1 Entering (Complex) Numbers, Variables, and Strings:

The two most important data types in MATLAB are strings and double precision (real or
complex) numbers. Predefined numbers in MATLAB are pi and the imaginary units j and/or
i. Special numbers are nan (not a number, e.g. as the result of a 0/0 operation) and inf
(infinity, e.g. as the result of a 1/0 operation). Simple examples of number constants are:

>> 1.3e-10, 3.0+5.9i, pi*pi, j*3.9, 5*i-7, nan+j*nan, -inf

Strings are entered between delimiting ’-characters:

>> ’String Example’, ’abcdefghijklmnop’, ’1234567890’, ’()[]{}’

Variables do not need to be declared and may be of any data type. Variable names consist
of a letter, followed by any number of letters, digits, or underscores. MATLAB uses only the
first 31 characters of a variable name. MATLAB is case sensitive; it distinguishes between
uppercase and lowercase letters. A and a are not the same variable.

>> String_Var = ’String Example’, Number = pi + j*5.0

To view the value assigned to any variable, simply enter the variable name.

H-1.2 Entering Elementary Matrices and Vectors:

A matrix is entered in MATLAB with delimiting []-characters. Values are entered row-
by-row. Rows are separated by a ;-character. Elements within rows may (optionally) be
separated by a ,-character:

>> A = [1 , 2 , 3 , 4 ; 4 3 -2 1 ; 4 3 1 2 ; 2 4 3 1]

The transpose of matrix A is computed with A.’. The hermitian transpose (i.e. conjugate
transpose) is computed via A’. The diagonal elements of the matrix can be extracted with
diag(A). A vector can be defined as a row vector rv or a column vector cv:

>> rv = [1 2 3 4], cv = [1 ; 2 ; 3 ; 4]

Matrix multiplication is accomplished with the * operator, e.g. A*A*cv. Matrix inversion is
accomplished with the command inv(A). The determinant of a matrix can be computed
with det(A). Matrices and vectors can be flipped from left to right with fliplr(A).
Flipping matrices and vectors from up to down can be accomplished with flipud(A).

Row vectors with incremental changes from element to element can be conveniently
defined with the :-operator. In order to generate the vector [1 2 3 4 5 6 7] we can
simply type 1:7. Row vectors with increments other than +1 can be generated with the
double-:-notation. The term 1:-0.2:0 generates the vector [1 0.8 0.6 0.4 0.2 0].

An alternative way of generating row vectors with incremental changes from element
to element is through the command linspace. A row vector with N uniformly distributed

1

Robert M. Nickel MATLAB – Handout #1

elements between a and b can be generated with linspace(a,b,N). For example the
command linspace(0,1,5) generates the vector [0 0.25 0.5 0.75 1].

Elements of matrices and vectors are accessible via the () notation. Considering the
matrix A from above we can access the element -2 in the second row and third column
with A(2,3). Changing elements in a matrix can be accomplished with an assignment
similar to A(2,3)=+2 for example. Sub-matrices and/or vectors can be generated with
calls like A([1 3],[2 3]) which extracts a new 2×2 matrix from the intersection of
rows 1 and 3 with columns 2 and 3. We can change multiple elements at a time with
assignment like

>> A([1 3],[2 3]) = [1 1 ; 2 2]

The size (i.e. dimensions) of a matrix can be found with the size(A) command.
Access to elements of vectors can be done with a single index within (). Consider the

column vector cv from above. We can get access to its third element simply with cv(3).
The length of a vector can be found with length(cv). MATLAB also defines a single index
access for matrices. The term A([1:16]’), for example, strings out all 16 elements of
the matrix A from above into one long column vector. The same is accomplished with the
simpler notation A(:). Note that a single index access to a matrix counts through the
matrix in a column-by-column fashion.

The concatenation of vectors and matrices can be accomplished by extension of the
[,;] notation with the ,-character and the ;-character. A horizontal concatenation of ma-
trix A from above, for example, is written as [A , A]. Similarly, a vertical concatenation
is written as [A ; A].

There are a few MATLAB commands for the convenient generation of some elementary
vectors and/or matrices. The command eye(5) for example generates a 5×5 identity
matrix. The command ones(2,3) generates a 2×3 matrix filled with 1’s. Similarly,
the command zeros(2,3) generates a 2×3 matrix filled with 0’s. Commands rand and
randn can be used to likewise generate matrices and/or vectors with random numbers.
The resulting random numbers are uniformly distributed between 0 and 1 for rand and
normally distributed with mean 0 and variance 1 for randn.

