ROBERT M. NICKEL SIGNALS & SYSTEMS HANDOUT #4

Signals & Systems
Handout #4

H-4.1 ELEMENTARY DISCRETE-DOMAIN FUNCTIONS (SEQUENCES):

Discrete-domain functions are defined for n € Z.

H-4.1.1 Sequence Notation:

We use the following notation to indicate the elements of a sequence x[n] between
index ny, and index ng:

z[n] ={zng), z[ne + 1], ..., x[ng — 1], x[ng] }.

The elements outside of the given range are assumed to be zero (unless stated
otherwise). The element that is associated with index n = 0 is indicated with an

arrow:
x[n] = { R $[_2]7 ZL‘[—l], xgo]a ZL‘[l], $[2]7 cee }
If the arrow is omitted then the first given element in the sequence is assumed
to be the element at index zero x[n| = { z[0], z[1], z[2], ... }.
H-4.1.2 Step Sequence:
] = 0 for n<0
FIM= 1 for n >0

H-4.1.3 Kronecker Delta Sequence:
1 for n=0
Oln] = { 0 for n#0

H-4.2 (CLASSIFICATION OF DISCRETE-DOMAIN SIGNALS:

We consider discrete-domain signals z[n] that are defined for n € Z. The range of discrete-
domain signals may be real (z[n] € R) or complex (z[n] € C).
H-4.2.1 Periodic Signals:
A discrete-domain signal z[n] is periodic with period N if there is a N € Z such
that z[n] = z[n — N] for all n € Z.
H-4.2.2 Symmetric Signals:

A discrete-domain signal x[n] is of even symmetry if z[n| = x[—n]. It is of odd
symmetry if x[n] = —x[—n]. A (complex-valued) signal is of even Hermitian
symmetry if x[n] = x*[—n|. It is of odd Hermitian symmetry if z[n| = —z*[—n].
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H-4.2.3 Symmetry Decompositions:

A discrete-domain signal z[n] can be decomposed into its

e cven part 3 (z[n] + z[-n))
e odd part 5 (z[n] — z[-n])
e conjugate symmetric part % (z[n]+z*[—n]) (even Hermitian symmetry)
e conjugate antisymmetric part 5 (x[n]—z*[—n]) (odd Hermitian symmetry).

H-4.2.4 Bounded Signals:

A discrete-domain signal z[n] is bounded if |x[n]| < B, < oo for some finite
B, € RT. (In writing B, we imply the smallest number such that | z[n]| < B,.)
H-4.2.5 Energy Signals:

A discrete-domain signal x[n] is an energy signal or square-summable signal if
its energy &, is finite.

H-4.2.6 Power Signals:

A discrete-domain signal z[n] is a power signal if its power P, is finite.

K
— 1 2
PI—Klinoom EK|x[nH < 00
n=—

A periodic signal z[n] with period N is a power signal with P, = % SNz n] 2.

H-4.2.7 Absolutely Summable Signals:
A discrete-domain signal z[n] is absolutely summable if

o0

S, = Z |z[n]| < oco.

n=—oo

H-4.2.8 Finite Length Signals:

A discrete-domain signal z[n] is of finite length if there exists a ny and a ny with
ny1 < ng such that z[n] =0 for all n < ny; and n > ny. Let n; denote the largest
possible ny such that z[n] = 0 for all n < n; and let ny denote the smallest
possible ng such that x[n] = 0 for all n > ny then the length of z[n] is defined
by:

Ly =n9—n1+ 1.

Note that the length of a signal x[n] that is identically equal to zero for all n € Z
is not defined!
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H-4.2.9 Causal and Anti-Causal Signals:

A discrete-domain signal x[n] is causal if z[n] = 0 for all n < 0. It is anticausal
if z[n] = 0 for all n > 0.

H-4.3 ELEMENTARY DISCRETE-DOMAIN SIGNAL OPERATIONS:
H-4.3.1 Convolution:

The discrete-domain convolution of two signals x[n] and h[n| is defined by
o
ylnl =h[n]®@z[n] = Y hik]z[n -
k=—0oc0
Convolution generally involves folding, shifting, multiplication, and summation.

