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H-4.1 Elementary Discrete-Domain Functions (Sequences):

Discrete-domain functions are defined for n ∈ Z.

H-4.1.1 Sequence Notation:

We use the following notation to indicate the elements of a sequence x[n] between
index nL and index nH :

x[n] = {x[nL], x[nL + 1], . . . , x[nH − 1], x[nH ] }.

The elements outside of the given range are assumed to be zero (unless stated
otherwise). The element that is associated with index n = 0 is indicated with an
arrow:

x[n] = { . . . , x[−2], x[−1], x[0]
↑

, x[1], x[2], . . . }.

If the arrow is omitted then the first given element in the sequence is assumed
to be the element at index zero x[n] = {x[0], x[1], x[2], . . . }.
H-4.1.2 Step Sequence:

μ[n] =
{

0 for n < 0
1 for n ≥ 0

H-4.1.3 Kronecker Delta Sequence:

δ[n] =
{

1 for n = 0
0 for n �= 0

H-4.2 Classification of Discrete-Domain Signals:

We consider discrete-domain signals x[n] that are defined for n ∈ Z. The range of discrete-
domain signals may be real (x[n] ∈ R ) or complex (x[n] ∈ C ).

H-4.2.1 Periodic Signals:

A discrete-domain signal x[n] is periodic with period N if there is a N ∈ Z such
that x[n] = x[n − N ] for all n ∈ Z.

H-4.2.2 Symmetric Signals:

A discrete-domain signal x[n] is of even symmetry if x[n] = x[−n]. It is of odd
symmetry if x[n] = −x[−n]. A (complex-valued) signal is of even Hermitian
symmetry if x[n] = x∗[−n]. It is of odd Hermitian symmetry if x[n] = −x∗[−n].
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H-4.2.3 Symmetry Decompositions:

A discrete-domain signal x[n] can be decomposed into its

• even part 1
2 (x[n] + x[−n] )

• odd part 1
2 (x[n] − x[−n] )

• conjugate symmetric part 1
2 (x[n]+x∗[−n] ) (even Hermitian symmetry)

• conjugate antisymmetric part 1
2 (x[n]−x∗[−n] ) (odd Hermitian symmetry).

H-4.2.4 Bounded Signals:

A discrete-domain signal x[n] is bounded if |x[n] | ≤ Bx < ∞ for some finite
Bx ∈ R

+. (In writing Bx we imply the smallest number such that |x[n] | ≤ Bx.)

H-4.2.5 Energy Signals:

A discrete-domain signal x[n] is an energy signal or square-summable signal if
its energy Ex is finite.

Ex =
∞∑

n=−∞
|x[n] |2 < ∞

H-4.2.6 Power Signals:

A discrete-domain signal x[n] is a power signal if its power Px is finite.

Px = lim
K →∞

1
2K+1

K∑
n=−K

|x[n] |2 < ∞

A periodic signal x[n] with period N is a power signal with Px = 1
N

∑N−1
n=0 |x[n] |2.

H-4.2.7 Absolutely Summable Signals:

A discrete-domain signal x[n] is absolutely summable if

Sx =
∞∑

n=−∞
|x[n] | < ∞.

H-4.2.8 Finite Length Signals:

A discrete-domain signal x[n] is of finite length if there exists a n1 and a n2 with
n1 ≤ n2 such that x[n] = 0 for all n < n1 and n > n2. Let ñ1 denote the largest
possible n1 such that x[n] = 0 for all n < ñ1 and let ñ2 denote the smallest
possible n2 such that x[n] = 0 for all n > ñ2 then the length of x[n] is defined
by:

Lx = ñ2 − ñ1 + 1.

Note that the length of a signal x[n] that is identically equal to zero for all n ∈ Z

is not defined!
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H-4.2.9 Causal and Anti-Causal Signals:

A discrete-domain signal x[n] is causal if x[n] = 0 for all n < 0. It is anticausal
if x[n] = 0 for all n > 0.

H-4.3 Elementary Discrete-Domain Signal Operations:

H-4.3.1 Convolution:

The discrete-domain convolution of two signals x[n] and h[n] is defined by

y[n] = h[n] � x[n] =
∞∑

k=−∞
h[k] x[n − k].

Convolution generally involves folding, shifting, multiplication, and summation.

