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H-3.1 Elementary Continuous-Domain Functions:

Continuous-domain functions are defined for t ∈ R.

H-3.1.1 Step-Function:

μ(t) =

⎧⎨
⎩

0 for t < 0
1/2 for t = 0
1 for t > 0

H-3.1.2 Rect-Function:

rect(t) =

⎧⎨
⎩

0 for | t | > 1/2
1/2 for | t | = 1/2
1 for | t | < 1/2

H-3.1.3 Sign-Function:

sign(t) =

⎧⎨
⎩

−1 for t < 0
0 for t = 0

+1 for t > 0

H-3.1.4 Triangle-Function:

Δ(t) =
{

0 for | t | ≥ 1
1 − | t | for | t | < 1

H-3.1.5 Sinc-Function:

sinc(t) =
{

sin(t)
t for t �= 0

1 for t = 0

H-3.2 Classification of Continuous-Domain Signals:

We consider continuous-domain signals x(t) that are defined for t ∈ R. The range of
continuous-domain signals may be real (x(t) ∈ R ) or complex (x(t) ∈ C ).

H-3.2.1 Periodic Signals:

A continuous-domain signal x(t) is periodic with period τ if there is a τ ∈ R such
that x(t) = x(t − τ) for all t ∈ R.

H-3.2.2 Symmetric Signals:

A continuous-domain signal x(t) is of even symmetry if x(t) = x(−t). It is of
odd symmetry if x(t) = −x(−t). A (complex-valued) signal is of even Hermitian
symmetry if x(t) = x∗(−t). It is of odd Hermitian symmetry if x(t) = −x∗(−t).
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H-3.2.3 Bounded Signals:

A continuous-domain signal x(t) is bounded if |x(t) | ≤ Bx < ∞ for some finite
Bx ∈ R

+. (In writing Bx we imply the smallest number such that |x(t) | ≤ Bx.)

H-3.2.4 Energy Signals:

A continuous-domain signal x(t) is an energy signal if its energy Ex is finite.

Ex =
∫ ∞

−∞
|x(t) |2 dt < ∞

H-3.2.5 Power Signals:

A continuous-domain signal x(t) is a power signal if its power Px is finite.

Px = lim
ϑ→∞

1
2 ϑ

∫ ϑ

−ϑ
|x(t) |2 dt < ∞

A periodic signal x(t) with period τ is a power signal with Px = 1
τ

∫ τ
0 |x(t) |2 dt.

H-3.2.6 Absolutely Integrable Signals:

A continuous-domain signal x(t) is absolutely integrable if

Sx =
∫ ∞

−∞
|x(t) | dt < ∞.

H-3.2.7 Finite Length Signals:

A continuous-domain signal x(t) is of finite length if there exists a t1 and a t2
with t1 ≤ t2 such that x(t) = 0 for all t < t1 and t > t2. Let t̃1 denote the largest
possible t1 such that x(t) = 0 for all t < t̃1 and let t̃2 denote the smallest possible
t2 such that x(t) = 0 for all t > t̃2 then the length of x(t) is defined by:

Lx = t̃2 − t̃1.

Note that the length of a signal x(t) that is identically equal to zero for all t ∈ R

is not defined!

H-3.2.8 Causal and Anti-Causal Signals:

A continuous-domain signal x(t) is causal if x(t) = 0 for all t < 0. It is anti-causal
if x(t) = 0 for all t > 0.

H-3.3 Elementary Continuous-Domain Signal Operations:

H-3.3.1 Convolution:

The continuous-domain convolution of two signals x(t) and h(t) is defined by

y(t) = h(t) ∗ x(t) =
∫ ∞

−∞
h(τ)x(t − τ) dτ.

Convolution generally involves folding, shifting, multiplication, and integration.
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H-3.3.2 Properties of Convolution:

The continuous-domain convolution operator ∗ has the following properties:

a) Commutativity: x(t) ∗ h(t) = h(t) ∗ x(t)
b) Distributivity: x(t) ∗ (h1(t) + h2(t)) = x(t) ∗ h1(t) + x(t) ∗ h2(t)
c) Associativity: (x1(t) ∗ x2(t)) ∗ x3(t) = x1(t) ∗ (x2(t) ∗ x3(t))
d) Shift Property: h(t) ∗ x(t) = y(t) ⇒ h(t − τ) ∗ x(t) = y(t − τ)
e) Convolution Length: y(t) = h(t) ∗ x(t) ⇒ Ly ≤ Lh + Lx

H-3.3.3 Elementary Convolution Identities:

a) rect(t) ∗ rect(t) = Δ(t)
b) μ(t) ∗ μ(t) = t μ(t)
c) (eλtμ(t)) ∗ μ(t) = eλt−1

λ μ(t)

H-3.3.4 Deterministic Correlation:

The (deterministic) correlation of two energy signals x(t) and y(t) is defined by

Rxy(τ) =
∫ ∞

−∞
x(t + τ) y∗(t) dt = x(τ) ∗ y∗(−τ).