H-4.3.2 Properties of Convolution:

The discrete-domain convolution operator ® has the following properties:

a) Commutativity: z[n] ® hin] = hin| ® z[n]

b) Distributivity: z[n] ® (h1[n] + ha[n]) = z[n] ® hi[n] + z[n] ® ha[n]
c) Associativity: (z1[n] ® za[n]) ® x3[n] = z1[n] ® (x2[n] ® x3n])

d) Shift Property: hin] ® z[n] = y[n] = hjn—k]®zn] =yn — k]
e) Convolution Length: y[n] =hn|®xzn] = L, <L+ L, —1

H-4.3.3 Elementary Convolution Identities:

a) z[n]®d[n] ==xn] (e zn]=>,2_ x[k]dn—Ek|)
b)  p[n] @ pln] = (n+1) p[n]

H-4.3.4 Properties of the Kronecker Delta Sequence:

a) Sum: Yol _onl=1
b) Exchange: z[n]d[n — k| = z[k] §[n — k]
c) Scaling: d[K n] = d[n| for K € Z

Convolution: z[n] ® d[n — k| = z[n — k|
Symmetry:  §[n] = 6[—n]

== @
—_ T

H-4.3.5 Deterministic Correlation:
The (deterministic) correlation of two energy signals z[n] and y[n] is defined by

o

roylk] = Y aln+ Ky ] = zk] @ y*[-k].

n=—oo

For two power signals z[n] and y[n] we define respectively

Faylk] = lim 5t Z [n + k] y*[n].

K— o
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For two signals x[n] and y[n] that are both periodic with period N we obtain

=2

1

77$y [k] - N

x[n+ k] y*[n].
0

H-4.4 (CLASSIFICATION OF DISCRETE-DOMAIN SYSTEMS:

We consider discrete-domain systems ¥ with input x[n] and output y[n].
yln] = %{z[n] }

H-4.4.1 Linear Systems:

A discrete-domain system ¥ is linear if for any two arbitrary input signals x;[n],
x2[n] and for any two constants g, ae € R (or C) we have

T{aqg z1[n] + agxa[n] } = a1 T{ x1[n] } + e T{ x2[n] }.

H-4.4.2 Time-Invariant Systems:

A discrete-domain system ¥ is time-invariant if y[n] = T{z[n]} implies that
yln — k] = T{x[n — k] } for any arbitrary input signal z[n] any arbitrary delay
kEeR.

H-4.4.3 Causal Systems:

A discrete-domain system ¥ is causal if the output y[n] at time n only depends
on current and past input values z[k] for £ < n and/or only depends on past
output values y[k] for k < n.

H-4.4.4 BIBO Stable Systems:

A discrete-domain system ¥ is bounded-input bounded-output (BIBO) stable if any
bounded input | z[n]| < B, < oo leads to a bounded output |y[n]| < B, < oco.
H-4.4.5 Passive and Lossless Systems:

A system with arbitrary square summable input z[n] and output y[n] is called
passive if £, < &,. Systems for which &, = &, for any square summable input
x[n] are called lossless.

H-4.4.6 Up-Sampling and Down-Sampling Systems:

A discrete-domain system that inserts L —1 (L € N) zeros between every element

of an input sequence x[n] is called an up-sampling system of order L:

] = z[n/L] for n=Lk with ke€Z
=0 otherwise

A discrete-domain system is called a down-sampling system of order L if it dis-
cards all elements of input x[n| that are not indexed by a multiple of L:

yln] = [n- L]
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H-4.5 DISCRETE LINEAR TIME-INVARIANT (DLTI) SYSTEMS:

H-4.5.1 Impulse Response:

Let ¥ denote a DLTT system. If we let the impulse response h[n] of T be defined
as h[n] = T{d[n] } then the response of T to an arbitrary input z[n] is given by

y[n] = z[n] ® h[n].

H-4.5.2 Causal DLTI Systems:

A DLTT system ¥ is causal if and only if its impulse response h[n| is a causal
signal:
hin] =0 for n <O0.

H-4.5.3 BIBO Stable DLTI Systems:

A DLTI system ¥ is BIBO stable if and only if its impulse response hin] is
absolutely summable, i.e. if S; < oo.