H-4.3.2 Properties of Convolution:

The discrete-domain convolution operator � has the following properties:

a) Commutativity: x[n] � h[n] = h[n] � x[n]
b) Distributivity: x[n] � (h1[n] + h2[n]) = x[n] � h1[n] + x[n] � h2[n]
c) Associativity: (x1[n] � x2[n]) � x3[n] = x1[n] � (x2[n] � x3[n])
d) Shift Property: h[n] � x[n] = y[n] ⇒ h[n − k] � x[n] = y[n − k]
e) Convolution Length: y[n] = h[n] � x[n] ⇒ Ly ≤ Lh + Lx − 1

H-4.3.3 Elementary Convolution Identities:

a) x[n] � δ[n] = x[n] (i.e. x[n] =
∑∞

k=−∞ x[k] δ[n − k] )
b) μ[n] � μ[n] = (n + 1)μ[n]

H-4.3.4 Properties of the Kronecker Delta Sequence:

a) Sum:
∑∞

n=−∞ δ[n] = 1
b) Exchange: x[n] δ[n − k] = x[k] δ[n − k]
c) Scaling: δ[K n] = δ[n] for K ∈ Z

e) Convolution: x[n] � δ[n − k] = x[n − k]
f) Symmetry: δ[n] = δ[−n]

H-4.3.5 Deterministic Correlation:

The (deterministic) correlation of two energy signals x[n] and y[n] is defined by

rxy[k] =
∞∑

n=−∞
x[n + k] y∗[n] = x[k] � y∗[−k].

For two power signals x[n] and y[n] we define respectively

r̃xy[k] = lim
K →∞

1
2K+1

K∑
n=−K

x[n + k] y∗[n].
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For two signals x[n] and y[n] that are both periodic with period N we obtain

r̃xy[k] =
1
N

N−1∑
n=0

x[n + k] y∗[n].

H-4.4 Classification of Discrete-Domain Systems:

We consider discrete-domain systems T with input x[n] and output y[n].

y[n] = T{x[n] }

H-4.4.1 Linear Systems:

A discrete-domain system T is linear if for any two arbitrary input signals x1[n],
x2[n] and for any two constants α1, α2 ∈ R (or C) we have

T{α1 x1[n] + α2 x2[n] } = α1 T{x1[n] } + α2 T{x2[n] }.
H-4.4.2 Time-Invariant Systems:

A discrete-domain system T is time-invariant if y[n] = T{x[n] } implies that
y[n − k] = T{x[n − k] } for any arbitrary input signal x[n] any arbitrary delay
k ∈ R.

H-4.4.3 Causal Systems:

A discrete-domain system T is causal if the output y[n] at time n only depends
on current and past input values x[k] for k ≤ n and/or only depends on past
output values y[k] for k < n.

H-4.4.4 BIBO Stable Systems:

A discrete-domain system T is bounded-input bounded-output (BIBO) stable if any
bounded input |x[n] | ≤ Bx < ∞ leads to a bounded output | y[n] | ≤ By < ∞.

H-4.4.5 Passive and Lossless Systems:

A system with arbitrary square summable input x[n] and output y[n] is called
passive if Ey ≤ Ex. Systems for which Ey = Ex for any square summable input
x[n] are called lossless.

H-4.4.6 Up-Sampling and Down-Sampling Systems:

A discrete-domain system that inserts L−1 (L ∈ N) zeros between every element
of an input sequence x[n] is called an up-sampling system of order L:

y[n] =
{

x[ n/L ] for n = L k with k ∈ Z

0 otherwise

A discrete-domain system is called a down-sampling system of order L if it dis-
cards all elements of input x[n] that are not indexed by a multiple of L:

y[n] = x[ n · L ]
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H-4.5 Discrete Linear Time-Invariant (DLTI) Systems:

H-4.5.1 Impulse Response:

Let T denote a DLTI system. If we let the impulse response h[n] of T be defined
as h[n] = T{ δ[n] } then the response of T to an arbitrary input x[n] is given by

y[n] = x[n] � h[n].

H-4.5.2 Causal DLTI Systems:

A DLTI system T is causal if and only if its impulse response h[n] is a causal
signal:

h[n] = 0 for n < 0.

H-4.5.3 BIBO Stable DLTI Systems:

A DLTI system T is BIBO stable if and only if its impulse response h[n] is
absolutely summable, i.e. if Sh < ∞.

H-4.5.4 FIR and IIR Systems:

A DLTI system is called a finite impulse response system (FIR system) if the
length of the impulse response h[n] is finite, i.e. if Lh < ∞. A DLTI system is
called an infinite impulse response system (IIR system) if Lh = ∞.

H-4.5.5 Eigenfunctions of DLTI Systems:

Input functions of the form x[n] = zn
0 are eigenfunctions of DLTI systems.

y[n] = T{ zn
0 } = h[n] � zn

0 = zn
0 · ∑∞

k=−∞ h[k] z−k
0︸ ︷︷ ︸

= H(z0)

= zn
0 · H(z0)

When passed through a DLTI system, these eigenfunctions remain unchanged up
to a constant (possibly complex) gain H(z0).

H-4.6 The Z-Transform:

H-4.6.1 Definition of the (Bilateral) Z-Transform:

The (bilateral) z-transform X(z) of signal x[n] is defined by

X(z) = Z{x[n] } =
∞∑

n=−∞
x[n] z−n

with ROC: 0 ≤ r1 < | z | < r2 ≤ +∞.

The z-transform always consists of both the complex function X(z) and its as-
sociated region of convergence (ROC). The region of convergence is the set of
all complex values z for which the transform summation converges. The ROC is
generally a ring in the complex plane, bounded by an inner radius r1 and an outer
radius r2 (r1, r2 ∈ R

+). The radius r1 is determined by the rate of exponential
increase/decrease of the causal part of x[n]. Similarly, r2 is determined by the
rate of exponential increase/decrease of the anti-causal part of x[n].
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H-4.6.2 The Inverse Z-Transform:

The inverse z-transform is defined as

x[n] = Z−1{X(z) } =
1

2 π j

∮
C

X(z) zn−1 dz

in which the integration contour C is given by

C: r ej ω

∣∣∣∣∣∣
ω = +π

ω = −π
for some fixed r ∈ ] r1, r2 [.

H-4.6.3 Complex Contour Integration:

If a sufficiently smooth complex contour C can be described with a parameter
description p(ϕ) ∈ C for ϕ ∈ [ a, b ] then

∫
C F (s) ds =

∫ b
a F (p(ϕ)) p′(ϕ) dϕ. A com-

plex contour integral can thus be reduced to a conventional Riemann integral.

H-4.6.4 Five Elementary Z-Transform Identities:

x[n] = Z−1{X(z) } X(z) = Z{x[n] } ROC:

δ[n] 1 z ∈ C

αn μ[n]
z

z − α
| z | > |α |

−αn μ[−n − 1]
z

z − α
| z | < |α |

n αn μ[n]
α z

(z − α)2
| z | > |α |

−n αn μ[−n − 1]
α z

(z − α)2
| z | < |α |

H-4.6.5 The Z-Transform of Causal Signals:

Note that every valid z-transform expression X(z) has only one causal inverse
transform x[n]. We do not need to know the ROC explicitly to find the correct
causal inverse of X(z).
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H-4.6.6 A Short Table of Z-Transforms of Causal Signals:

x[n] = Z−1{X(z) } X(z) = Z{x[n] } ROC:

μ[n]
z

z − 1
| z | > 1

αn cos(ω0 n)μ[n]
z2 − αz cos ω0

z2 − 2αz cos ω0 + α2
| z | > |α |

αn sin(ω0 n)μ[n]
αz sinω0

z2 − 2αz cos ω0 + α2
| z | > |α |

H-4.6.7 Properties of the Bilateral Z-Transform:

Operation x[n] = Z−1{X(z) } X(z) = Z{x[n] } and ROCa

Linearity α1 x1[n] + α2 x2[n] α1 X1(z) + α2 X2(z) ROC1 ∩ ROC2

Time Shift x[n − k] X(z) z−k and same ROCb

Modulation αn x[n] X(z/α) ROCc is scaled by |α |

Differentiation n x[n] −z d
dz X(z) and same ROC

in Z-Domain

Conjugation x∗[n] X∗(z∗) and same ROC

Convolution x[n] � h[n] X(z) · H(z) ROC1 ∩ ROC2

aThe actual ROC of the result of an operation may be larger than the one provided in the
table. Check the common literature on z-transforms for the details.

bSame ROC possibly except z = 0 if k > 0.
cIf the original ROC of X(z) is given by r1 < | z | < r2 then the scaled ROC of X(z/α) is

given by |α | r1 < | z | < |α | r2
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H-4.7 DLTI Systems and the Z-Transform:

H-4.7.1 Transfer Functions and BIBO Stable Systems:

Let H(z) = Z{h[n] } denote the z-transform of the impulse response h[n] of a
DLTI system. H(z) is called the transfer function of the DLTI system. A DLTI
system is BIBO stable if the unit circle (| z | = 1) is contained in the ROC of its
transfer function H(z).

H-4.7.2 Linear Constant Coefficient Difference Equations:

Every linear constant coefficient difference equation with input x[n] and output
y[n] establishes a causal linear time-invariant system.

y[n] = −a1 y[n − 1] − a2 y[n − 2] − . . .

. . . − aN y[n − N ] + b0 x[n] + b1 x[n − 1] + b2 x[n − 2] + . . .