H-1.3 Getting Help:

A very comprehensive help window can be opened from within MATLAB by entering the
command:

>> helpdesk

The helpdesk window provides access to a complete list of all MATLAB commands as well
as a very well written Getting Started section. Specific information about any MATLAB
command or function can be directly obtained via the help command. If we want to
receive help on the use of the function reshape for example, we can simply type:

>> help reshape

A list of more generic help topis is printed on the screen if we just type help without any
keyword of function name. Getting help on MATLAB operator symbols is, unfortunately,

2

Robert M. Nickel MATLAB – Handout #1

not possible by putting the operator symbol after the help command. Instead, one has to
follow the help command with an operator keyword. If we want to get some information
on the + operator, for example, then we must enter help plus. A list of the keywords for
the MATLAB operator symbols can be listed by typing help ops.

H-1.4 Elementary Operators:

The most important arithmetic operators in MATLAB are + (addition), - (subtraction), *
(multiplication), / (division), and ^ (power). When applied to scalar numbers then these
operators work in the usual way. MATLAB also allows the use of parenthesis ().

In addition, MATLAB lets us use these operators on vectors and matrices. In this case
the symbols +, -, *, /, and ^ mean: matrix addition, matrix subtraction, matrix multipli-
cation, matrix “division”, and matrix “power” respectively. (With the exception of + and
-) these “matrix” style operations are generally quite different from the frequently also
needed “element-by-element” style operation. Consider the two vectors a=[1 2 3] and
b=[2 3 2]. If we want to form a new vector c=[a(1)*b(1) a(2)*b(2) a(3)*b(3)]
then we cannot accomplish this with matrix multiplication *. Instead, MATLAB offers an
element-by-element style multiplication operator .* so that we can simply write c=a.*b.
The operators ./ and .^ are defined analogously with respect to element-by-element di-
vision and element-by-element power.

The basic relational operators that MATLAB provides are: equal ==, not equal ~=, less
than <, greater than >, less or equal <=, and greater or equal >=. The basic logical operators
are: and &, or |, and not ~.

H-1.5 Mathematical Functions:

MATLAB offers a large number of predefined mathematical functions. Most of these func-
tions are implemented to also work with vectors and/or matrices as input arguments.
The output of such functions is always a matrix or vector of the same size as the input
matrix/vector. The function is applied to the matrix or vector in an element-by-element
fashion. For example, the matrix A=[0 pi/2 ; pi 3*pi/2] can be used as an input to
the sine function B=sin(A). The resulting matrix B is given by [0 1 ; 0 -1]. A list
of elementary mathematical functions such as sin, cos, log, and exp is obtained from:

>> help elfun

More specialized mathematical functions can be listed with:

>> help specfun

H-1.6 Command Window Input and Output:

MATLAB typically displays the result/output of a command line on the MATLAB main win-
dow screen. The output can be suppressed if the command line is terminated with a
;-character. Multiple MATLAB commands may be concatenated on a single command line
if they are separated with a ,-character or a ;-character. Again, the result display of each
command is suppressed with the ;-character and not suppressed with the ,-character. A

3

Robert M. Nickel MATLAB – Handout #1

controlled output of numbers, strings, arrays, and other “objects” can be accomplished
with the disp command:

>> disp(’Hello World.’); disp([10 12 14])

The way MATLAB displays numbers on the screen can be changed with the format command
(see help format for details). To input numbers and strings on the MATLAB main window
screen during program execution one can use the input command:

>> InputNumber = input(’Please, enter a number: ’);

To input a string one can use:

>> InputString = input(’Please, enter a string: ’,’s’);

H-1.7 Program Control:

The two most important program control features of (almost) any programming lan-
guage are loops and conditional statements. MATLAB provides for-loops, while-loops,
if-statements, and switch-statements. A simple program to add all numbers from 1 to
100, for example, would be:

>> s=0; for n=1:100; s=s+n; end; disp(s);

We could also use a while-loop to the same effect:

>> s=0; n=0; while n<=100; s=s+n; n=n+1; end; disp(s);

It should be pointed out that the run time execution of loops in MATLAB is generally very
slow. It is, thus, desirable to avoid loops as much as possible. We can, for example,
compute the sum of the numbers from 1 to 100 much faster with:

>> s=sum(1:100); disp(s);

A simple example for a conditional statement is provided by:

>> n=input(’n=’); if n>0; disp(’n>0’); else; disp(’n<=0’); end;

Note that MATLAB also provides an elseif branch to simplify nested conditional state-
ments. A convenient way to test for a number of conditions is provided by the switch-
statement:

>> n=input(’n=’); switch n, case 1; ’n=1’, otherwise; ’n~=1’, end;

Please, refer to help switch for more information.