H-4.5.4 FIR and IIR Systems:

A DLTT system is called a finite impulse response system (FIR system) if the
length of the impulse response h[n] is finite, i.e. if £, < co. A DLTI system is
called an infinite impulse response system (IIR system) if £ = oc.

H-4.5.5 Eigenfunctions of DLTI Systems:
Input functions of the form z[n] = 2i are eigenfunctions of DLTI systems.
yln] = T{ 25} = hin] ® 25 = 25 - 332 hlk] 20" = 20 - H(20)

= H(z0)

When passed through a DLTI system, these eigenfunctions remain unchanged up
to a constant (possibly complex) gain H(zp).

H-4.6 THE Z-TRANSFORM:
H-4.6.1 Definition of the (Bilateral) Z-Transform:
The (bilateral) z-transform X(z) of signal z[n] is defined by

X(z) = Z{z[n)} = > z[n]z"

with ROC: 0<r; <|z| <ry <+4o0.

The z-transform always consists of both the complex function X(z) and its as-
sociated region of convergence (ROC). The region of convergence is the set of
all complex values z for which the transform summation converges. The ROC is
generally a ring in the complex plane, bounded by an inner radius r; and an outer
radius 7o (11,72 € RT). The radius r; is determined by the rate of exponential
increase/decrease of the causal part of x[n]. Similarly, ro is determined by the
rate of exponential increase/decrease of the anti-causal part of z[n].

5
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H-4.6.2 The Inverse Z-Transform:

The inverse z-transform is defined as

1
zn]=Z2"HX()}= A X(2) 2"t dz
in which the integration contour C is given by
|w=tT
C:rel® for some fixed 7 €]ry,ra].
w=—m

H-4.6.3 Complex Contour Integration:

If a sufficiently smooth complex contour C can be described with a parameter
description p(¢) € Cfor ¢ € [a,b] then [, F(s)ds = fab F(p(p))p'(¢) de. A com-
plex contour integral can thus be reduced to a conventional Riemann integral.

H-4.6.4 Five Elementary Z-Transform ldentities:

rn)=ZHX(2)} | X(2)=Z{z[n]} ROC:

|2 > [

z
—a" pl—n — 1] — 2 <a]
az
na ufn] . 2] > |a]
(=)
az
—na" pl-n - 1] R 2] <al

H-4.6.5 The Z-Transform of Causal Signals:

Note that every valid z-transform expression X(z) has only one causal inverse
transform z[n]. We do not need to know the ROC explicitly to find the correct
causal inverse of X (z).
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H-4.6.6 A Short Table of Z-Transforms of Causal Signals:

zln]=Z2"H X(2)} X(z) =Z{z[n]} ROC:

|z|>1

p[n]

2% — az cos wy

o cos(won) uln] 22 — 2z coswp + a2 2] > el
o Q2 sin wy

o sin(wo n) p[n] 2~ 20z coswy 1 o2 |z > ||
H-4.6.7 Properties of the Bilateral Z-Transform:
Operation rln] = Z7H{ X(2)} X(z)=Z{z[n]} and ROC*

Linearity a1 z1[n] + ag x2[n] a1 X1(2) + ag Xo(2z)  ROC; NROCq
Time Shift x[n — k| X(z)z7% and same ROC®
Modulation a" z[n] X(z/a) ROCE® is scaled by |« |
Differentiation nx(n] —z % X(z) and same ROC

in Z-Domain
Conjugation x*[n] X*(z*) and same ROC
Convolution x[n] ® hin] X(2)-H(2) ROC; NROCq

“The actual ROC of the result of an operation may be larger than the one provided in the
table. Check the common literature on z-transforms for the details.

®Same ROC possibly except z = 0 if k > 0.

“If the original ROC of X(z) is given by m1 < |z| < r2 then the scaled ROC of X(z/a) is
given by |a|r < |z| < |a]|rs




ROBERT M. NICKEL SIGNALS & SYSTEMS HANDOUT #4

H-4.7 DLTI SYSTEMS AND THE Z-TRANSFORM:

H-4.7.1 Transfer Functions and BIBO Stable Systems:

Let H(z) = Z{h[n]} denote the z-transform of the impulse response h[n] of a
DLTT system. H(z) is called the transfer function of the DLTT system. A DLTI
system is BIBO stable if the unit circle (| z| = 1) is contained in the ROC of its
transfer function H(z).

H-4.7.2 Linear Constant Coefficient Difference Equations:

Every linear constant coefficient difference equation with input z[n] and output
y[n] establishes a causal linear time-invariant system.

yln] = —aryn —1] —agyn —2] — ...
...—anyn—N]+byzn]+bixn—1]+byxn—2]+...
..+ byxin— M]

By transforming the difference equation into the z-domain we obtain the transfer
function H(z) of the associated DLTT system. The transfer function of a linear
constant coefficient difference equation is rational in variable z:

Hz) = Y(z) _ bo+biz b +bez 24+ ... +byz M
X(2) l4+a1z7 +agz24+...+anzN

Since H(z) is the transfer function of a causal system we do not need to explicitly
provide its ROC. Furthermore, we can write every rational transfer function of the
form above in terms of its poles p; (for i = 1... N) and zeros z; (fori =1... M).

2) = by - z(N=M) (z—21)(z—22)...(2 — 2m)
= (z—p1)(z—p2)...(z — pN)

The term bg is often referred to as the gain of the system. Note, however, that
bo is usually not equal to the DC gain or the high-frequency gain of a system!

H-4.7.3 Stability of Causal DLTI Systems with Rational Transfer Functions:

A causal DLTT system with a rational transfer function H(z) is stable if and
only if the magnitude of all of its poles is strictly smaller than one (|p;| < 1 for
i=1...N), ie. if all poles are strictly inside of the unit circle.

H-4.7.4 System 1/O Description in the Z-Domain:

Due to the convolution theorem of the z-transform we can find the output y[n]
of a DLTT system for a given input x[n| conveniently in the Z-Domain:

Y(z) = Z{yln]} = H(2) - X(2) = Z{h[n] } - Z{z[n] }.

If Y(2) is rational then we can find its inverse transform y[n| via a partial fraction
expansion in z~! and a table lookup.
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H-4.8 THE DiSCRETE-TIME FOURIER TRANSFORM (DTFT):

H-4.8.1 Definition of the Discrete-Time Fourier Transform:
The discrete-time Fourier transform (DTFT) and its inverse are defined by

X(w) =DTFT{z[n]} = Y a[n]e "

n=—0oo

and z[n) =DTFT Y X(w)} = = X(w) ™ dw.

2w

The existence of the discrete-time Fourier transform is guaranteed for absolutely
summable signals. For other signals meaningful definitions for the DTFT may
be found, but the existence is not guaranteed in general.

H-4.8.2 Some Elementary DTFT Identities:

z[n] = DTFT Y X(w)} X(w) = DTFT{z[n]}
zln] =1 X(w) =210 0w — 27k)
zn] = 8[n — k] X(w) = e dek
2[n] = edwon X(w) =210 8w —wp — 27k)
z[n] = pln] X(w) = 155 + 7 e o0 (w — 27k)
2ln] = o ufn] with || <1 X(w)= 1= ie_jw
={ & s o - S
ool ={ B o+ () = i/z E E i g EE
X(w) =Y oo X(w — 2k)
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Note that we can directly derive the DTFT X (w) of a signal z[n] from its z-
transform X (z) if the ROC of X (z) contains the unit circle.

X(w) = X(2) | yeeiw if ¢ € ROC for w € [—m,7]

There is an ambiguity in our notation for the z-transform X(z) and the DTFT
X(w). The distinction is achieved with the name of the independent variable:
(z) for the z-transform and (w) for the DTFT.

H-4.8.3 Properties of the DTFT:

Operation z[n] = DTFT Y X (w)} X(w) = DTFT{z[n]}
Linearity aq z1[n] + ag xa[n| a1 X (w) + ag Xo(w)
Time Shift z[n — k] X(w) e vk
Frequency Shift x[n] eJwon X(w — wo)
Time Reversal x[—n] X(—w)
Conjugation x*[n] X*(~w)
Frequency nxn] L X(w)
Differentiation

Convolution x[n] ® hin] X(w) - Hw)
Cross-Correlation x[n] ® y*[—n] X(w) - Y*(w)
Multiplication z[n] - y[n] = for X(A)Y(w = A)dA

10



