Signals & Systems Handout #4

H-4.1 ELEMENTARY DISCRETE-DOMAIN FUNCTIONS (SEQUENCES):

Discrete-domain functions are defined for $n \in \mathbb{Z}$.

H-4.1.1 Sequence Notation:

We use the following notation to indicate the elements of a sequence x[n] between index n_L and index n_H :

$$x[n] = \{ x[n_L], x[n_L+1], \dots, x[n_H-1], x[n_H] \}.$$

The elements outside of the given range are assumed to be zero (unless stated otherwise). The element that is associated with index n = 0 is indicated with an arrow:

$$x[n] = \{ \dots, x[-2], x[-1], x[0], x[1], x[2], \dots \}.$$

If the arrow is omitted then the first given element in the sequence is assumed to be the element at index zero $x[n] = \{x[0], x[1], x[2], ...\}$.

H-4.1.2 Step Sequence:

$$\mu[n] = \begin{cases} 0 & \text{for} \quad n < 0\\ 1 & \text{for} \quad n \ge 0 \end{cases}$$

H-4.1.3 Kronecker Delta Sequence:

$$\delta[n] = \begin{cases} 1 & \text{for} \quad n = 0\\ 0 & \text{for} \quad n \neq 0 \end{cases}$$

H-4.2 <u>Classification of Discrete-Domain Signals</u>:

We consider discrete-domain signals x[n] that are defined for $n \in \mathbb{Z}$. The range of discretedomain signals may be real $(x[n] \in \mathbb{R})$ or complex $(x[n] \in \mathbb{C})$.

H-4.2.1 Periodic Signals:

A discrete-domain signal x[n] is *periodic* with *period* N if there is a $N \in \mathbb{Z}$ such that x[n] = x[n - N] for all $n \in \mathbb{Z}$.

H-4.2.2 Symmetric Signals:

A discrete-domain signal x[n] is of even symmetry if x[n] = x[-n]. It is of odd symmetry if x[n] = -x[-n]. A (complex-valued) signal is of even Hermitian symmetry if $x[n] = x^*[-n]$. It is of odd Hermitian symmetry if $x[n] = -x^*[-n]$.

H-4.2.3 Symmetry Decompositions:

A discrete-domain signal x[n] can be decomposed into its

- even part $\frac{1}{2}(x[n] + x[-n])$ • odd part $\frac{1}{2}(x[n] - x[-n])$
- conjugate symmetric part $\frac{1}{2}(x[n]+x^*[-n])$ (even Hermitian symmetry)
- conjugate antisymmetric part $\frac{1}{2}(x[n]-x^*[-n])$ (odd Hermitian symmetry).

H-4.2.4 Bounded Signals:

A discrete-domain signal x[n] is bounded if $|x[n]| \leq \mathcal{B}_x < \infty$ for some finite $\mathcal{B}_x \in \mathbb{R}^+$. (In writing \mathcal{B}_x we imply the smallest number such that $|x[n]| \leq \mathcal{B}_x$.)

H-4.2.5 Energy Signals:

A discrete-domain signal x[n] is an *energy signal* or square-summable signal if its energy \mathcal{E}_x is finite.

$$\mathcal{E}_x = \sum_{n = -\infty}^{\infty} |x[n]|^2 < \infty$$

H-4.2.6 Power Signals:

A discrete-domain signal x[n] is a *power signal* if its power \mathcal{P}_x is finite.

$$\mathcal{P}_x = \lim_{K \to \infty} \frac{1}{2K+1} \sum_{n=-K}^{K} |x[n]|^2 < \infty$$

A periodic signal x[n] with period N is a power signal with $\mathcal{P}_x = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2$.

H-4.2.7 Absolutely Summable Signals:

A discrete-domain signal x[n] is absolutely summable if

$$\mathcal{S}_x = \sum_{n = -\infty}^{\infty} |x[n]| < \infty.$$

H-4.2.8 Finite Length Signals:

A discrete-domain signal x[n] is of *finite length* if there exists a n_1 and a n_2 with $n_1 \leq n_2$ such that x[n] = 0 for all $n < n_1$ and $n > n_2$. Let \tilde{n}_1 denote the largest possible n_1 such that x[n] = 0 for all $n < \tilde{n}_1$ and let \tilde{n}_2 denote the smallest possible n_2 such that x[n] = 0 for all $n > \tilde{n}_2$ then the length of x[n] is defined by:

$$\mathcal{L}_x = \tilde{n}_2 - \tilde{n}_1 + 1.$$

Note that the length of a signal x[n] that is identically equal to zero for all $n \in \mathbb{Z}$ is not defined!

