Signals & Systems – Handout #2 Complex Numbers – A Review

H-2.1 AXIOMATIC DEFINITION OF COMPLEX NUMBERS:

A complex number z is defined as an ordered pair (or vector) $\langle a, b \rangle$ of two arbitrary *real* numbers $a \in \mathbb{R}$ and $b \in \mathbb{R}$. We use the symbol " \equiv " to denote the *equivalency* between a complex number symbol z and its explicit components $a \in \mathbb{R}$ and $b \in \mathbb{R}$, i.e. $z \equiv \langle a, b \rangle$. We use the symbol \mathbb{C} to denote the set of *all* complex numbers.

H-2.1.1 Equality:

Two complex numbers $z_1 \equiv \langle a_1, b_1 \rangle$ and $z_2 \equiv \langle a_2, b_2 \rangle$ are *equal*, i.e. $z_1 = z_2$, if and only if $a_1 = a_2$ and $b_1 = b_2$.

H-2.1.2 Addition:

The sum of two complex numbers $z_1 \equiv \langle a_1, b_1 \rangle$ and $z_2 \equiv \langle a_2, b_2 \rangle$ is defined as $z_1 + z_2 \equiv \langle a_1 + a_2, b_1 + b_2 \rangle$.

H-2.1.3 Product:

The product of two complex numbers $z_1 \equiv \langle a_1, b_1 \rangle$ and $z_2 \equiv \langle a_2, b_2 \rangle$ is defined as $z_1 \cdot z_2 \equiv \langle a_1 a_2 - b_1 b_2, a_1 b_2 + b_1 a_2 \rangle$.

H-2.1.4 Identity Elements:

We define the complex number "1" as the element $\langle 1, 0 \rangle$ and the complex number "0" as the element $\langle 0, 0 \rangle$. (Note that there is a notational ambiguity in using the symbols 1 and 0. The elements "0" $\in \mathbb{C}$ and "1" $\in \mathbb{C}$ are technically different from the elements $0 \in \mathbb{R}$ and $1 \in \mathbb{R}$. The ambiguity can be justified by embedding \mathbb{R} in \mathbb{C} as described in the following sections.)

H-2.2 Elementary Properties of Complex Numbers:

One can show that the addition, product, and identity elements defined in the previous section satisfy the requirements for a *field*. Namely, if z_1 , z_2 , z_3 are elements of \mathbb{C} then:

- (i) $z_1 + z_2$ and $z_1 \cdot z_2$ are also elements of \mathbb{C} (closure).
- (ii) $z_1 + z_2 = z_2 + z_1$ and $z_1 \cdot z_2 = z_2 \cdot z_1$ (commutativity).
- (iii) $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$ and $z_1 (z_2 z_3) = (z_1 z_2) z_3$ (associativity).
- (iv) $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$ (distributivity).
- (v) $z_1 + 0 = 0 + z_1 = z_1$ and $z_1 \cdot 1 = 1 \cdot z_1 = z_1$ (existence of identity).
- (vi) for any z_1 there is a unique element denoted by $-z_1$ (with $(-z_1) \in \mathbb{C}$) such that $z_1 + (-z_1) = 0$ (inverse to addition).
- (vii) for any $z_1 \neq 0$ there is a unique element denoted by z_1^{-1} (with $z_1^{-1} \in \mathbb{C}$) such that $z_1 \cdot (z_1^{-1}) = 1$ (inverse to multiplication).

H-2.2.1 Negative and Inverse Complex Numbers:

In light of items (vi) and (vii) we define the negative -z of a complex number $z \equiv \langle a, b \rangle$ as $-z \equiv \langle -a, -b \rangle$ and the inverse z^{-1} of a complex number $z \equiv \langle a, b \rangle$ as $z^{-1} \equiv \langle \frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2} \rangle$.

H-2.2.2 Subtraction and Division of Complex Numbers:

We define the subtraction of two complex numbers z_1 and z_2 as $z_1 - z_2 = z_1 + (-z_2)$ and their division as $z_1/z_2 = z_1 \cdot (z_2^{-1})$.

H-2.3 Embedding \mathbb{R} in \mathbb{C} :

Note that for any two complex numbers $z_1 \equiv \langle a_1, 0 \rangle$ and $z_2 \equiv \langle a_2, 0 \rangle$ we have $z_1 + z_2 \equiv \langle a_1 + a_2, 0 \rangle$ and $z_1 \cdot z_2 \equiv \langle a_1 \cdot a_2, 0 \rangle$. If we define that a *real* number α is equivalent to the special *complex* number $\langle \alpha, 0 \rangle$ then we can compute the sum and product of two *real* numbers a_1 and a_2 by means of the *complex* operations "+" and ".". As such, we can *compatibly* embed any real number from \mathbb{R} into the set of complex numbers \mathbb{C} , i.e.

$$\alpha \in \mathbb{R} \quad \leftrightarrow \quad \langle \alpha, 0 \rangle \in \mathbb{C} \quad \Rightarrow \quad \mathbb{R} \subset \mathbb{C}.$$

Note, furthermore, that the same compatibility applies to the identity elements 1 in \mathbb{R} (i.e. identity element "1" $\equiv \langle 1, 0 \rangle$ in \mathbb{C}) and 0 in \mathbb{R} (i.e. "0" $\equiv \langle 0, 0 \rangle$ in \mathbb{C}).

H-2.3.1 The Square Root of -1:

There is no number $a \in \mathbb{R}$ such that $a \cdot a$ equals -1. There is the number $j \equiv \langle 0, 1 \rangle$ in \mathbb{C} , however, such that $j \cdot j \equiv \langle -1, 0 \rangle$, which represents the real number -1 (according to the discussion of the previous section). The complex number jis thus frequently (and somewhat casually) written as $j = \sqrt{-1}$. Symbol jenables us to simplify the notation of complex numbers $\langle a, b \rangle$ as $a + j \cdot b \equiv \langle a, 0 \rangle + \langle 0, 1 \rangle \cdot \langle b, 0 \rangle = \langle a, b \rangle$ with $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

H-2.3.2 The Real Part and the Imaginary Part of a Complex Number:

The functions real part and imaginary part of a complex number $z \equiv \langle a, b \rangle$ are defined as: $\operatorname{Re}\{z\} = a \in \mathbb{R}$ and $\operatorname{Im}\{z\} = b \in \mathbb{R} \implies z = \operatorname{Re}\{z\} + j \cdot \operatorname{Im}\{z\}$.

H-2.4 The Geometric Interpretation of a Complex Number:

With $z = a + j b \equiv \langle a, b \rangle$ for $a \in \mathbb{R}$ and $b \in \mathbb{R}$ we define:

(i) the magnitude of z as

$$|z| = r = \sqrt{a^2 + b^2}, \quad \text{and} \quad$$

(ii) the phase of z (written $\varphi = \measuredangle z$) such that

 $z = r \left(\cos(\varphi) + j \sin(\varphi) \right).$

H-2.5 ELEMENTARY COMPLEX NUMBER CALCULATIONS:

We assume below that the complex number z is given by z = a + j b with $a \in \mathbb{R}$ and $b \in \mathbb{R}$. Similarly, we assume that $z_i = a_i + j b_i$ with $a_i \in \mathbb{R}$ and $b_i \in \mathbb{R}$ for i = 1, 2, ... and so forth.

H-2.5.1 Addition, Subtraction, Multiplication, and Division:

$$z_1 + z_2 = (a_1 + a_2) + j (b_1 + b_2) \qquad z_1 \cdot z_2 = (a_1 a_2 - b_1 b_2) + j (b_1 a_2 + a_1 b_2)$$
$$z_1 - z_2 = (a_1 - a_2) + j (b_1 - b_2) \qquad \frac{z_1}{z_2} = (\frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2}) + j (\frac{b_1 a_2 - a_1 b_2}{a_2^2 + b_2^2})$$

H-2.5.2 Conjugate Complex Numbers:

Definition:	$z^* = a - j b = \operatorname{Re}\{z\} - j \operatorname{Im}\{z\}$		
Elementary operations:	$(z_1 + z_2)^* = z_1^* + z_2^*$	$(z_1 - z_2)^* = z_1^* - z_2^*$	
	$(z_1 \cdot z_2)^* = z_1^* \cdot z_2^*$	$(z_1/z_2)^* = z_1^*/z_2^*$	
	$(\sum_{i=1}^{n} z_i)^* = \sum_{i=1}^{n} z_i^*$	$(\prod_{i=1}^{n} z_i)^* = \prod_{i=1}^{n} z_i^*$	

H-2.5.3 Absolute Value and Magnitude Squared:

Definition:	$ z ^2 = z \cdot z^* = a^2 + b^2 =$	$(\operatorname{Re}\{z\})^2 + (\operatorname{Im}\{z\})^2$
Elementary operations:	$ z_1 + z_2 \le z_1 + z_2 $	$ z_1 - z_2 \ge z_1 - z_2 $
	$ z_1 \cdot z_2 = z_1 \cdot z_2 $	$ z_1/z_2 = z_1 / z_2 $
	$\left \sum_{i=1}^{n} z_{i}\right \leq \sum_{i=1}^{n} \left z_{i}\right $	$ \prod_{i=1}^{n} z_i = \prod_{i=1}^{n} z_i $
	also $ z_1 - z_2 $	$ z_{2} \leq z_{1} + z_{2} $

H-2.5.4 Real Part and Imaginary Part:

$$\operatorname{Re}\{z\} = a = \frac{1}{2}(z+z^*) = |z| \cdot \cos(\measuredangle z) \quad \operatorname{Im}\{z\} = b = \frac{1}{2j}(z-z^*) = |z| \cdot \sin(\measuredangle z)$$

H-2.5.5 Phase Angles:

The phase $\measuredangle z$ of a complex number $z \neq 0$ can be computed as follows (note that the phase of the number z = 0 is *not* defined):

Closed form formula:
$$\angle z = \tan^{-1}(\frac{b}{a}) + \frac{\pi}{2} \left[\operatorname{sign}(b) - \operatorname{sign}(\frac{b}{a}) \right]$$
 for $a \neq 0$
and $\angle z = \frac{\pi}{2} \operatorname{sign}(b)$ for $a = 0$.
Case-by-case formula: $\angle z = \begin{cases} \tan^{-1}(\frac{b}{a}) & \text{if } a > 0\\ \frac{\pi}{2} \cdot \operatorname{sign}(b) & \text{if } a = 0\\ \tan^{-1}(\frac{b}{a}) + \pi \cdot \operatorname{sign}(b) & \text{if } a < 0. \end{cases}$

Note that $\tan^{-1}(x)$ refers to the *main branch* inverse function of $\tan(x)$, i.e. $-\frac{\pi}{2} \leq \tan^{-1}(x) \leq \frac{\pi}{2}$ for all $x \in \mathbb{R}$. The formulas above are normalized such that $-\pi \leq \measuredangle z \leq +\pi$. We always have $\tan(\measuredangle z) = b/a$. All angles are in radians.

H-2.5.6 (Integer) Powers of Complex Numbers:

De Moivre's Theorem: $z^n = |z|^n [\cos(n \cdot \measuredangle z) + j \sin(n \cdot \measuredangle z)]$ for all $n \in \mathbb{Z}$.

(Note: De Moivre's Theorem remains generally true for powers n other than integer powers as well.)

H-2.6 <u>COMPLEX FUNCTIONS:</u>

H-2.6.1 Functions of the Form $\mathbb{R} \to \mathbb{C}$ (Type I):

We define a TYPE I complex function z(t) as a function whose *domain* is (a subset of) \mathbb{R} and whose *range* is (a subset of) \mathbb{C} . TYPE I functions can be decomposed into two component functions $a(t) : \mathbb{R} \to \mathbb{R}$ and $b(t) : \mathbb{R} \to \mathbb{R}$ such that z(t) = a(t) + j b(t).

Continuity – A TYPE I complex function z(t) is continuous if its components a(t) and b(t) are continuous.

Differentiability – A TYPE I complex function z(t) is differentiable with respect to t if its components a(t) and b(t) are differentiable, i.e.

$$\frac{d}{dt}z(t) = \frac{d}{dt}a(t) + j\frac{d}{dt}b(t).$$

Integrability – A TYPE I complex function z(t) is integrable with respect to t if its components a(t) and b(t) are integrable, i.e.

$$\int_{t_0}^{t_1} z(t) \, dt = \int_{t_0}^{t_1} a(t) \, dt + j \cdot \int_{t_0}^{t_1} b(t) \, dt.$$

Graphic Representation – A continuous TYPE I complex function z(t) describes a contour (i.e. a continuous curve) in the complex plane ($\text{Im}\{z(t)\}$ vs. $\text{Re}\{z(t)\}$) as variable/parameter t traverses \mathbb{R} .

H-2.6.2 Functions of the Form $\mathbb{C} \to \mathbb{C}$ (Type II):

We define a TYPE II complex function f(z) as a function whose *domain* is (a subset of) \mathbb{C} and whose *range* is (a subset of) \mathbb{C} . TYPE II functions can be decomposed into the component functions $a(\alpha, \beta) : \mathbb{R}^2 \to \mathbb{R}$ and $b(\alpha, \beta) : \mathbb{R}^2 \to \mathbb{R}$ such that $f(z) = a(\operatorname{Re}\{z\}, \operatorname{Im}\{z\}) + j b(\operatorname{Re}\{z\}, \operatorname{Im}\{z\}).$

Differentiability – A TYPE II complex function f(z) is differentiable with respect to z if its components $a(\alpha, \beta)$ and $b(\alpha, \beta)$ satisfy the Cauchy-Riemann differential equations:

$$\frac{\partial}{\partial \alpha} a(\alpha, \beta) = \frac{\partial}{\partial \beta} b(\alpha, \beta) \text{ and } \frac{\partial}{\partial \beta} a(\alpha, \beta) = -\frac{\partial}{\partial \alpha} b(\alpha, \beta).$$

For convenience we write f'(z) to denote $\frac{d}{dz}f(z)$. Similarly we define $f''(z) = \frac{d}{dz}f'(z)$, $f'''(z) = \frac{d}{dz}f''(z)$, ..., $f^{(n+1)}(z) = \frac{d}{dz}f^{(n)}(z)$, and so forth.

Contour Integral – A TYPE II complex function f(z) may be integrated along a contour C defined by a continuous TYPE I function z(t) for $t \in [t_0, t_1]$. If z(t) is differentiable then we can convert the TYPE II integral into a TYPE I integral:

$$\int_{\mathcal{C}} f(z) \, dz = \int_{t_0}^{t_1} f(z(t)) \cdot \left[\frac{d}{dt} \, z(t) \right] dt.$$

Analytic Functions – If a TYPE II complex function f(z) is differentiable for every $z \in \mathbb{C}$ then it is called *analytic* over \mathbb{C} . Analytic functions have well defined deri-

vatives of *any* order, i.e. not only the first derivative exists, but also the second, third, forth, and so on for any arbitrary order.

Path Independent Integration – If a TYPE II complex function f(z) is analytic over \mathbb{C} then the value of every contour integral over f(z) becomes path independent, i.e. it only depends on the start point and end point of the integration. As a result we can define a function $F(z) = \int_{z_0}^{z} f(\xi) d\xi$ for some arbitrary z_0 such that $\int_{z_1}^{z_2} f(z) dz = F(z_2) - F(z_1)$ is independent of the path between z_1 and z_2 .

Taylor Series – A TYPE II complex function f(z) that is analytic over \mathbb{C} may be expanded in a Taylor series:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n$$
 for all $z \in \mathbb{C}$.

Important examples for such Taylor series expansions include:

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$
 $\sin(z) = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!}$ $\cos(z) = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!}.$

H-2.7 <u>Euler's Identity:</u>

With the Taylor series of e^z , $\sin(z)$, and $\cos(z)$ it is easy to prove that for any complex number z with r = |z| and $\varphi = \measuredangle z$ we can write

$$z = r e^{j\varphi} = r (\cos(\varphi) + j \sin(\varphi)).$$

More generally, for arbitrary complex numbers z we have

$$e^{jz} = \cos(z) + j\sin(z)$$
 $\cos(z) = \frac{1}{2}(e^{jz} + e^{-jz})$ $\sin(z) = \frac{1}{2j}(e^{jz} - e^{-jz}).$

Analogously we define the complex *hyperbolic* functions

$$e^{z} = \cosh(z) + \sinh(z)$$
 $\cosh(z) = \frac{1}{2}(e^{z} + e^{-z})$ $\sinh(z) = \frac{1}{2}(e^{z} - e^{-z}).$

Manipulation rules for complex exponentials with two complex numbers z_1 and z_2 :

$$e^{z_1+z_2} = e^{z_1} \cdot e^{z_2}$$
 $e^{z_1-z_2} = e^{z_1}/e^{z_2}$ $(e^{z_1})^{z_2} = e^{z_1\cdot z_2}.$

H-2.8 Complex Logarithms and "Multiple-Valued" Functions:

From Euler's identity it is obvious that the phase $\varphi = \measuredangle z$ of a complex number in not unique since $z = r e^{j\varphi} = r e^{j(\varphi+2\pi k)}$ for any $k \in \mathbb{Z}$. The ambiguity is immaterial for operations that are explicitly defined on Re $\{z\}$ and Im $\{z\}$ (such as complex multiplication and complex addition for example). The ambiguity becomes problematic, though, for functions that operate explicitly on r = |z| and $\varphi = \measuredangle z$ such as the complex logarithm

$$\ln(z) = \ln(r e^{j(\varphi + 2\pi k)}) = \ln(r) + \ln(e^{j(\varphi + 2\pi k)}) = \ln(r) + j(\varphi + 2\pi k) \text{ for all } k \in \mathbb{Z}.$$

Functions such as the complex logarithm are casually called "multiple valued" functions (even though a *function* may by definition *not* be multiple valued!). One way to address the conundrum of "multiple valued" functions is to limit such functions to their *main* branch, e.g. chose k such that $-\pi < \text{Im}\{\ln(z)\} \le +\pi$.

Manipulation rules for complex logarithms with $z_1, z_2 \in \mathbb{C}$:

$$\ln(z_1 \cdot z_2) = \ln(z_1) + \ln(z_2) \qquad \ln(z_1/z_2) = \ln(z_1) - \ln(z_2) \qquad \ln(z_1^{z_2}) = z_2 \cdot \ln(z_1).$$

H-2.9 COMPLEX POWERS:

An operation that may also lead to ambiguous (i.e. "multiple valued") results is *complex* exponentiation, i.e. an operation of the form z^v with $z \in \mathbb{C}$ and $v \in \mathbb{C}$. With $z = r e^{j\varphi}$ $(r, \varphi \in \mathbb{R})$ and $v = \alpha + j\beta$ $(\alpha, \beta \in \mathbb{R})$ we define

$$z^{v} = e^{v \ln(z)} = e^{(\alpha + j\beta) \cdot (\ln(r) + j(\varphi + 2\pi k))} = e^{[\alpha \ln(r) - \beta\varphi]} e^{j[\alpha\varphi + \beta \ln(r)]} e^{-2\pi k[\beta - j\alpha]} \quad \text{for} \quad k \in \mathbb{Z}.$$

Note that the only case for which the ambiguity disappears is for $\beta = 0$ and $\alpha \in \mathbb{Z}$, i.e. for expressions of the form z^n with $n \in \mathbb{Z}$. In all other cases we may, again, restrict to the main branch of the complex logarithm $\ln(z)$.

Manipulation rules for complex powers with $z, v, z_1, z_2, v_1, v_2 \in \mathbb{C}$:

$$z^{v_1+v_2} = z^{v_1} \cdot z^{v_2} \qquad z^{v_1-v_2} = z^{v_1}/z^{v_2} \qquad (z^{v_1})^{v_2} = z^{v_1 \cdot v_2}$$
$$(z_1 \cdot z_2)^v = z_1^v \cdot z_2^v \qquad (z_1/z_2)^v = z_1^v/z_2^v.$$

H-2.10 <u>The Roots of Unity:</u>

The name n^{th} -roots of unity refers to the set of complex numbers z_k for $k = 0 \dots n - 1$ such that $(z_k)^n = 1$. One can show that the n^{th} -roots of unity are given by $z_k = e^{j2\pi(k/n)}$ for $k = 0 \dots n - 1$. We may write in polynomial form

$$z^{n} - 1 = \prod_{k=0}^{n-1} (z - z_{k})$$
 with $z_{k} = e^{j\pi((2k)/n)}$ for $k = 0 \dots n - 1$.

Alternatively, we may study the case $(z_k)^n = -1$ for $k = 0 \dots n - 1$ which leads to

$$z^{n} + 1 = \prod_{k=0}^{n-1} (z - z_{k})$$
 with $z_{k} = e^{j\pi((2k+1)/n)}$ for $k = 0 \dots n - 1$.

H-2.11 THE FUNDAMENTAL THEOREM OF ALGEBRA:

Consider a set of n+1 complex numbers $a_i \in \mathbb{C}$ for $i = 0 \dots n$ and the associated complex polynomial $P(z) = a_0 + \sum_{i=1}^n a_i z^n$. One can show that there exists a unique set of ncomplex numbers z_i for $i = 1 \dots n$ such that $P(z_i) = 0$ for $i = 1 \dots n$ and such that

$$P(z) = a_0 + \sum_{i=1}^n a_i \, z^n = a_n \cdot \prod_{i=1}^n (z - z_i).$$