For two power signals x(t) and y(t) we define respectively

R̃xy(τ) = lim
ϑ→∞

1
2 ϑ

∫ ϑ

−ϑ
x(t + τ) y∗(t) dt.

For two signals x(t) and y(t) that are both periodic with period τ we obtain

R̃xy(τ) =
1
τ

∫ τ

0
x(t + τ) y∗(t) dt.

H-3.4 The Dirac Impulse Function:

H-3.4.1 “Casual” Definition of the Dirac Impulse:

A “casual” definition of the Dirac impulse δ(t) is provided by a limiting argument.
Consider an infinitely narrow yet infinitely high impulse which is constructed such
that the area underneath the impulse has a value of one:

δ(t) is represented by “ lim
τ → 0

1
τ rect( t

τ ).”

H-3.4.2 Rigorous Definition of the Dirac Impulse:

A rigorous definition of the Dirac impulse δ(t) is beyond the scope of this course
and requires the study of the space of linear functionals S over a suitably chosen
space of testing functions D. An expression of the form

∫ ∞
−∞ x(t) δ(t) dt = x(0)

can be viewed as a linear mapping of x(t) ∈ D into the scalar value x(0) ∈ C.
The Dirac impulse δ(t) ∈ S becomes a symbolic notation for the mapping: x(t) ∈
D → x(0) ∈ C. Operations that involve δ(t) are mathematically meaningful only
over the backdrop of space S.
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H-3.4.3 Properties of the Dirac Impulse:

a) Area:
∫ ∞
−∞ δ(t) dt = 1

b) Sampling:
∫ ∞
−∞ x(t) δ(t − τ) dt = x(τ)

c) Exchange: x(t) δ(t − τ) = x(τ) δ(t − τ)
d) Scaling: δ(α t) = 1

|α | δ(t)
e) Convolution: x(t) ∗ δ(t − τ) = x(t − τ)
f) Symmetry: δ(t) = δ(−t)

H-3.5 Classification of Continuous-Domain Systems:

We consider continuous-domain systems T with input x(t) and output y(t).

y(t) = T{x(t) }

H-3.5.1 Linear Systems:

A continuous-domain system T is linear if for any two arbitrary input signals
x1(t), x2(t) and for any two constants α1, α2 ∈ R (or C) we have

T{α1 x1(t) + α2 x2(t) } = α1 T{x1(t) } + α2 T{x2(t) }.
H-3.5.2 Time-Invariant Systems:

A continuous-domain system T is time-invariant if y(t) = T{x(t) } implies that
y(t − τ) = T{x(t − τ) } for any arbitrary input signal x(t) any arbitrary delay
τ ∈ R.

H-3.5.3 Causal Systems:

A continuous-domain system T is causal if the output y(t) at time t only depends
on current and past input values x(ϑ) for ϑ ≤ t and/or only depends on past
output values y(ϑ) for ϑ < t.

H-3.5.4 BIBO Stable Systems:

A continuous-domain system T is bounded-input bounded-output (BIBO) stable if
any bounded input |x(t)| ≤ Bx < ∞ leads to a bounded output |y(t)| ≤ By < ∞.

H-3.6 Continuous Linear Time-Invariant (CLTI) Systems:

H-3.6.1 Impulse Response:

Let T denote a CLTI system. If we let the impulse response h(t) of T be defined
as h(t) = T{ δ(t) } then the response of T to an arbitrary input x(t) is given by

y(t) = x(t) ∗ h(t).

H-3.6.2 Causal CLTI Systems:

A CLTI system T is causal if and only if its impulse response h(t) is a causal
signal:

h(t) = 0 for t < 0.
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H-3.6.3 BIBO Stable CLTI Systems:

A CLTI system T is BIBO stable if and only if its impulse response h(t) is
absolutely integrable, i.e. if Sh < ∞.

H-3.6.4 Eigenfunctions of CLTI Systems:

Input functions of the form x(t) = es0t are eigenfunctions of CLTI systems.

y(t) = T{ es0t } = h(t) ∗ es0t = es0t ·
∫ ∞

−∞
h(τ) e−s0τ dτ

︸ ︷︷ ︸
= H(s0)

= es0t · H(s0)

When passed through a CLTI system, these eigenfunctions remain unchanged up
to a constant (possibly complex) gain H(s0).