. . . + bM x[n − M ]

By transforming the difference equation into the z-domain we obtain the transfer
function H(z) of the associated DLTI system. The transfer function of a linear
constant coefficient difference equation is rational in variable z:

H(z) =
Y(z)
X(z)

=
b0 + b1z

−1 + b2z
−2 + . . . + bMz−M

1 + a1z−1 + a2z−2 + . . . + aNz−N

Since H(z) is the transfer function of a causal system we do not need to explicitly
provide its ROC. Furthermore, we can write every rational transfer function of the
form above in terms of its poles pi (for i = 1 . . . N) and zeros zi (for i = 1 . . . M).

H(z) = b0 · z(N−M) · (z − z1)(z − z2) . . . (z − zM )
(z − p1)(z − p2) . . . (z − pN )

The term b0 is often referred to as the gain of the system. Note, however, that
b0 is usually not equal to the DC gain or the high-frequency gain of a system!

H-4.7.3 Stability of Causal DLTI Systems with Rational Transfer Functions:

A causal DLTI system with a rational transfer function H(z) is stable if and
only if the magnitude of all of its poles is strictly smaller than one (| pi | < 1 for
i = 1 . . . N), i.e. if all poles are strictly inside of the unit circle.

H-4.7.4 System I/O Description in the Z-Domain:

Due to the convolution theorem of the z-transform we can find the output y[n]
of a DLTI system for a given input x[n] conveniently in the Z-Domain:

Y(z) = Z{ y[n] } = H(z) · X(z) = Z{h[n] } · Z{x[n] }.

If Y(z) is rational then we can find its inverse transform y[n] via a partial fraction
expansion in z−1 and a table lookup.
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H-4.8 The Discrete-Time Fourier Transform (DTFT):

H-4.8.1 Definition of the Discrete-Time Fourier Transform:

The discrete-time Fourier transform (DTFT) and its inverse are defined by

X(ω) = DTFT{x[n] } =
∞∑

n=−∞
x[n] e−jωn

and x[n] = DTFT−1{X(ω) } = 1
2π

∫
2π

X(ω) ejωn dω.

The existence of the discrete-time Fourier transform is guaranteed for absolutely
summable signals. For other signals meaningful definitions for the DTFT may
be found, but the existence is not guaranteed in general.

H-4.8.2 Some Elementary DTFT Identities:

x[n] = DTFT−1{X(ω) } X(ω) = DTFT{x[n] }

x[n] = 1 X(ω) = 2π
∑∞

k=−∞δ(ω − 2πk)

x[n] = δ[n − k] X(ω) = e−jωk

x[n] = ejω0n X(ω) = 2π
∑∞

k=−∞ δ(ω − ω0 − 2πk)

x[n] = μ[n] X(ω) = 1
1−e−jω + π

∑∞
k=−∞δ(ω − 2πk)

x[n] = αn μ[n] with |α | < 1 X(ω) =
1

1 − α e−jω

x[n] =
{

1 for |n | ≤ K
0 for |n | > K

X(ω) =
sin((K + 1

2)ω)
sin(ω

2 )

x[n] =
{

ω0/π for n = 0
sin(ω0n)

πn for n �= 0
X̃(ω) =

⎧⎨
⎩

1 for |ω | < ω0

1/2 for |ω | = ω0

0 for |ω | > ω0

X(ω) =
∑∞

k=−∞ X̃(ω − 2πk)
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Note that we can directly derive the DTFT X(ω) of a signal x[n] from its z-
transform X(z) if the ROC of X(z) contains the unit circle.

X(ω) = X(z) | z=ejω if ejω ∈ ROC for ω ∈ [−π, π]

There is an ambiguity in our notation for the z-transform X(z) and the DTFT
X(ω). The distinction is achieved with the name of the independent variable:
(z) for the z-transform and (ω) for the DTFT.

H-4.8.3 Properties of the DTFT:

Operation x[n] = DTFT−1{X(ω) } X(ω) = DTFT{x[n] }

Linearity α1 x1[n] + α2 x2[n] α1 X1(ω) + α2 X2(ω)

Time Shift x[n − k] X(ω) e−jωk

Frequency Shift x[n] ejω0n X(ω − ω0)

Time Reversal x[−n] X(−ω)

Conjugation x∗[n] X∗(−ω)

Frequency n x[n] j d
dω X(ω)

Differentiation

Convolution x[n] � h[n] X(ω) · H(ω)

Cross-Correlation x[n] � y∗[−n] X(ω) · Y ∗(ω)

Multiplication x[n] · y[n] 1
2π

∫
2π X(λ)Y(ω − λ) dλ
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