H-1.8 Saving and Loading Data:

The two MATLAB functions save and load can be used to store and re-load any matrix,
vector, string, or object to and from the hard drive. The resulting files are typically .mat-
files. If we want to save the MATLAB variables A, cv, and rv, for example, into a file named
test.mat we can simply type:

>> save test.mat A cv rv

4

Robert M. Nickel MATLAB – Handout #1

Reloading the data is as easy as:

>> load test.mat

If no specific variables are listed with the save command then the entire variable workspace
of MATLAB will be saved. This is convenient to temporarily save all results and have the
ability to get back to things later.

H-1.9 Scripts, Functions, and M-Files:

MATLAB programs are generally saved in .m-files. A new .m-file with the name testscript.m
can be created with edit testscript. Note that the filename of the .m-file is equal to the
command name (without extension .m) that MATLAB use to execute the program contained
in the file. For example, assume that we generate the .m-file testscript.m, fill it with
MATLAB commands and save it. We can then execute the program from the MATLAB main
figure window by simply entering:

>> testscript

For this procedure to work, however, it is necessary that the directory in which the .m-
file is stored resides on the MATLAB search path. Please, refer to help path for more
information about how to control the MATLAB search path.

Providing comments within your program is very important to increase a programs
readability. In MATLAB any line that is preceded with a %-character is considered a comment
and, thus, ignored for program execution. Comment lines at the beginning of a script (or
function) have a special role: they are displayed on the MATLAB main figure window when
we issue the command help scriptname, where scriptname is the name of the .m-file. It
is, thus, possible to extend MATLABs capability of on-line help to user defined scripts and
functions as well.

Other than scripts, MATLAB lets us also define functions. Such user defined functions
are generated via a script that contain the line

function [A,B,C,...]=function_name(a,b,c,...)

as its very first line in the .m-file. The function_name should match the filename of the
.m-file. Parameters a, b, c, etc. are the input parameters and parameters A, B, C, etc. are
the output parameters (variable names other than a, b, c, A, B, C, are of course permissible
as well). Please note that MATLAB does not support call-by-reference parameter handling.
All parameters are passed to-and-from the function on a call-by-value basis. A simple
example is provided by the following function for the computation of f(x) = x · e−x2/(2σ):

function f=xgauss(x,sigma)
%XGAUSS Computation of a linearly scaled bell curve.
% F = XGAUSS(X,SIGMA) computes the function F = X*EXP(-X*X/2*SIGMA).
% The input argument X may be an arbitrarily dimensional numeric
% array. SIGMA must be a scalar. The function is evaluated on an
% element-by-element basis.

f=x.*exp((-0.5/sigma)*x.*x); return

5

Robert M. Nickel MATLAB – Handout #1

If we put the above lines into an .m-file with the name xgauss.m then we can call the
function directly from the MATLAB command line:

>> x = linspace(-1,1,5); y=xgauss(x,1); disp(y’)

Please note that we can use the MATLAB command return inside of a script or function to
terminate the script or function. It is the responsibility of the user to make sure that all
output parameters are well defined by the time the return command is executed.

H-1.10 Elementary Plotting:

One of the strengths of MATLAB is its versatility in graphical data representation. The
most elementary command that is available for the graphical display of one-dimensional
functions (and signals) is the plot command. The plot command takes typically two
input parameters: a vectors with the x-alignment (horizontal) and a vector with the y-
alignment (vertical) of the sample points. Let us use the notation (x, y) to define the x
and y coordinates of a point in a plane. Let us further assume that we want to connect
the three points (0, 1.5), (2,−1.2), and (3, 0.5) with straight lines. We put the x and y
coordinates into respective vectors and use the plot command to draw the lines:

>> x = [0 2 3]; y = [1.5 -1.2 0.5]; plot(x,y);

The above set of command can be used very conveniently to plot “analog” signals. The
following line shows how we can plot a sine signal s(t) = sin(t) between t = −2 and t = 10:

>> t = linspace(-2,10,300); s = sin(t); h = plot(t,s);

The plot command always returns a so called graphics handle h. The graphics handle can
be used to (retroactively) change the properties of the drawn lines. If we want to change
the color of the above sine signal to red, the line style to dotted, and the line width to
three points then we can use the command:

>> set(h,’Color’,’r’,’LineStyle’,’:’,’LineWidth’,3);

The line style, color, and line width are not the only properties of the plotted line that
can be changed. A complete list of all properties of the graphics object with handle h is
displayed on the screen when we type:

>> get(h)

We can also use get(h,’LineStyle’) to specifically query the current line style of the
object. Other object properties can be queried analogously. The on-line help to plot
provides valuable additional information about how to format/configure the resulting line.
Permissible properties for the line style are ’-’ (solid), ’:’ (dotted), ’-.’ (dashdotted),
and ’--’ (dashed). Permissible codes for the color are ’b’ (blue), ’g’ (green), ’r’ (red),
’c’ (cyan), ’m’ (magenta), ’y’ (yellow), and ’k’ (black). Additionally we can also have
MATLAB enhance a plot with grid lines:

>> grid on;

Grid lines can be switched off again with grid off.

6

Robert M. Nickel MATLAB – Handout #1

If we do not like the way MATLAB computes the x and y coordinate limits of the axis
system then we can override the default value with the axis command. Assume that we
want to change the displayed range of the sine function from above to x = −3 . . . 11 and
y = −1.1 . . . 1.1. The change is simply accomplished by issuing:

>> axis([-3 11 -1.1 1.1]);

Note that every new plot command clears the axis system of all previous graphical objects.
If we want to plot multiple signals into the same axis system then we need to use the hold
command:

>> t = linspace(-2,10,300); s = sin(t); h1 = plot(t,s); hold on;
>> c = cos(t); h2 = plot(t,c); hold off; axis([-2 10 -1.1 1.1]);
>> set(h1,’Color’,’r’); set(h2,’Color’,’g’); grid on;

It is usually important to label a plot appropriately. The x-axis and the y-axis can be
labelled with xlabel and ylabel. A title can be placed on top of the axis with the title
command:

>> xlabel(’Time’); ylabel(’Amplitude’); title(’Sine and Cosine’);

Furthermore, if we have multiple lines within a plot then we should clarify which line is
which. We can create a “legend” of line styles with the legend command. Text-labels for
the legend command are provided in the order that the lines were displayed on screen:

>> legend(’Sine Function’,’Cosine Function’);

It is occasionally beneficial to use two (or more) separate axis systems to plot the results
of an analysis or computation. A convenient way to generate multiple axis systems within
the same figure is through the subplot(m,n,p) command. It creates a (if necessary new)
matrix of m-by-n small axis systems and selects the pth axis for the current plot. Again,
let’s consider the example of plotting a sine and a cosine signal; this time, however, in two
separate axis systems:

>> t = linspace(-2,10,300); s = sin(t); c = cos(t);
>> subplot(2,1,1); plot(t,s); axis([-2 10 -1.1 1.1]);
>> subplot(2,1,2); plot(t,c); axis([-2 10 -1.1 1.1]);

Oftentimes, we are dealing with sampled data and not with continuous (analog) signals.
Interpolation with straight lines between sample points would be (potentially) highly
inappropriate. In these situations we can use the stem command instead of the plot
command:

>> t = linspace(-2,10,20); s = sin(t); stem(t,s);

Lastly, we may occasionally need to visualize discretized two dimensional functions as
well. One way to do this effectively is with the scaled image plot command imagesc.
It represents different values on the z-axis via differently shaded colors. As an example,
consider a plot of the two-dimensional MATLAB example function peaks:

>> TwoDimlMatrix = peaks(100); imagesc(TwoDimlMatrix);

7

Robert M. Nickel MATLAB – Handout #1

H-1.11 Brief Function and Command Reference:

This section is a brief summary of some of MATLABs most important functions and com-
mands. The list is by no means complete. Students are encouraged to check with MATLABs
helpdesk for a complete list. Information about individual functions is readily obtained
via the help command.

H-1.11.1 Basic Information about Numeric Arrays:

isempty Determine if input is empty matrix.
isequal Test arrays for equality1.
isfloat Determine if input is floating-point array.
isinteger Determine if input is integer array.
islogical Determine if input is logical array.
isnumeric Determine if input is numeric array.
isscalar Determine if input is scalar.
isvector Determine if input is vector.

disp Display text or array.
length Length of vector.
ndims Number of dimensions.
numel Number of elements.
size Size of matrix.
1See also function: isequalwithequalnans.

H-1.11.2 Basic Numeric Array Operations and Manipulation:

cat Concatenate arrays along specified dimension.
vertcat Concatenate arrays vertically.
horzcat Concatenate arrays horizontally.
repmat Replicate and tile array.
fliplr Flip matrices left-right.
flipud Flip matrices up-down.
flipdim Flip matrix along specified dimension.
permute Rearrange dimensions of multidimensional array.
ipermute Inverse permute dimensions of multidimensional array.
reshape Reshape array.
squeeze Remove singleton dimensions from array.
rot90 Rotate matrix 90 degrees.

tril Lower triangular part of matrix.
triu Upper triangular part of matrix.
diag Diagonal matrices and diagonals of matrix.
sqrtm Matrix square root.
expm Matrix exponential.
cross Vector cross product.
dot Vector dot product.

8

Robert M. Nickel MATLAB – Handout #1

H-1.11.3 Searching, Sorting, Indexing, and Accumulating:

find Find indices of nonzero elements.
sort Sort array elements in ascending or descending order.
sortrows Sort rows in ascending order.

ind2sub Multiple subscripts from linear index.
sub2ind Linear index from multiple subscripts.
end Indicate last index of array.

max Maximum value of array.
min Minimum value of array.
prod Product of array elements.
cumprod Cumulative product.
cumsum Cumulative sum.
sum Sum of array elements.

H-1.11.4 Elementary Matrices and Arrays:

eye Identity matrix.
linspace Generate linearly spaced vectors.
logspace Generate logarithmically spaced vectors.
meshgrid Generate X and Y matrices for three-dimensional plots.
ndgrid Arrays for multidimensional functions and interpolation.
ones Create array of all ones.
rand Uniformly distributed random numbers and arrays.
randn Normally distributed random numbers and arrays.
zeros Create array of all zeros.

H-1.11.5 Matrix Analysis and Linear Algebra:

cond Condition number with respect to inversion.
det Determinant.
norm Matrix or vector norm.
null Null space.
orth Orthogonalization.
rank Matrix rank.
rref Reduced row echelon form.
subspace Angle between two subspaces.
trace Sum of diagonal elements.
inv Matrix inverse.
pinv Moore-Penrose pseudoinverse of matrix.
eig Find eigenvalues and eigenvectors.
svd Singular value decomposition.
chol Cholesky factorization.
qr Orthogonal-triangular decomposition.
linsolve Solve linear systems of equations.
funm Evaluate general matrix function.
lu LU matrix factorization.

9

Robert M. Nickel MATLAB – Handout #1

H-1.11.6 Elementary Mathematical Functions:

acos Inverse cosine.
acosh Inverse hyperbolic cosine.
acot Inverse cotangent.
acoth Inverse hyperbolic cotangent.
asin Inverse sine.
asinh Inverse hyperbolic sine.
atan Inverse tangent.
atanh Inverse hyperbolic tangent.
atan2 Four-quadrant inverse tangent.
cos Cosine.
cosh Hyperbolic cosine.
cot Cotangent.
coth Hyperbolic cotangent.
sin Sine.
sinh Hyperbolic sine.
tan Tangent.
tanh Hyperbolic tangent.
exp Exponential.
log Natural logarithm.
log2 Base 2 logarithm.
log10 Common (base 10) logarithm.
sqrt Square root.
abs Absolute value.
angle Phase angle.
conj Complex conjugate.
cplxpair Sort numbers into complex conjugate pairs.
imag Complex imaginary part.
isreal Determine if input is real array.
real Complex real part.
sign Signum.
unwrap Unwrap phase angle.
fix Round towards zero.
floor Round towards minus infinity.
ceil Round towards plus infinity.
round Round towards nearest integer.
mod Modulus after division.
rem Remainder after division.
factor Prime factors.
factorial Factorial function.
gcd Greatest common divisor.
isprime Determine if input is prime number.
lcm Least common multiple.
nchoosek All combinations of N elements taken K at a time.
perms All possible permutations.
primes Generate list of prime numbers.