H-3.7 The Laplace Transform:

H-3.7.1 Definition of the (Bilateral) Laplace Transform:

The (bilateral) Laplace transform X(s) of signal x(t) is defined by

X(s) = L{x(t) } =
∫ ∞

−∞
x(t) e−st dt

with ROC: −∞ ≤ σ1 < Re{ s } < σ2 ≤ +∞.

The Laplace transform always consists of both the complex function X(s) and
its associated region of convergence (ROC). The region of convergence is the set
of all complex values s for which the transform integral converges. The ROC is
generally a vertical strip in the complex plane that extends from −j ∞ to +j ∞
and is bounded on the real axis between σ1 ∈ R and σ2 ∈ R (with σ1 < σ2). The
constant σ1 ∈ R is determined by the rate of exponential increase/decrease of the
causal part of x(t). Similarly, σ2 ∈ R is determined by the rate of exponential
increase/decrease of the anti-causal part of x(t).

H-3.7.2 The Inverse Laplace Transform:

The inverse Laplace transform is defined as

x(t) = L−1{X(s) } =
1

2 π j

∫
C

X(s) est ds

in which the integration contour C is given by

C: σ + j Ω

∣∣∣∣∣∣
Ω = +∞

Ω = −∞
for some fixed σ ∈ ] σ1, σ2 [.

H-3.7.3 Complex Contour Integration:

If a sufficiently smooth complex contour C can be described with a parameter
description p(ϕ) ∈ C for ϕ ∈ [ a, b ] then

∫
C F (s) ds =

∫ b
a F (p(ϕ)) p′(ϕ) dϕ. A com-

plex contour integral can thus be reduced to a conventional Riemann integral.
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H-3.7.4 Two Elementary Laplace Transform Identities (λ ∈ R):

x(t) = L−1{X(s) } X(s) = L{x(t) } ROC:

e−λ t μ(t)
1

s + λ
Re{ s } > −λ

−e−λ t μ(−t)
1

s + λ
Re{ s } < −λ

H-3.7.5 The Laplace Transform of Causal Signals:

Note that every valid Laplace transform expression X(s) has only one causal
inverse transform x(t). We do not need to know the ROC explicitly to find the
correct causal inverse of X(s).

H-3.7.6 A Short Table of Laplace Transforms of Causal Signals (λ ∈ R):

x(t) = L−1{X(s) } X(s) = L{x(t) } ROC:

δ(t) 1 s ∈ C

μ(t)
1
s

Re{ s } > 0

tn e−λ t μ(t)
n!

(s + λ)n+1
Re{ s } > −λ

e−λ t cos(Ω0 t)μ(t)
s + λ

(s + λ)2 + Ω2
0

Re{ s } > −λ

e−λ t sin(Ω0 t)μ(t)
Ω0

(s + λ)2 + Ω2
0

Re{ s } > −λ
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H-3.7.7 Properties of the Bilateral Laplace Transform:

Operation x(t) = L−1{X(s) } X(s) = L{x(t) } and ROCa

Linearity α1 x1(t) + α2 x2(t) α1 X1(s) + α2 X2(s) ROC1 ∩ ROC2

Differentiation (d
dt )

n x(t) sn X(s) and same ROC
in Time

Time Shift x(t − τ) X(s) e−s τ and same ROC

Modulation x(t) e s0 t X(s − s0) ROC is shifted by Re{ s0 }

Differentiation −t x(t) d
ds X(s) and same ROC

in Frequency

Convolution x(t) ∗ h(t) X(s) · H(s) ROC1 ∩ ROC2

aThe actual ROC of the result of an operation may be larger than the one provided in the
table. Check the common literature on Laplace transforms for the details.

H-3.8 CLTI Systems and the Laplace Transform:

H-3.8.1 Transfer Functions and BIBO Stable Systems:

Let H(s) = L{h(t) } denote the Laplace transform of the impulse response h(t)
of a CLTI system. H(s) is called the transfer function of the CLTI system. A
CLTI system is BIBO stable if the imaginary axis is contained in the ROC of its
transfer function H(s).

H-3.8.2 Linear Constant Coefficient Differential Equations:

Every linear constant coefficient differential equation with input x(t) and output
y(t) establishes a causal linear time-invariant system.

y(t) = −a1
d
dt y(t) − a2 (d

dt )
2 y(t) − . . .

. . . − aN (d
dt )

N y(t) + b0 x(t) + b1
d
dt x(t) + b2 (d

dt )
2 x(t) + . . .