H-4.2.9 Causal and Anti-Causal Signals:

A discrete-domain signal x[n] is causal if x[n] = 0 for all n < 0. It is anticausal if x[n] = 0 for all n > 0.

H-4.3 ELEMENTARY DISCRETE-DOMAIN SIGNAL OPERATIONS:

H-4.3.1 Convolution:

The discrete-domain *convolution* of two signals x[n] and h[n] is defined by

$$y[n] = h[n] \circledast x[n] = \sum_{k=-\infty}^{\infty} h[k] x[n-k].$$

Convolution generally involves folding, shifting, multiplication, and summation.

H-4.3.2 Properties of Convolution:

The discrete-domain *convolution* operator \circledast has the following properties:

- a) Commutativity: $x[n] \circledast h[n] = h[n] \circledast x[n]$ b) Distributivity: $x[n] \circledast (h_1[n] + h_2[n]) = x[n] \circledast h_1[n] + x[n] \circledast h_2[n]$
- c) Associativity: $(x_1[n] \circledast x_2[n]) \circledast x_3[n] = x_1[n] \circledast (x_2[n] \circledast x_3[n])$
- d) Shift Property: $h[n] \circledast x[n] = y[n] \Rightarrow h[n-k] \circledast x[n] = y[n-k]$
- e) Convolution Length: $y[n] = h[n] \circledast x[n] \Rightarrow \mathcal{L}_y \leq \mathcal{L}_h + \mathcal{L}_x 1$

H-4.3.3 Elementary Convolution Identities:

a) $x[n] \circledast \delta[n] = x[n]$ (i.e. $x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$) b) $\mu[n] \circledast \mu[n] = (n+1) \mu[n]$

H-4.3.4 Properties of the Kronecker Delta Sequence:

- a) Sum: $\sum_{n=-\infty}^{\infty} \delta[n] = 1$
- b) Exchange: $\overline{x[n]}\,\delta[n-k] = x[k]\,\delta[n-k]$
- c) Scaling: $\delta[Kn] = \delta[n]$ for $K \in \mathbb{Z}$
- e) Convolution: $x[n] \circledast \delta[n-k] = x[n-k]$
- f) Symmetry: $\delta[n] = \delta[-n]$

H-4.3.5 Deterministic Correlation:

The *(deterministic) correlation* of two energy signals x[n] and y[n] is defined by

$$r_{xy}[k] = \sum_{n=-\infty}^{\infty} x[n+k] y^*[n] = x[k] \circledast y^*[-k].$$

For two power signals x[n] and y[n] we define respectively

$$\tilde{r}_{xy}[k] = \lim_{K \to \infty} \frac{1}{2K+1} \sum_{n=-K}^{K} x[n+k] y^*[n].$$

For two signals x[n] and y[n] that are both periodic with period N we obtain

$$\tilde{r}_{xy}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n+k] y^*[n].$$

H-4.4 CLASSIFICATION OF DISCRETE-DOMAIN SYSTEMS:

We consider discrete-domain systems \mathfrak{T} with input x[n] and output y[n].

$$y[n] = \mathfrak{T}\{x[n]\}$$

H-4.4.1 Linear Systems:

A discrete-domain system \mathfrak{T} is *linear* if for any two arbitrary input signals $x_1[n]$, $x_2[n]$ and for any two constants $\alpha_1, \alpha_2 \in \mathbb{R}$ (or \mathbb{C}) we have

$$\mathfrak{T}\{\alpha_1 x_1[n] + \alpha_2 x_2[n]\} = \alpha_1 \mathfrak{T}\{x_1[n]\} + \alpha_2 \mathfrak{T}\{x_2[n]\}.$$

H-4.4.2 Time-Invariant Systems:

A discrete-domain system \mathfrak{T} is *time-invariant* if $y[n] = \mathfrak{T}\{x[n]\}$ implies that $y[n-k] = \mathfrak{T}\{x[n-k]\}$ for any arbitrary input signal x[n] any arbitrary delay $k \in \mathbb{R}$.

H-4.4.3 Causal Systems:

A discrete-domain system \mathfrak{T} is *causal* if the output y[n] at time n only depends on current and past input values x[k] for $k \leq n$ and/or only depends on past output values y[k] for k < n.

H-4.4.4 BIBO Stable Systems:

A discrete-domain system \mathfrak{T} is bounded-input bounded-output (BIBO) stable if any bounded input $|x[n]| \leq \mathcal{B}_x < \infty$ leads to a bounded output $|y[n]| \leq \mathcal{B}_y < \infty$.

