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Complex Numbers — A Review

.1 AXIOMATIC DEFINITION OF COMPLEX NUMBERS:

mplex number z is defined as an ordered pair (or vector) (a,b) of two arbitrary real
numbers a € R and b € R. We use the symbol “=” to denote the equivalency between a
complex number symbol z and its explicit components a € R and b € R, i.e. z = (a,b).

We use the symbol C to denote the set of all complex numbers.

H-2

One
secti

H-2.1.1 Equality:

Two complex numbers z; = (aq,b1) and 2o = (a2, ba) are equal, i.e. z1 = z9, if
and only if a1 = as and by = bs.

H-2.1.2 Addition:

The sum of two complex numbers z; = (ay1,b1) and zo = (ag,be) is defined as
21+ 20 = (a1 +az, by +b2).

H-2.1.3 Product:

The product of two complex numbers z; = (a1, b1) and zo = (ag, b) is defined as
2129 = <a1a2 — b1by, arby + bias >

H-2.1.4 Identity Elements:

We define the complex number “1” as the element (1,0) and the complex number
“0” as the element (0,0). (Note that there is a notational ambiguity in using the
symbols 1 and 0. The elements “0” € C and “1”€ C are technically different from

the elements 0 € R and 1 € R. The ambiguity can be justified by embedding R
in C as described in the following sections.)

.2 ELEMENTARY PROPERTIES OF COMPLEX NUMBERS:

can show that the addition, product, and identity elements defined in the previous
on satisfy the requirements for a field. Namely, if 21, 2o, 23 are elements of C then:

21 + 22 and z; - 29 are also elements of C (closure).

21+ 29 = 290 + 21 and 21 - 29 = 29 - 21 (commutativity).

21+ (22 + 23) = (21 + 22) + 23 and 21 (22 23) = (21 22) 23 (associativity).
21 (22 + 23) = 21 22 + 21 23 (distributivity).

21+0=0+2 =2z and z; - 1 =123 = 2z; (existence of identity).

for any z; there is a unique element denoted by —z; (with (—z1) € C) such that

21 + (—z1) = 0 (inverse to addition).

for any z; # 0 there is a unique element denoted by z; ! (with 2z, le C) such that

21+ (271) =1 (inverse to multiplication).
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H-2.2.1 Negative and Inverse Complex Numbers:

In light of items (vi) and (vii) we define the negative —z of a complex number

z = (a,b) as —z = (—a, —b) and the inverse z~! of a complex number z = {(a, b)
-1 — a _
as z ~ = <a2+b2a a2+b2>'

H-2.2.2  Subtraction and Division of Complex Numbers:

We define the subtraction of two complex numbers 21 and z3 as z1—z9 = 21+(—22)
and their division as z1/29 = 21 - (23}).

H-2.3 EwMBEDDING R IN C:

Note that for any two complex numbers z; = (a1,0) and zo = (az,0) we have z; + 29 =
(a1 + az,0) and z1 - 29 = (a1 - a2,0). If we define that a real number « is equivalent to
the special complex number («,0) then we can compute the sum and product of two real
numbers a; and as by means of the complex operations “+” and “”. As such, we can
compatibly embed any real number from R into the set of complex numbers C, i.e.

aeR < (a,00eC = RcC.

Note, furthermore, that the same compatibility applies to the identity elements 1 in R
(i.e. identity element “1”= (1,0) in C) and 0 in R (i.e. “0”= (0,0) in C).

H-2.3.1 The Square Root of -1:

There is no number a € R such that a-a equals -1. There is the number j = (0, 1)
in C, however, such that j - j = (—1,0), which represents the real number -1
(according to the discussion of the previous section). The complex number j
is thus frequently (and somewhat casually) written as j = +/—1. Symbol j
enables us to simplify the notation of complex numbers (a,b) as a +j-b =
(a,0) 4+ (0,1) - (b,0) = (a,b) with a € R and b € R.

H-2.3.2 The Real Part and the Imaginary Part of a Complex Number:

The functions real part and imaginary part of a complex number z = (a, b) are
defined as: Re{z} =a €R and Im{z} =beR = z=Re{z}+j Im{z}.

H-2.4 THE GEOMETRIC INTERPRETATION OF A COMPLEX NUMBER:

With z =a+ jb = (a,b) for a € R and
Im{z} b € R we define:

Y Lz=atjb (i) the magnitude of z as

|z|=r=+a?+b%, and

(ii) the phase of z (written ¢ = £ z)
- Re{z} such that

z =1 (cos(p) + jsin(p)).




ROBERT M. NICKEL CoOMPLEX NUMBERS — HANDOUT #2

H-2.5 ELEMENTARY COMPLEX NUMBER CALCULATIONS:

We assume below that the complex number z is given by z = a + jb with ¢ € R and
b € R. Similarly, we assume that z; = a; + j b; with a; € Rand b; € R for¢=1,2,... and
so forth.

H-2.5.1 Addition, Subtraction, Multiplication, and Division:

21 + 29 = (a1 + a2) + j (b1 + b2) 21+ 22 = (a1az — bibe) + j (braz + a1bs)

21 — 29 = (a1 — az) + j (b1 — ba) %:(%)4_]‘(%)

H-2.5.2 Conjugate Complex Numbers:
Definition: z*=a—jb=Re{z} —j Im{z}
Elementary operations: (21 + 22)* = 2 + z2 (21 —22)" =27 — 23
(21 22)" = 21 - (21/22)" = 21/ 25
(i) = Zz 1 z* (Il 2)" =TT =

H-2.5.3 Absolute Value and Magnitude Squared:

Definition: |22 =2 2" = a® +b? = (Re{z})? + (Im{z})?
Elementary operations: |21+ 22| < | 21|+ | 22| |21 — 22| > | 21| — | 22|
|21+ 22| =21 | 22] |z1/22]| =211/ ] 22|
DTS S I PR | (P I Py
also  |z1]—|z2| <|z1 + 22|

H-2.5.4 Real Part and Imaginary Part:
Re{z} =a=3(2+2%) = |z|-cos(£z) Im{z}=b= (z z2*) =z |-sin(£Lz)

H-2.5.5 Phase Angles:

The phase £z of a complex number z # 0 can be computed as follows (note that
the phase of the number z = 0 is not defined):

Closed form formula: £z = tan~'(2) + 2 [sign(b) —sign(2)] for a#0
and 4z =7 sign(b) for a=0.
tan_l(%) ifa>0
Case-by-case formula: £z = { 7 -sign(b) ifa=0
tan~1(2) + 7 - sign(b) if a < 0.
Note that tan=!(z) refers to the main branch inverse function of tan(z), i.e.
—Z <tan"'(z) < % for all z € R. The formulas above are normalized such that
—7m < £z < +m. We always have tan(«£z) = b/a. All angles are in radians.
H-2.5.6 (Integer) Powers of Complex Numbers:
De Moivre’s Theorem: 2™ = | z|"[cos(n - £z) + j sin(n - £z)] for all n € Z.

(Note: De Moivre’s Theorem remains generally true for powers n other than
integer powers as well.)
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H-2.6 CoMPLEX FUNCTIONS:
H-2.6.1 Functions of the Form R — C (Type I):

We define a TYPE I complex function z(t) as a function whose domain is (a
subset of) R and whose range is (a subset of) C. TYPE I functions can be
decomposed into two component functions a(t) : R — R and b(¢) : R — R such

that z(t) = a(t) + j b(t).

Continuity — A TYPE I complex function z(t) is continuous if its components
a(t) and b(t) are continuous.

Differentiability — A TYPE I complex function z(t) is differentiable with respect
to t if its components a(t) and b(t) are differentiable, i.e.

do(t) = L a(t) + 5 L ().

Integrability — A TYPE I complex function z() is integrable with respect to t if
its components a(t) and b(t) are integrable, i.e.

/ttl S(t) dt = /ttl a(t) dt + j -/ttl b(t) dt.

Graphic Representation — A continuous TYPE I complex function z(¢) describes
a contour (i.e. a continuous curve) in the complex plane (Im{z(¢)} vs. Re{z(¢)})
as variable/parameter ¢ traverses R.

H-2.6.2 Functions of the Form C — C (Type II):

We define a TYPE II complex function f(z) as a function whose domain is (a
subset of) C and whose range is (a subset of) C. TyYPE II functions can be
decomposed into the component functions a(a, 3) : R? — R and b(a, 3) : R? — R
such that f(z) = a(Re{z},Im{z}) + jb(Re{z},Im{z}).

Differentiability — A TYPE II complex function f(z) is differentiable with respect
to z if its components a(«, 3) and b(«, ) satisfy the Cauchy-Riemann differential
equations:

%G(Oé,ﬁ) = %b(a7ﬁ) and %a(aaﬁ):_%b(aaﬁ)'
For convenience we write f’(2) to denote L f(z). Similarly we define f”(2) =
4 fz), f"(2) = L f7(2), ..., fOFD(2) = &L fW(2), and so forth.

Contour Integral — A TYPE II complex function f(z) may be integrated along a
contour C defined by a continuous TYPE I function z(t) for ¢ € [to, t1]. If 2(¢) is
differentiable then we can convert the TYPE II integral into a TYPE I integral:

Ry N EOREECIER

Analytic Functions —If a TYPE II complex function f(z) is differentiable for every
z € C then it is called analytic over C. Analytic functions have well defined deri-
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vatives of any order, i.e. not only the first derivative exists, but also the second,
third, forth, and so on for any arbitrary order.

Path Independent Integration — If a TYPE II complex function f(z) is analytic
over C then the value of every contour integral over f(z) becomes path indepen-
dent, i.e. it only depends on the start point and end point of the integration. As
a result we can define a function F(z) = f; f(&) d¢ for some arbitrary zy such
that fzzlz f(2)dz = F(z2) — F(z1) is independent of the path between z; and zs.

Taylor Series — A TYPE II complex function f(z) that is analytic over C may be
expanded in a Taylor series:

n

> £(n)
f(z) = Z / '(O> 2" forall zeC.
n=0 ’

Important examples for such Taylor series expansions include:

o] n . — n 22n+1 S n 2’2”
v nzjon' sin(z) = RZ:O(—I) BT Dl cos(z) = ;:0(—1) (2n)!”

H-2.7 EULER’S IDENTITY:

With the Taylor series of e?, sin(z), and cos(z) it is easy to prove that for any complex
number z with » = | z| and ¢ = £z we can write

z=rel? =r(cos(p)+j sin(p)).

More generally, for arbitrary complex numbers z we have
j 2 .o Lo —jz : 1 j 2 —jz
e!* = cos(z) + j sin(z) cos(z) = 3 (e7*+e77) sin(z) = — (e/* —e™77).
J
Analogously we define the complex hyperbolic functions

1 1
e® = cosh(z) + sinh(z) cosh(z) = 3 (e +e7%) sinh(z) = B (e —e™ 7).

Manipulation rules for complex exponentials with two complex numbers z; and zs:

efltae — o1 | o2 efl T3 — 621/622 (eZ1)22 = ?l'%2,

H-2.8 CoMPLEX LOGARITHMS AND “MULTIPLE- VALUED” FUNCTIONS:

From Euler’s identity it is obvious that the phase ¢ = 4z of a complex number in not
unique since z = rel? = rel P2) for any k € Z. The ambiguity is immaterial for
operations that are explicitly defined on Re{z} and Im{z} (such as complex multiplication
and complex addition for example). The ambiguity becomes problematic, though, for
functions that operate explicitly on r = | z| and ¢ = £z such as the complex logarithm

In(z) = In(r e/ @F27%)) = In(r) + In(e? CH2™)) = In(r) + j (¢ + 2nk) for all k € Z.
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Functions such as the complex logarithm are casually called “multiple valued” functions
(even though a function may by definition not be multiple valued!). One way to address
the conundrum of “multiple valued” functions is to limit such functions to their main
branch, e.g. chose k such that —7 < Im{1In(z) } < 4.

Manipulation rules for complex logarithms with z1, 29 € C:

In(z1 - z2) = In(z1) + In(22) In(z1/ 2z2) = In(z1) — In(22) In(27?) = 22 - In(21).

H-2.9 CoMPLEX POWERS:

An operation that may also lead to ambiguous (i.e. “multiple valued”) results is complex
exponentiation, i.e. an operation of the form z¥ with z € C and v € C. With z = re/?
(rrpeR)and v=a+j0 (a,f € R) we define

2V = v () — (atiB)-(In(r)+j (p+2mk)) _ laln(r)=B¢] jjlap+BIn(r)] —27k[B—jol ¢ L e 7.
Note that the only case for which the ambiguity disappears is for 3 = 0 and « € Z, i.e.

for expressions of the form z" with n € Z. In all other cases we may, again, restrict to the
main branch of the complex logarithm In(z).

Manipulation rules for complex powers with z,v, z1, 29, v1,v9 € C:

LUtV — U1 L2 SU1TV2 ZUI/ZU2 (Z’Ul)’U2 — V12
(21 22)" = 21 - 25 (21/ 22)" = 21/ 23.

H-2.10 THE RooTs oF UNITY:

The name n*™-roots of unity refers to the set of complex numbers 2z, for k = 0...n — 1

such that (z;)" = 1. One can show that the n'"-roots of unity are given by 2, = ei2n(k/n)
for k =0...n — 1. We may write in polynomial form

n—1
Z2M—1= H(z —z) with 2z, = IR/ for k=0...n—1.
k=0
Alternatively, we may study the case (z)" = —1 for £k =0...n — 1 which leads to

n—1
2"+ 1= H(z —z,) with z, = ™D/ for B =0...n—1.
k=0

H-2.11 THE FUNDAMENTAL THEOREM OF ALGEBRA:

Consider a set of n+ 1 complex numbers a; € C for ¢ = 0...n and the associated complex
polynomial P(z) = ag + Y ;—; a; 2". One can show that there exists a unique set of n
complex numbers z; for i = 1...n such that P(z;) =0 for ¢ = 1...n and such that