. . . + bM (d
dt )

M x(t)

By transforming the differential equation into the Laplace domain we obtain its
transfer function H(s). The transfer function of a linear constant coefficient diff-
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erential equation is rational in variable s:

H(s) =
Y(s)
X(s)

=
b0 + b1s + b2s

2 + . . . + bMsM

1 + a1s + a2s2 + . . . + aNsN

Since H(s) is the transfer function of a causal system we do not need to explicitly
provide its ROC. Furthermore, we can write every rational transfer function of the
form above in terms of its poles pi (for i = 1 . . . N) and zeros zi (for i = 1 . . . M).

H(s) = G
(s − z1)(s − z2) . . . (s − zM )
(s − p1)(s − p2) . . . (s − pN )

The term G is often referred to as the gain of the system. Note, however, that
G is usually not equal to the DC gain or the high-frequency gain of a system!

H-3.8.3 Stability of Causal CLTI Systems with Rational Transfer Functions:

A causal CLTI system with a rational transfer function H(s) is stable if and only
if the real part of all of its poles is strictly smaller than zero, i.e. Re{ pi } < 0 for
i = 1 . . . N .

H-3.8.4 System I/O Description in the Laplace Domain:

Due to the convolution theorem of the Laplace transform we can find the output
y(t) of a CLTI system for a given input x(t) conveniently in the Laplace Domain:

Y(s) = L{ y(t) } = H(s) · X(s) = L{h(t) } · L{x(t) }.

If Y(s) is rational then we can find its inverse transform y(t) via a partial fraction
expansion and a table lookup.

H-3.9 The Fourier Transform:

H-3.9.1 Definition of the Fourier Transform:

The continuous time Fourier transform and its inverse transform are defined by

X(Ω) = F{x(t) } =
∫ ∞

−∞
x(t) e−j Ω t dt

and x(t) = F−1{X(Ω) } = 1
2π

∫ ∞

−∞
X(Ω) ej Ω t dΩ

The existence of the Fourier transform is guaranteed for absolutely integrable
signals. For other signals meaningful definitions for Fourier transforms may be
found, but the existence is not guaranteed in general. Note that we can directly
derive the Fourier transform X(Ω) of a signal x(t) from its Laplace transform
X(s) if the ROC of X(s) contains the imaginary axis.

X(Ω) = X(s) | s=j Ω if j Ω ∈ ROC for all Ω ∈ R

There is an ambiguity in our notation for the Laplace transform X(s) and the
Fourier transform X(Ω). The distinction is achieved with the name of the inde-
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pendent variable: (s) for the Laplace transform and (Ω) for the Fourier transform.

H-3.9.2 Some Elementary Fourier Transform Identities:

Type x(t) = F−1{X(Ω) } X(Ω) = F{x(t) }

Constant C
2π C δ(Ω)

Impulse δ(t − τ) e−j Ω τ

Complex Exponential ej Ω0 t 2πδ(Ω − Ω0)

Cosine cos(Ω0 t) π [ δ(Ω + Ω0) + δ(Ω − Ω0) ]

Sine sin(Ω0 t) j π [ δ(Ω + Ω0) − δ(Ω − Ω0) ]

Step-Function μ(t) π δ(Ω) + 1
j Ω

Exponential Impulse 1
| τ | e

− t
| τ | μ(t) 1

1+j Ω | τ |

Two-Sided Exponential 1
2| τ | e

− | t |
| τ | 1

1+|Ω τ |2

Gaussian Impulse e−πt2 e−
Ω2

4π

Rectangular-Function rect( t
τ ) | τ | sinc(Ω τ

2 )

Sinc-Function 1
π sinc( t

τ ) | τ | rect(Ω τ
2 )

Impulse Train
∑∞

n=−∞ δ( t
T − n) |T |∑∞

n=−∞ δ(Ω T
2π − n)
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H-3.9.3 Properties of the Fourier Transform:

Operation x(t) = F−1{X(Ω) } X(Ω) = F{x(t) }

Linearity α1 x1(t) + α2 x2(t) α1 X1(Ω) + α2 X2(Ω)

Time Shift x(t − τ) X(Ω) e−j Ω τ

Frequency Shift x(t) ej Ω0 t X(Ω − Ω0)

Time Reversal x(−t) X(−Ω)

Conjugation x∗(t) X∗(−Ω)

Duality X(t) 2π x(−Ω)

Scaling x( t
T ) |T | · X(Ω T )

Symmetry x(t) ∈ R X(Ω) = X∗(−Ω)

Frequency Differentiation t x(t) j d
dΩ X(Ω)

Time Differentiation d
dt x(t) j Ω X(Ω)

Convolution x(t) ∗ h(t) X(Ω) · H(Ω)

Cross-Correlation x(t) ∗ y∗(−t) X(Ω) · Y ∗(Ω)

Multiplication x(t) · y(t) 1
2π [ X(Ω) ∗ Y(Ω) ]

10