H-4.4.5 Passive and Lossless Systems:

A system with arbitrary square summable input x[n] and output y[n] is called passive if $\mathcal{E}_y \leq \mathcal{E}_x$. Systems for which $\mathcal{E}_y = \mathcal{E}_x$ for any square summable input x[n] are called *lossless*.

H-4.4.6 Up-Sampling and Down-Sampling Systems:

A discrete-domain system that inserts L-1 ($L \in \mathbb{N}$) zeros between every element of an input sequence x[n] is called an *up-sampling system* of order L:

$$y[n] = \begin{cases} x[n/L] & \text{for } n = Lk & \text{with } k \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases}$$

A discrete-domain system is called a *down-sampling system* of order L if it discards all elements of input x[n] that are not indexed by a multiple of L:

$$y[n] = x[n \cdot L]$$

H-4.5 DISCRETE LINEAR TIME-INVARIANT (DLTI) SYSTEMS:

H-4.5.1 Impulse Response:

Let \mathfrak{T} denote a DLTI system. If we let the *impulse response* h[n] of \mathfrak{T} be defined as $h[n] = \mathfrak{T}\{\delta[n]\}$ then the response of \mathfrak{T} to an arbitrary input x[n] is given by

$$y[n] = x[n] \circledast h[n].$$

H-4.5.2 Causal DLTI Systems:

A DLTI system \mathfrak{T} is *causal* if and only if its *impulse response* h[n] is a causal signal:

$$h[n] = 0 \quad \text{for} \quad n < 0.$$

H-4.5.3 BIBO Stable DLTI Systems:

A DLTI system \mathfrak{T} is *BIBO stable* if and only if its *impulse response* h[n] is absolutely summable, i.e. if $S_h < \infty$.

H-4.5.4 FIR and IIR Systems:

A DLTI system is called a *finite impulse response system* (FIR system) if the length of the impulse response h[n] is finite, i.e. if $\mathcal{L}_h < \infty$. A DLTI system is called an *infinite impulse response system* (IIR system) if $\mathcal{L}_h = \infty$.

H-4.5.5 Eigenfunctions of DLTI Systems:

Input functions of the form $x[n] = z_0^n$ are eigenfunctions of DLTI systems.

$$y[n] = \mathfrak{T}\{z_0^n\} = h[n] \circledast z_0^n = z_0^n \cdot \underbrace{\sum_{k=-\infty}^{\infty} h[k] \, z_0^{-k}}_{=H(z_0)} = z_0^n \cdot H(z_0)$$

When passed through a DLTI system, these eigenfunctions remain unchanged up to a constant (possibly complex) gain $H(z_0)$.

H-4.6 <u>The Z-Transform</u>:

H-4.6.1 Definition of the (Bilateral) Z-Transform:

The *(bilateral) z-transform* X(z) of signal x[n] is defined by

$$X(z) = \mathcal{Z}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

with ROC: $0 \le r_1 < |z| < r_2 \le +\infty$

The z-transform always consists of both the complex function X(z) and its associated region of convergence (ROC). The region of convergence is the set of all complex values z for which the transform summation converges. The ROC is generally a ring in the complex plane, bounded by an inner radius r_1 and an outer radius r_2 ($r_1, r_2 \in \mathbb{R}^+$). The radius r_1 is determined by the rate of exponential increase/decrease of the causal part of x[n]. Similarly, r_2 is determined by the rate of exponential increase/decrease of the anti-causal part of x[n]. H-4.6.2 The Inverse Z-Transform:

The *inverse z-transform* is defined as

$$x[n] = \mathcal{Z}^{-1}\{X(z)\} = \frac{1}{2\pi j} \oint_{\mathcal{C}} X(z) \, z^{n-1} \, dz$$

in which the integration contour \mathcal{C} is given by

$$\mathcal{C}: r e^{j\omega} \begin{vmatrix} \omega &= +\pi \\ & \text{for some fixed} \quad r \in] r_1, r_2 [. \\ \omega &= -\pi \end{vmatrix}$$

H-4.6.3 Complex Contour Integration:

If a sufficiently smooth complex contour \mathcal{C} can be described with a parameter description $p(\varphi) \in \mathbb{C}$ for $\varphi \in [a, b]$ then $\int_{\mathcal{C}} F(s) ds = \int_a^b F(p(\varphi)) p'(\varphi) d\varphi$. A complex contour integral can thus be reduced to a conventional Riemann integral.