10

Robert M. Nickel MATLAB – Handout #1

H-1.11.7 Polynomials:

conv Convolution and polynomial multiplication.
poly Polynomial with specified roots.
polyfit Polynomial curve fitting.
polyval Polynomial evaluation.
roots Polynomial roots.

H-1.11.8 Interpolation:

interp1 One-dimensional data interpolation.
interp2 Two-dimensional data interpolation.
interpft One-dimensional FFT interpolation.
ppval Piecewise polynomial evaluation.
spline Cubic spline data interpolation.

H-1.11.9 Numerical Integration:

quad Numerically evaluate integral (adaptive Simpson).
quadl Numerically evaluate integral (adaptive Lobatto).
trapz Trapezoidal numerical integration.

H-1.11.10 Specialized Mathematical Functions:

erf Error function.
erfc Complementary error function.
erfcinv Inverse complementary error function.
erfcx Scaled complementary error function.
erfinv Inverse error function.
gamma Gamma function.

H-1.11.11 Data Analysis:

diff Differences and approximate derivatives.
conv Convolution and polynomial multiplication.
conv2 Two-dimensional convolution.
deconv Deconvolution and polynomial division.
detrend Remove linear trend or mean from the data.
filter Filter data with IIR or FIR filter.
filter2 Two-dimensional digital filter.
fft One-dimensional discrete Fourier transform.
fft2 Two-dimensional discrete Fourier transform.
fftw FFTW library run-time algorithm tuning.
ifft Inverse one-dimensional discrete Fourier transform.
ifft2 Inverse two-dimensional discrete Fourier transform.
nextpow2 Next higher power of two.
mean Average or mean value of arrays.
median Median value of arrays.
mode Most frequent value of array.
std Standard deviation.
var Variance.

11

Robert M. Nickel MATLAB – Handout #1

H-1.11.12 Creating and Manipulating Strings:

blanks Create string of space characters.
char Convert to character array (string).
cellstr Create cell array of strings from character array.
datestr Convert date and time to string format.
deblank Strip trailing blanks from end of string.
lower Convert string to lowercase.
sprintf Write formatted data to string.
sscanf Read string under format control.
strcat Concatenate strings horizontally.
strjust Justify character array.
strread Read formatted data from string.
strrep Find and replace substring.
strtrim Remove leading and trailing whitespace from string.
strvcat Concatenate strings vertically.
upper Convert string to uppercase.
findstr Find string within another, longer string.
ischar Determine if input is character array.
isletter Detect elements that are alphabetic letters.
isspace Detect elements that are ASCII white spaces.
strcmp Compare strings.
strcmpi Compare strings, ignoring case.
strfind Find one string within another.
strmatch Find possible matches for string.
strncmp Compare first n characters of strings.
strncmpi Compare first n characters of strings, ignoring case.
strtok Return selected parts of string.
str2double Convert string to double-precision number.
str2num Convert string to number.
num2str Convert number to string.

H-1.11.13 Evaluating String Expressions:

eval Execute string containing MATLAB expression.
evalc Evaluate MATLAB expression with capture.
evalin Execute MATLAB expression in specified workspace.

H-1.11.14 Set Operations:

intersect Find set intersection of two vectors.
ismember Detect members of set.
setdiff Find set difference of two vectors.
issorted Determine if set elements are in sorted order.
setxor Find set exclusive OR of two vectors.
union Find set union of two vectors.
all Determine if all array elements are nonzero.
any Determine if any array elements are nonzero.
unique Find unique elements of vector.

12

Robert M. Nickel MATLAB – Handout #1

H-1.11.15 Control Flow:

break Terminate execution of for or while loop.
case Execute block of code if condition is true.
catch Specify how to respond to error in try statement.
continue Pass control to next iteration of for or while loop.
else Conditionally execute statements.
elseif Conditionally execute statements.
end Terminate conditional block of code.
error Display error message.
for Execute block of code specified number of times.
if Conditionally execute statements.
otherwise Default part of switch statement.
return Return to invoking function.
switch Switch among several cases, based on expression.
try Attempt to execute block of code, and catch errors.
while Repeatedly execute statements while condition is true.

H-1.11.16 Loading and Saving Data:

load Load workspace variables from disk.
save Save workspace variables on disk.
imread Read image from graphics file.
imwrite Write image to graphics file.
fileparts Return parts of file name and path.
filesep Return directory separator for platform in use.
fullfile Build full filename from parts.

H-1.11.17 Sound and Microsoft WAVE Functions:

sound Convert vector into sound.
soundsc Scale data and play as sound.
wavplay Play sound on PC-based audio output device.
wavread Read Microsoft WAVE (.wav) sound file.
wavrecord Record sound using PC-based audio input device.
wavwrite Write Microsoft WAVE (.wav) sound file.

H-1.11.18 Miscellaneous:

now Return current date/time code number.
pause Halt execution temporarily.
function Declare M-file function.
input Request user input.
nargin Return number of function input arguments.
nargout Return number of function output arguments.
varargin Accept variable number of arguments.
varargout Return variable number of argument.
waitbar Display wait bar.
print Print graph or save graph to file.

13

Robert M. Nickel MATLAB – Handout #1

H-1.11.19 Basic Plots and Graphs:

errorbar Plot graph with error bars.
loglog Plot using log-log scales.
polar Polar coordinate plot.
plot Plot vectors or matrices.
plot3 Plot lines and points in 3-D space.
plotyy Plot graphs with Y tick labels on the left and right.
semilogx Semi-log scale plot.
semilogy Semi-log scale plot.
bar Vertical bar chart.
pie Pie plot.
contour Contour (level curves) plot.
stem Plot discrete sequence data.
stairs Stairstep graph.
hist Plot histograms.
image Display image object.
imagesc Scale data and display image object.

H-1.11.20 Annotating Plots:

annotation Create annotation objects.
clabel Add contour labels to contour plot.
datetick Date formatted tick labels.
gtext Place text on 2-D graph using mouse.
legend Graph legend for lines and patches.
texlabel Produce the TeX format from character string.
title Titles for 2-D and 3-D plots.
xlabel X-axis labels for 2-D and 3-D plots.
ylabel Y-axis labels for 2-D and 3-D plots.
zlabel Z-axis labels for 3-D plots.
textarrow Properties for annotation textbox.

H-1.11.21 Axis, Object, and Figure Access:

figure Create figure (graph) windows.
axes Create axes object.
patch Create patch object (polygons).
text Create text object (character strings).
arrow Properties for annotation arrows.
doublearrow Properties for double-headed annotation arrows.
ellipse Properties for annotation ellipses.
line Properties for annotation lines.
rectangle Properties for annotation rectangles.

delete Delete files or graphics objects.
get Get object properties.
set Set object properties.
ishandle True if value is valid object handle.

14

Robert M. Nickel MATLAB – Handout #1

H-1.11.22 Axis, Object, and Figure Control:

box Axis box for 2-D and 3-D plots.
hold Hold current graph.
axis Plot axis scaling and appearance.
grid Grid lines for 2-D and 3-D plots.
subplot Create axes in tiled positions.
gcf Get current figure handle.
gca Get current axes handle.
clc Clear figure window.
clf Clear figure.
cla Clear axes.
close Close specified window.
drawnow Complete any pending drawing.

H-1.11.23 Predefined Dialog Boxes:

dialog Create and display dialog box.
errordlg Create and display error dialog box.
helpdlg Create and display help dialog box.
inputdlg Create and display input dialog box.
listdlg Create and display list selection dialog box.
msgbox Create and display message dialog box.
pagesetupdlg Display page setup dialog box.
printdlg Display print dialog box.
questdlg Display question dialog box.
uigetdir Display standard dialog box for retrieving a directory.
uigetfile Display standard dialog box for retrieving files.
uigetpref Display dialog box for retrieving preferences.
uiputfile Display standard dialog box for saving files.
uisave Display standard dialog box for saving workspace variables.
uisetcolor Display dialog box for setting an object’s ColorSpec.
uisetfont Display dialog box for setting an object’s font.
warndlg Display warning dialog box.

H-1.11.24 Microsoft Excel Functions:

xlsfinfo Determine if file contains Microsoft Excel (.xls) spreadsheet.
xlsread Read Microsoft Excel spreadsheet file (.xls).
xlswrite Write Microsoft Excel spreadsheet file (.xls).

H-1.11.25 Low-Level File I/O:

fopen Open file or obtain information about open files.
fclose Close one or more open files.
feof Test for end-of-file.
fgetl Return next line of file as string without line terminator(s).
fgets Return next line of file as string with line terminator(s).
fread Read binary data from file.
fwrite Write binary data to file.

15

