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Signals & Systems – Handout #2
Complex Numbers – A Review

H-2.1 Axiomatic Definition of Complex Numbers:

A complex number z is defined as an ordered pair (or vector) 〈a, b〉 of two arbitrary real
numbers a ∈ R and b ∈ R. We use the symbol “≡” to denote the equivalency between a
complex number symbol z and its explicit components a ∈ R and b ∈ R, i.e. z ≡ 〈a, b〉.
We use the symbol C to denote the set of all complex numbers.

H-2.1.1 Equality:

Two complex numbers z1 ≡ 〈a1, b1〉 and z2 ≡ 〈a2, b2〉 are equal, i.e. z1 = z2, if
and only if a1 = a2 and b1 = b2.

H-2.1.2 Addition:

The sum of two complex numbers z1 ≡ 〈a1, b1〉 and z2 ≡ 〈a2, b2〉 is defined as
z1 + z2 ≡ 〈 a1 + a2 , b1 + b2 〉.
H-2.1.3 Product:

The product of two complex numbers z1 ≡ 〈a1, b1〉 and z2 ≡ 〈a2, b2〉 is defined as
z1 · z2 ≡ 〈 a1a2 − b1b2 , a1b2 + b1a2 〉.
H-2.1.4 Identity Elements:

We define the complex number “1” as the element 〈1, 0〉 and the complex number
“0” as the element 〈0, 0〉. (Note that there is a notational ambiguity in using the
symbols 1 and 0. The elements “0”∈ C and “1”∈ C are technically different from
the elements 0 ∈ R and 1 ∈ R. The ambiguity can be justified by embedding R

in C as described in the following sections.)

H-2.2 Elementary Properties of Complex Numbers:

One can show that the addition, product, and identity elements defined in the previous
section satisfy the requirements for a field. Namely, if z1, z2, z3 are elements of C then:

(i) z1 + z2 and z1 · z2 are also elements of C (closure).

(ii) z1 + z2 = z2 + z1 and z1 · z2 = z2 · z1 (commutativity).

(iii) z1 + (z2 + z3) = (z1 + z2) + z3 and z1 (z2 z3) = (z1 z2) z3 (associativity).

(iv) z1 (z2 + z3) = z1 z2 + z1 z3 (distributivity).

(v) z1 + 0 = 0 + z1 = z1 and z1 · 1 = 1 · z1 = z1 (existence of identity).

(vi) for any z1 there is a unique element denoted by −z1 (with (−z1) ∈ C) such that
z1 + (−z1) = 0 (inverse to addition).

(vii) for any z1 �= 0 there is a unique element denoted by z−1
1 (with z−1

1 ∈ C) such that
z1 · (z−1

1 ) = 1 (inverse to multiplication).
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H-2.2.1 Negative and Inverse Complex Numbers:

In light of items (vi) and (vii) we define the negative −z of a complex number
z ≡ 〈a, b〉 as −z ≡ 〈−a,−b〉 and the inverse z−1 of a complex number z ≡ 〈a, b〉
as z−1 ≡ 〈 a

a2+b2
, −b

a2+b2
〉.

H-2.2.2 Subtraction and Division of Complex Numbers:

We define the subtraction of two complex numbers z1 and z2 as z1−z2 = z1+(−z2)
and their division as z1/z2 = z1 · (z−1

2 ).

H-2.3 Embedding R in C:

Note that for any two complex numbers z1 ≡ 〈a1, 0〉 and z2 ≡ 〈a2, 0〉 we have z1 + z2 ≡
〈a1 + a2, 0〉 and z1 · z2 ≡ 〈a1 · a2, 0〉. If we define that a real number α is equivalent to
the special complex number 〈α, 0〉 then we can compute the sum and product of two real
numbers a1 and a2 by means of the complex operations “+” and “·”. As such, we can
compatibly embed any real number from R into the set of complex numbers C, i.e.

α ∈ R ↔ 〈α, 0〉 ∈ C ⇒ R ⊂ C.

Note, furthermore, that the same compatibility applies to the identity elements 1 in R

(i.e. identity element “1”≡ 〈1, 0〉 in C) and 0 in R (i.e. “0”≡ 〈0, 0〉 in C).

H-2.3.1 The Square Root of -1:

There is no number a ∈ R such that a ·a equals -1. There is the number j ≡ 〈0, 1〉
in C, however, such that j · j ≡ 〈−1, 0〉, which represents the real number -1
(according to the discussion of the previous section). The complex number j
is thus frequently (and somewhat casually) written as j =

√−1. Symbol j
enables us to simplify the notation of complex numbers 〈a, b〉 as a + j · b ≡
〈a, 0〉 + 〈0, 1〉 · 〈b, 0〉 = 〈a, b〉 with a ∈ R and b ∈ R.

H-2.3.2 The Real Part and the Imaginary Part of a Complex Number:

The functions real part and imaginary part of a complex number z ≡ 〈a, b〉 are
defined as: Re{z} = a ∈ R and Im{z} = b ∈ R ⇒ z = Re{z} + j · Im{z}.

H-2.4 The Geometric Interpretation of a Complex Number:
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With z = a + j b ≡ 〈a, b〉 for a ∈ R and
b ∈ R we define:

(i) the magnitude of z as

| z | = r =
√

a2 + b2, and

(ii) the phase of z (written ϕ = � z)
such that

z = r (cos(ϕ) + j sin(ϕ)).
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H-2.5 Elementary Complex Number Calculations:

We assume below that the complex number z is given by z = a + j b with a ∈ R and
b ∈ R. Similarly, we assume that zi = ai + j bi with ai ∈ R and bi ∈ R for i = 1, 2, . . . and
so forth.

H-2.5.1 Addition, Subtraction, Multiplication, and Division:

z1 + z2 = (a1 + a2) + j (b1 + b2) z1 · z2 = (a1a2 − b1b2) + j (b1a2 + a1b2)

z1 − z2 = (a1 − a2) + j (b1 − b2) z1
z2

= (a1a2+b1b2
a2
2+b22

) + j ( b1a2−a1b2
a2
2+b22

)

H-2.5.2 Conjugate Complex Numbers:

Definition: z∗ = a − j b = Re{z} − j Im{z}
Elementary operations: (z1 + z2)∗ = z∗1 + z∗2 (z1 − z2)∗ = z∗1 − z∗2

(z1 · z2)∗ = z∗1 · z∗2 (z1/z2)∗ = z∗1/z∗2
(
∑n

i=1 zi )∗ =
∑n

i=1 z∗i (
∏n

i=1 zi )∗ =
∏n

i=1 z∗i

H-2.5.3 Absolute Value and Magnitude Squared:

Definition: | z |2 = z · z∗ = a2 + b2 = (Re{z})2 + (Im{z})2
Elementary operations: | z1 + z2 | ≤ | z1 | + | z2 | | z1 − z2 | ≥ | z1 | − | z2 |

| z1 · z2 | = | z1 | · | z2 | | z1/z2 | = | z1 | / | z2 |
|∑n

i=1 zi | ≤
∑n

i=1 | zi | |∏n
i=1 zi | =

∏n
i=1 | zi |

also | z1 | − | z2 | ≤ | z1 + z2 |

H-2.5.4 Real Part and Imaginary Part:

Re{z} = a = 1
2(z+z∗) = | z |·cos(�z) Im{z} = b = 1

2j (z−z∗) = | z |·sin(�z)

H-2.5.5 Phase Angles:

The phase �z of a complex number z �= 0 can be computed as follows (note that
the phase of the number z = 0 is not defined):

Closed form formula: �z = tan−1( b
a) + π

2

[
sign(b) − sign( b

a)
]

for a �= 0

and �z = π
2 sign(b) for a = 0.

Case-by-case formula: �z =

⎧⎨
⎩

tan−1( b
a) if a > 0

π
2 · sign(b) if a = 0
tan−1( b

a) + π · sign(b) if a < 0.

Note that tan−1(x) refers to the main branch inverse function of tan(x), i.e.
−π

2 ≤ tan−1(x) ≤ π
2 for all x ∈ R. The formulas above are normalized such that

−π ≤ �z ≤ +π. We always have tan(�z) = b/a. All angles are in radians.

H-2.5.6 (Integer) Powers of Complex Numbers:

De Moivre’s Theorem: zn = | z |n [ cos(n · �z) + j sin(n · �z) ] for all n ∈ Z.

(Note: De Moivre’s Theorem remains generally true for powers n other than
integer powers as well.)
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H-2.6 Complex Functions:

H-2.6.1 Functions of the Form R → C (Type I):

We define a Type I complex function z(t) as a function whose domain is (a
subset of) R and whose range is (a subset of) C. Type I functions can be
decomposed into two component functions a(t) : R → R and b(t) : R → R such
that z(t) = a(t) + j b(t).

Continuity – A Type I complex function z(t) is continuous if its components
a(t) and b(t) are continuous.

Differentiability – A Type I complex function z(t) is differentiable with respect
to t if its components a(t) and b(t) are differentiable, i.e.

d
dt z(t) = d

dt a(t) + j d
dt b(t).

Integrability – A Type I complex function z(t) is integrable with respect to t if
its components a(t) and b(t) are integrable, i.e.

∫ t1

t0

z(t) dt =
∫ t1

t0

a(t) dt + j ·
∫ t1

t0

b(t) dt.

Graphic Representation – A continuous Type I complex function z(t) describes
a contour (i.e. a continuous curve) in the complex plane (Im{z(t)} vs. Re{z(t)})
as variable/parameter t traverses R.

H-2.6.2 Functions of the Form C → C (Type II):

We define a Type II complex function f(z) as a function whose domain is (a
subset of) C and whose range is (a subset of) C. Type II functions can be
decomposed into the component functions a(α, β) : R

2 → R and b(α, β) : R
2 → R

such that f(z) = a( Re{z}, Im{z} ) + j b( Re{z}, Im{z} ).

Differentiability – A Type II complex function f(z) is differentiable with respect
to z if its components a(α, β) and b(α, β) satisfy the Cauchy-Riemann differential
equations:

∂
∂α a(α, β) = ∂

∂β b(α, β) and ∂
∂β a(α, β) = − ∂

∂α b(α, β).

For convenience we write f ′(z) to denote d
dz f(z). Similarly we define f ′′(z) =

d
dz f ′(z), f ′′′(z) = d

dz f ′′(z), . . . , f (n+1)(z) = d
dz f (n)(z), and so forth.

Contour Integral – A Type II complex function f(z) may be integrated along a
contour C defined by a continuous Type I function z(t) for t ∈ [t0, t1]. If z(t) is
differentiable then we can convert the Type II integral into a Type I integral:

∫
C
f(z) dz =

∫ t1

t0

f(z(t)) · [ d
dt z(t) ] dt.

Analytic Functions – If a Type II complex function f(z) is differentiable for every
z ∈ C then it is called analytic over C. Analytic functions have well defined deri-
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vatives of any order, i.e. not only the first derivative exists, but also the second,
third, forth, and so on for any arbitrary order.

Path Independent Integration – If a Type II complex function f(z) is analytic
over C then the value of every contour integral over f(z) becomes path indepen-
dent, i.e. it only depends on the start point and end point of the integration. As
a result we can define a function F (z) =

∫ z
z0

f(ξ) dξ for some arbitrary z0 such
that

∫ z2

z1
f(z) dz = F (z2) − F (z1) is independent of the path between z1 and z2.

Taylor Series – A Type II complex function f(z) that is analytic over C may be
expanded in a Taylor series:

f(z) =
∞∑

n=0

f (n)(0)
n!

zn for all z ∈ C.

Important examples for such Taylor series expansions include:

ez =
∞∑

n=0

zn

n!
sin(z) =

∞∑
n=0

(−1)n z2n+1

(2n + 1)!
cos(z) =

∞∑
n=0

(−1)n z2n

(2n)!
.

H-2.7 Euler’s Identity:

With the Taylor series of ez, sin(z), and cos(z) it is easy to prove that for any complex
number z with r = | z | and ϕ = �z we can write

z = r ej ϕ = r ( cos(ϕ) + j sin(ϕ) ).

More generally, for arbitrary complex numbers z we have

ej z = cos(z) + j sin(z) cos(z) =
1
2

(ej z + e−j z) sin(z) =
1
2j

(ej z − e−j z).

Analogously we define the complex hyperbolic functions

ez = cosh(z) + sinh(z) cosh(z) =
1
2

(ez + e−z) sinh(z) =
1
2

(ez − e−z).

Manipulation rules for complex exponentials with two complex numbers z1 and z2:

ez1+z2 = ez1 · ez2 ez1−z2 = ez1/ ez2 (ez1) z2 = ez1·z2 .

H-2.8 Complex Logarithms and “Multiple-Valued” Functions:

From Euler’s identity it is obvious that the phase ϕ = �z of a complex number in not
unique since z = r ej ϕ = r ej (ϕ+2πk) for any k ∈ Z. The ambiguity is immaterial for
operations that are explicitly defined on Re{z} and Im{z} (such as complex multiplication
and complex addition for example). The ambiguity becomes problematic, though, for
functions that operate explicitly on r = | z | and ϕ = �z such as the complex logarithm

ln(z) = ln(r ej (ϕ+2πk)) = ln(r) + ln(ej (ϕ+2πk)) = ln(r) + j (ϕ + 2πk) for all k ∈ Z.

5



Robert M. Nickel Complex Numbers – Handout #2

Functions such as the complex logarithm are casually called “multiple valued” functions
(even though a function may by definition not be multiple valued!). One way to address
the conundrum of “multiple valued” functions is to limit such functions to their main
branch, e.g. chose k such that −π < Im{ ln(z) } ≤ +π.

Manipulation rules for complex logarithms with z1, z2 ∈ C:

ln(z1 · z2) = ln(z1) + ln(z2) ln(z1/ z2) = ln(z1) − ln(z2) ln(zz2
1 ) = z2 · ln(z1).

H-2.9 Complex Powers:

An operation that may also lead to ambiguous (i.e. “multiple valued”) results is complex
exponentiation, i.e. an operation of the form zv with z ∈ C and v ∈ C. With z = r ej ϕ

(r, ϕ ∈ R) and v = α + j β (α, β ∈ R) we define

zv = ev ln(z) = e(α+j β)·(ln(r)+j (ϕ+2πk)) = e[α ln(r)−βϕ] ej[αϕ+β ln(r)] e−2πk[β−jα] for k ∈ Z.

Note that the only case for which the ambiguity disappears is for β = 0 and α ∈ Z, i.e.
for expressions of the form zn with n ∈ Z. In all other cases we may, again, restrict to the
main branch of the complex logarithm ln(z).

Manipulation rules for complex powers with z, v, z1, z2, v1, v2 ∈ C:

zv1+v2 = zv1 · zv2 zv1−v2 = zv1/ zv2 (zv1) v2 = zv1·v2

(z1 · z2)v = zv
1 · zv

2 (z1/ z2)v = zv
1/ zv

2 .

H-2.10 The Roots of Unity:

The name nth-roots of unity refers to the set of complex numbers zk for k = 0 . . . n − 1
such that (zk)n = 1. One can show that the nth-roots of unity are given by zk = ej2π(k/n)

for k = 0 . . . n − 1. We may write in polynomial form

zn − 1 =
n−1∏
k=0

(z − zk) with zk = ejπ((2k)/n) for k = 0 . . . n − 1.

Alternatively, we may study the case (zk)n = −1 for k = 0 . . . n − 1 which leads to

zn + 1 =
n−1∏
k=0

(z − zk) with zk = ejπ((2k+1)/n) for k = 0 . . . n − 1.

H-2.11 The Fundamental Theorem of Algebra:

Consider a set of n+1 complex numbers ai ∈ C for i = 0 . . . n and the associated complex
polynomial P (z) = a0 +

∑n
i=1 ai z

n. One can show that there exists a unique set of n
complex numbers zi for i = 1 . . . n such that P (zi) = 0 for i = 1 . . . n and such that

P (z) = a0 +
n∑

i=1

ai z
n = an ·

n∏
i=1

(z − zi).
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