H-4.6.4 Five Elementary Z-Transform Identities:

$x[n] = \mathcal{Z}^{-1}\{X(z)\}$	$X(z) = \mathcal{Z}\{x[n]\}$	ROC:
$\delta[n]$	1	$z \in \mathbb{C}$
$lpha^n\mu[n]$	$\frac{z}{z-\alpha}$	$ z > \alpha $
$-\alpha^n \mu[-n-1]$	$\frac{z}{z-\alpha}$	$ z < \alpha $
$n lpha^n \mu[n]$	$\frac{\alpha z}{(z-\alpha)^2}$	$ z > \alpha $
$-n\alpha^n\mu[-n-1]$	$\frac{\alpha z}{(z-\alpha)^2}$	$ z < \alpha $

H-4.6.5 The Z-Transform of Causal Signals:

Note that every valid z-transform expression X(z) has only one causal inverse transform x[n]. We do not need to know the ROC explicitly to find the correct causal inverse of X(z).

$x[n] = \mathcal{Z}^{-1}\{X(z)\}$	$X(z) = \mathcal{Z}\{x[n]\}$	ROC:
$\mu[n]$	$\frac{z}{z-1}$	z > 1
$\alpha^n \cos(\omega_0 n) \mu[n]$	$\frac{z^2 - \alpha z \cos \omega_0}{z^2 - 2\alpha z \cos \omega_0 + \alpha^2}$	$ z > \alpha $
$\alpha^n \sin(\omega_0 n) \mu[n]$	$\frac{\alpha z \sin \omega_0}{z^2 - 2\alpha z \cos \omega_0 + \alpha^2}$	$ z > \alpha $

H-4.6.6 A Short Table of Z-Transforms of Causal Signals:

H-4.6.7 Properties of the Bilateral Z-Transform:

Operation	$x[n] = \mathcal{Z}^{-1}\{X(z)\}$	$X(z) = \mathcal{Z} \{ x[n] \}$ and ROC^a
Linearity	$\alpha_1 x_1[n] + \alpha_2 x_2[n]$	$\alpha_1 X_1(z) + \alpha_2 X_2(z) \operatorname{ROC}_1 \cap \operatorname{ROC}_2$
Time Shift	x[n-k]	$X(z) z^{-k}$ and same ROC^b
Modulation	$lpha^n x[n]$	$X(z/\alpha)$ ROC ^c is scaled by $ \alpha $
Differentiation in Z-Domain	nx[n]	$-z \frac{d}{dz} X(z)$ and same ROC
Conjugation	$x^*[n]$	$X^*(z^*)$ and same ROC
Convolution	$x[n] \circledast h[n]$	$X(z) \cdot H(z) \operatorname{ROC}_1 \cap \operatorname{ROC}_2$

 $[^]a{\rm The}$ actual ROC of the result of an operation may be larger than the one provided in the table. Check the common literature on z-transforms for the details.

^bSame ROC possibly except z = 0 if k > 0.

^cIf the original ROC of X(z) is given by $r_1 < |z| < r_2$ then the scaled ROC of $X(z/\alpha)$ is given by $|\alpha|r_1 < |z| < |\alpha|r_2$

H-4.7 <u>DLTI Systems and the Z-Transform:</u>

H-4.7.1 Transfer Functions and BIBO Stable Systems:

Let $H(z) = \mathcal{Z}\{h[n]\}$ denote the z-transform of the impulse response h[n] of a DLTI system. H(z) is called the *transfer function* of the DLTI system. A DLTI system is *BIBO stable* if the *unit circle* (|z| = 1) is contained in the ROC of its transfer function H(z).

H-4.7.2 Linear Constant Coefficient Difference Equations:

Every linear constant coefficient difference equation with input x[n] and output y[n] establishes a causal linear time-invariant system.

$$y[n] = -a_1 y[n-1] - a_2 y[n-2] - \dots$$

... - $a_N y[n-N] + b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] + \dots$
... + $b_M x[n-M]$

By transforming the difference equation into the z-domain we obtain the *transfer* function H(z) of the associated DLTI system. The transfer function of a linear constant coefficient difference equation is rational in variable z:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}}$$

Since H(z) is the transfer function of a *causal* system we do not need to explicitly provide its ROC. Furthermore, we can write every rational transfer function of the form above in terms of its poles p_i (for i = 1 ... N) and zeros z_i (for i = 1 ... M).

$$H(z) = b_0 \cdot z^{(N-M)} \cdot \frac{(z-z_1)(z-z_2)\dots(z-z_M)}{(z-p_1)(z-p_2)\dots(z-p_N)}$$

The term b_0 is often referred to as the *gain* of the system. Note, however, that b_0 is usually *not* equal to the DC gain or the high-frequency gain of a system!

H-4.7.3 Stability of Causal DLTI Systems with Rational Transfer Functions:

A causal DLTI system with a *rational* transfer function H(z) is stable if and only if the magnitude of all of its poles is strictly smaller than one $(|p_i| < 1 \text{ for } i = 1 \dots N)$, i.e. if all poles are strictly inside of the unit circle.

H-4.7.4 System I/O Description in the Z-Domain:

Due to the convolution theorem of the z-transform we can find the output y[n] of a DLTI system for a given input x[n] conveniently in the Z-Domain:

$$Y(z) = \mathcal{Z}\{y[n]\} = H(z) \cdot X(z) = \mathcal{Z}\{h[n]\} \cdot \mathcal{Z}\{x[n]\}.$$

If Y(z) is rational then we can find its inverse transform y[n] via a partial fraction expansion in z^{-1} and a table lookup.

H-4.8 The Discrete-Time Fourier Transform (DTFT):

H-4.8.1 Definition of the Discrete-Time Fourier Transform:

The discrete-time Fourier transform (DTFT) and its inverse are defined by

$$X(\omega) = \text{DTFT}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

and
$$x[n] = \text{DTFT}^{-1}\{X(\omega)\} = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{j\omega n} d\omega$$

The existence of the discrete-time Fourier transform is guaranteed for absolutely summable signals. For other signals meaningful definitions for the DTFT may be found, but the existence is not guaranteed in general.

H-4.8.2 Some Elementary DTFT Identities:

$x[n] = \mathrm{DTFT}^{-1}\{X(\omega)\}$	$X(\omega) = \mathrm{DTFT}\{x[n]\}$
x[n] = 1	$X(\omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$
$x[n] = \delta[n-k]$	$X(\omega) = e^{-j\omega k}$
$x[n] = e^{j\omega_0 n}$	$X(\omega) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi k)$
$x[n] = \mu[n]$	$X(\omega) = \frac{1}{1 - e^{-j\omega}} + \pi \sum_{k = -\infty}^{\infty} \delta(\omega - 2\pi k)$
$x[n] = \alpha^n \mu[n] \text{with} \alpha < 1$	$X(\omega) = \frac{1}{1 - \alpha e^{-j\omega}}$
$x[n] = \begin{cases} 1 & \text{for } n \le K \\ 0 & \text{for } n > K \end{cases}$	$X(\omega) = \frac{\sin((K + \frac{1}{2})\omega)}{\sin(\frac{\omega}{2})}$
$x[n] = \begin{cases} \omega_0/\pi & \text{for } n = 0\\ \frac{\sin(\omega_0 n)}{\pi n} & \text{for } n \neq 0 \end{cases}$	$\tilde{X}(\omega) = \begin{cases} 1 & \text{for } \omega < \omega_0 \\ 1/2 & \text{for } \omega = \omega_0 \\ 0 & \text{for } \omega > \omega_0 \end{cases}$ $X(\omega) = \sum_{k=-\infty}^{\infty} \tilde{X}(\omega - 2\pi k)$

Note that we can directly derive the DTFT $X(\omega)$ of a signal x[n] from its z-transform X(z) if the ROC of X(z) contains the unit circle.

$$X(\omega) = X(z) |_{z=e^{j\omega}}$$
 if $e^{j\omega} \in \text{ROC}$ for $\omega \in [-\pi, \pi]$

There is an ambiguity in our notation for the z-transform X(z) and the DTFT $X(\omega)$. The distinction is achieved with the name of the independent variable: (z) for the z-transform and (ω) for the DTFT.

Operation	$x[n] = \mathrm{DTFT}^{-1}\{X(\omega)\}$	$X(\omega) = \mathrm{DTFT}\{ x[n] \}$
Linearity	$\alpha_1 x_1[n] + \alpha_2 x_2[n]$	$\alpha_1 X_1(\omega) + \alpha_2 X_2(\omega)$
Time Shift	x[n-k]	$X(\omega) e^{-j\omega k}$
Frequency Shift	$x[n]e^{j\omega_0 n}$	$X(\omega - \omega_0)$
Time Reversal	x[-n]	$X(-\omega)$
Conjugation	$x^*[n]$	$X^*(-\omega)$
Frequency Differentiation	nx[n]	$j rac{d}{d\omega} X(\omega)$
Convolution	$x[n] \circledast h[n]$	$X(\omega)\cdot H(\omega)$
Cross-Correlation	$x[n]\circledast y^*[-n]$	$X(\omega)\cdot Y^*(\omega)$
Multiplication	$x[n] \cdot y[n]$	$\frac{1}{2\pi}\int_{2\pi} X(\lambda)Y(\omega-\lambda) d\lambda$

H-4.8.3 Properties of the DTFT: