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H-5.1 The Dirac Delta Function:

The Dirac delta function δ(t) lies at the heart of modern signals and systems theory. The
term function is technically a misnomer since δ(t) cannot be defined in the sense of an
ordinary function. It represents a member of a broader class of signals called “general-
ized functions” or “distributions.” A rigorous mathematical treatment of distributions is
possible, but not part of this handout.

H-5.1.1 Definition of the Dirac Delta Function:

Consider a pulse function p(t) with
∫∞
−∞ p(t) dt = 1 and such that its weight is

concentrated (in an appropriate mathematical sense) around t = 0, i.e. such that

x(0) = lim
T→ 0

∫ ∞

−∞
x(t) · 1

T p( t
T ) dt (5.1)

for any smooth and well behaved function x(t). We are using the symbol δ(t) as
a notational simplification of equation (5.1):

x(0) =
∫ ∞

−∞
x(t) · δ(t) dt. (5.2)

There is an infinite number of possible pulse functions p(t) that may be used.
We formally write δ(t) = lim

T→ 0

1
T p( t

T ). Examples are:

δ(t) = lim
T→ 0

1
T rect( t

T ) δ(t) = lim
T→ 0

1
T Δ( t

T ) (5.3)

δ(t) = lim
T→ 0

1
T e−π(t/T )2 δ(t) = lim

T→ 0

1
T sinc(π t

T ) (5.4)

Note that for these example pulses we have
∫∞
−∞ rect(t) dt = 1,

∫∞
−∞ Δ(t) dt = 1,∫∞

−∞ e−πt2 dt = 1, and
∫∞
−∞ sinc(πt) dt = 1.

H-5.1.2 Properties of the Dirac Delta Function:

a) Area:
∫∞
−∞ δ(t) dt = 1

b) Sampling:
∫∞
−∞ x(t) δ(t − τ) dt = x(τ)

c) Exchange: x(t) δ(t − τ) = x(τ) δ(t − τ)
d) Scaling: δ(α t) = 1

|α | δ(t)
e) Convolution: x(t) ∗ δ(t − τ) = x(t − τ)
f) Symmetry: δ(t) = δ(−t)
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H-5.1.3 The Fourier Kernel:

The integral 1
2π

∫ +∞
−∞ ejΩt dΩ does not converge in a conventional sense. We can,

however, imbed the integral within the framework of generalized functions:

lim
T→ 0

1
2π

∫ +π/T

−π/T
ejΩt dΩ = lim

T→ 0

1
2π

[
1
j t ejΩt

]+π/T

−π/T
= lim

T→ 0

1
2j [ e

+jπt/T − e−jπt/T ]

π t

= lim
T→ 0

1
T

sin(π t
T )

π t
T

= lim
T→ 0

1
T sinc(π t

T ) = δ(t) (5.5)

⇒ 1
2π

∫ +∞

−∞
ejΩt dΩ = δ(t). (5.6)

By substituting t − τ for t we immediately get:

1
2π

∫ +∞

−∞
ejΩ(t−τ) dΩ = 1

2π

∫ +∞

−∞
ejΩt · e−jΩτ dΩ = δ(t − τ). (5.7)

H-5.1.4 Linear Time-Invariant Systems:

Let T denote a continuous-domain linear and time-invariant (LTI) system. With
input x(t) =

∫ +∞
−∞ x(τ) δ(t − τ) dτ we can write output y(t) as:

y(t) = T{x(t) } = T{
∫ +∞

−∞
x(τ) δ(t − τ) dτ } =

∫ +∞

−∞
x(τ) · T{ δ(t − τ) } dτ (5.8)

Furthermore, by defining the impulse response h(t) = T{ δ(t) }, and by using the
fact that the system is time-invariant, i.e. h(t − τ) = T{ δ(t − τ) }, we have:

y(t) = T{x(t) } =
∫ +∞

−∞
x(τ) · h(t − τ) dτ = x(t) ∗ h(t). (5.9)

The convolution operator ∗ can therefore be used in conjunction with the impulse
response h(t) to fully describe the behavior of a continuous-domain LTI system.

H-5.2 The Fourier Transform:

H-5.2.1 Definition of the Fourier Transform:

The continuous time Fourier transform and its inverse transform are defined by

X(Ω) = F{x(t) } =
∫ ∞

−∞
x(t) e−jΩt dt (5.10)

and x(t) = F−1{X(Ω) } = 1
2π

∫ ∞

−∞
X(Ω) ejΩt dΩ (5.11)

The existence of the Fourier transform is guaranteed for absolutely integrable
signals. For other signals meaningful definitions for Fourier transforms may be
found, but the existence is not guaranteed in general.
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H-5.2.2 The Invertibility of the Fourier Transform:

With our notion of the Dirac delta it is straightforward to show that the inverse
Fourier transform F−1{X(Ω) } returns the original input signal x(t):

F−1{X(Ω) } = 1
2π

∫ ∞

−∞
X(Ω) ejΩt dΩ (5.12)

= 1
2π

∫ ∞

−∞

(∫ ∞

−∞
x(τ) e−jΩτ dτ

)
ejΩt dΩ (5.13)

=
∫ ∞

−∞
x(τ)

(
1
2π

∫ ∞

−∞
ejΩ(t−τ) dΩ

)
dτ (5.14)

=
∫ ∞

−∞
x(τ) δ(t − τ) dτ = x(t). (5.15)

H-5.2.3 Elementary Properties of the Fourier Transform:

Let x(t) and X(Ω) and h(t) and H(Ω) denote respective Fourier transform pairs,
i.e. X(Ω) = F{x(t) } and H(Ω) = F{h(t) }, then:

a) Time Shift: F{x(t − τ) } = X(Ω) · e−jΩτ

b) Frequency Shift: F{x(t) · ejΩ0t } = X(Ω − Ω0)
c) Convolution: F{x(t) ∗ h(t) } = X(Ω) · H(Ω)
d) Multiplication: F{x(t) · h(t) } = 1

2π [ X(Ω) ∗ H(Ω) ]

H-5.3 Geometric Sums and Series:

H-5.3.1 The Geometric Sum and Series:

A geometric sum is a sum of terms of the form zk with z ∈ C and k ∈ Z. For an
arbitrary complex number z �= 1 we have:

(1 − z) ·
N−1∑
k=0

zk =
N−1∑
k=0

(zk − zk+1) = 1 +

(
N−1∑
k=1

zk

)
−
(

N−2∑
k=0

zk+1

)
− z(N−1)+1

= 1 +

(
N−1∑
k=1

zk

)
−
(

N−1∑
k=1

zk

)
− zN = 1 − zN . (5.16)

We can find a closed form expression for the geometric sum
∑N−1

k=0 zk by divid-
ing both sides of equation (5.16) by (1 − z). Furthermore, for z = 1 we have∑N−1

k=0 zk = N . Combined with equation (5.16) we get:

N−1∑
k=0

zk =

⎧⎨
⎩

1−zN

1−z for z �= 1

N for z = 1.
(5.17)

For any complex number z such that |z| < 1 we have lim
N→∞

zN = 0 and therefore:
∞∑

k=0

zk =
1

1 − z
for |z| < 1. (5.18)
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H-5.3.2 A Modified Geometric Sum:

Equation (5.17) can be modified to consider a summation from k = −M + 1 to
+M − 1 instead of a summation from k = 0 to N :

M−1∑
k=−M+1

zk = −z0 +
0∑

k=−M+1

zk +
M−1∑
k=0

zk = −1 +
M−1∑
k=0

z−k +
M−1∑
k=0

zk. (5.19)

Note that z−k = (z−1)k. We can, therefore, use equation (5.17) twice, once with
argument z−1 and once with argument z. For z �= 1 we obtain:

M−1∑
k=−M+1

zk = −1 +
z

z
· 1 − z−M

1 − z−1
+

1 − zM

1 − z
= −z − 1

z − 1
+

z − z−M+1

z − 1
+

zM − 1
z − 1

=
−z + 1 + z − z−M+1 + zM − 1

z − 1
=

z−1/2

z−1/2
· zM − z−M+1

z − 1

=
z+M−1/2 − z−M+1/2

z+1/2 − z−1/2
. (5.20)

If we include the result
∑M−1

k=−M+1 zk = 2M − 1 for z = 1 then we get:

M−1∑
k=−M+1

zk =

⎧⎪⎨
⎪⎩

z+M−1/2−z−M+1/2

z+1/2−z−1/2 for z �= 1

2M − 1 for z = 1.
(5.21)

H-5.3.3 The Generation of an Impulse Train:

The substitution of z = ejω in equation (5.21) leads to the term:

z+M−1/2 − z−M+1/2

z+1/2 − z−1/2

∣∣∣∣∣
z=ejω

=
1
2j (ejω(M−1/2) − e−jω(M−1/2))

1
2j (ejω/2 − e−jω/2)

=
sin(ω(M − 1/2))

sin(ω/2)
.

Note also that z = ejω = 1 for ω = 2πk (with k ∈ Z) and therefore we define:

ΦM (ω) =
M−1∑

k=−M+1

ejωk =

⎧⎪⎨
⎪⎩

sin(ω(M−1/2))
sin(ω/2) for ω �= 2πk with k ∈ Z

2M − 1 for ω = 2πk with k ∈ Z.
(5.22)

The limit M → ∞ in equation (5.22) does not exist in a conventional sense since
|ejω| = 1 for ω ∈ R. We can, however, imbed the limiting process within the
framework of generalized functions. Note that

∫ π
−π ΦM (ω) dω = 2π independent

of M . Furthermore, ΦM (ω) is 2π periodic, i.e. ΦM (ω) = ΦM (ω ± 2π). Lastly,
with increasing M the area underneath function ΦM (ω) becomes more and more
concentrated around multiples of 2π. One can formally show that:

lim
M→∞

1
2π rect( ω

2π ) · ΦM (ω) = δ(ω). (5.23)
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Since ΦM (ω) is 2π periodic we can argue that:

1
2π

∞∑
k=−∞

ejωk = lim
M→∞

1
2π ΦM (ω) =

∞∑
k=−∞

δ(ω − 2πk). (5.24)

By substituting k = −n we have
∑∞

k=−∞ ejωk =
∑∞

n=−∞ e−jωn and therefore:

∞∑
k=−∞

e±jωk = 2π
∞∑

k=−∞
δ(ω − 2πk). (5.25)

An alternative form of equation (5.25) can be derived by noting that δ(ω−2πk) =
δ(2π( ω

2π − k)) = 1
2π δ( ω

2π − k). We can replace ω with 2πt/T to obtain:

∞∑
k=−∞

e±j2πtk/T =
∞∑

k=−∞
δ( t

T − k) = T
∞∑

k=−∞
δ(t − kT ). (5.26)

The generalized function
∑∞

k=−∞ δ(t−kT ) implied in equation (5.26) is frequently
referred to as an impulse train.

H-5.4 The Complex Fourier Series:

The (complex) Fourier series expansion is defined for continuous-domain periodic signals
with period τ > 0, i.e. x(t) = x(t − τ):

x(t) = FS−1{Xk } =
∞∑

k=−∞
Xk ej2πkt/τ (5.27)

with Xk = FS{x(t) } = 1
τ

∫
τ

x(t) e−j2πkt/τ dt. (5.28)

The notation (
∫
τ . . . dt) indicates integration over an arbitrary time interval of length τ ,

i.e. (
∫
τ . . . dt) = (

∫ t0+τ
t0

. . . dt) for any arbitrary t0 ∈ R.

H-5.5 Properties of Impulse Trains:

H-5.5.1 Definition of the Shah-Function:

An impulse train is oftentimes compactly written via the shah-function:

III(t) =
∞∑

n=−∞
δ(t − n). (5.29)

H-5.5.2 Elementary Properties of the Shah-Function:

Scaling: 1
|T | III(

t
T ) =

∞∑
n=−∞

δ(t − nT ) (5.30)

Periodicity: III( t−T
T ) = III( t

T ) (5.31)
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H-5.5.3 The Fourier Series Expansion of the Shah-Function:

With x(t) = III( t
T ) and T > 0 we have x(t) = x(t−T ). Therefore, x(t) is periodic

with period T and we can expand x(t) according to H-5.4:

Xk =FS{x(t) } = 1
T

∫ +T/2

−T/2
[ T

∞∑
n=−∞

δ(t − nT ) ] e−j2πkt/T dt (5.32)

=
∞∑

n=−∞

∫ +T/2

−T/2
δ(t − nT ) e−j2πknT/T︸ ︷︷ ︸

=1

dt =
∞∑

n=−∞

∫ +T/2

−T/2
δ(t − nT ) dt︸ ︷︷ ︸
=δ[n]

= 1.

The Fourier series expansion of the impulse train x(t) = III( t
T ) is thus Xk = 1

for all k ∈ Z. A resubstitution of this result into the Fourier series resynthesis
formula from H-5.4 reconfirms our result (5.26) from section H-5.3.3:

x(t) = FS−1{Xk } ⇒ T
∞∑

n=−∞
δ(t − nT ) =

∞∑
k=−∞

ej2πkt/T . (5.33)

H-5.5.4 The Fourier Transform of the Shah-Function:

Result (5.25) allows us to readily compute the Fourier transform of an impulse
train. For T > 0 we have:

F{ 1
T III( t

T ) } =
∫ ∞

−∞

∞∑
n=−∞

δ(t − nT ) e−j Ω t dt (5.34)

=
∞∑

n=−∞
e−j Ω T n

∫ ∞

−∞
δ(t − nT ) dt︸ ︷︷ ︸

=1

= 2π
∞∑

k=−∞
δ(ΩT − 2πk)

=
∞∑

k=−∞
δ(Ω T

2π − k) = III(Ω T
2π ). (5.35)

The important result F{ 1
T III( t

T ) } = III(Ω T
2π ) states that the Fourier transform

of an impulse train (in time) is an impulse train (in frequency).

H-5.6 Modelling of Discrete-Domain Signals:

H-5.6.1 The Sampled Signal:

When we sample a continuous-domain signal x(t) with sampling time T > 0
then we obtain the discrete-domain sequence x[n] = x(nT ). One can model the
sampling process in continuous time with the associated sampled signal xd(t):

xd(t) = x(t) · 1
T III( t

T ) = x(t) ·
∞∑

n=−∞
δ(t − nT ) =

∞∑
n=−∞

x[n] · δ(t − nT ). (5.36)
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H-5.6.2 The Fourier Transform of Sampled Signals (Part I):

The following computation explores the connection between the Fourier trans-
form of the sampled signal Xd(Ω) and the Fourier transform X(Ω) of the under-
lying continuous-domain signal:

Xd(Ω) = F{xd(t) } = F{x(t) · 1
T III( t

T ) } = 1
2π [ X(Ω) ∗ F{ 1

T III( t
T ) } ] (5.37)

= 1
2π [ X(Ω) ∗ III(Ω T

2π ) ] = 1
2π [

∞∑
k=−∞

X(Ω) ∗ δ(Ω T
2π − k) ] (5.38)

= 1
T [

∞∑
k=−∞

X(Ω) ∗ δ(Ω − 2πk
T ) ] = 1

T

∞∑
k=−∞

X(Ω − 2πk
T ). (5.39)

As a result, Xd(Ω) is equal to a (scaled) periodic repetition of X(Ω) with period
2π
T . In short: Sampling in time is equivalent to periodic repetition in frequency.

H-5.6.3 The Fourier Transform of Sampled Signals (Part II):

Now we are turning our attention to the connection between the Fourier trans-
form of the sampled signal Xd(Ω) and an appropriate notion of Fourier transform
for the associated discrete-time signal x[n]:

Xd(Ω) = F{
∞∑

n=−∞
x[n] · δ(t − nT ) } (5.40)

=
∞∑

n=−∞
x[n] · F{ δ(t − nT ) } =

∞∑
n=−∞

x[n] e−j Ω Tn. (5.41)

For convenience we are introducing a notation for normalized frequency :

ω = ΩT. (5.42)

Furthermore, motivated by result (5.41) we define the following notion of a
discrete-time Fourier transform (DTFT) for discrete-time signals x[n]:

X(ω) = DTFT{x[n] } =
∞∑

n=−∞
x[n] e−jωn (5.43)

(one can show that x[n] = DTFT−1{X(ω) } = 1
2π

∫
2π

X(ω) ejωn dω.)

The existence of the discrete-time Fourier transform is guaranteed for absolutely
summable signals. For other signals meaningful definitions for the DTFT may
be found, but the existence is not guaranteed in general. With the DTFT we
can conveniently rewrite result (5.41) as:

Xd(Ω) = X(ω)|ω=Ω T with X(ω) = DTFT{x[n] }. (5.44)

The discrete-time Fourier transform (DTFT) is therefore a natural extension of
the continuous time Fourier transform.
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H-5.6.4 Signal Reconstruction in the Frequency Domain:

If X(Ω) is bandlimited such that X(Ω) = 0 for |Ω| ≥ π
T then:

T rect(ΩT
2π ) · Xd(Ω) =

∞∑
k=−∞

rect(ΩT
2π ) · X(Ω − 2πk

T )︸ ︷︷ ︸
= 0 if k �= 0

= X(Ω). (5.45)

It is thus possible to reconstruct the spectrum X(Ω) of a continuous-time sig-
nal x(t) from the spectrum of the associated sampled signal xd(t) if X(Ω) is
appropriately bandlimited.

H-5.6.5 Signal Reconstruction in the Time Domain:

If X(Ω) is bandlimited such that X(Ω) = 0 for |Ω| ≥ π
T then we can take the

inverse Fourier transform of result (5.45):

F−1{X(Ω) } = F−1{T rect(ΩT
2π ) · Xd(Ω) } (5.46)

⇒ x(t) = F−1{T rect(ΩT
2π ) } ∗ xd(t) (5.47)

= sinc(πt
T ) ∗

∞∑
n=−∞

x[n] δ(t − nT ) (5.48)

=
∞∑

n=−∞
x[n] · [ sinc(πt

T ) ∗ δ(t − nT ) ] (5.49)

x(t) =
∞∑

n=−∞
x[n] sinc(π ( t

T − n)). (5.50)

A signal x(t) that is bandlimited (in frequency) between − π
T < Ω < π

T can
therefore be perfectly reconstructed from its samples x[n] = x(nT ) (Sampling
Theorem).

H-5.7 The Fourier Transform of Periodic Signals:

Consider a continuous-domain periodic signals with period τ > 0, i.e. x(t) = x(t − τ).
The signal x(t) can be written as the infinite repetition of one of its periods:

[ rect( t
τ ) · x(t) ] ∗

∞∑
k=−∞

δ(t − kτ) =
∞∑

k=−∞
[ rect( t

τ ) · x(t) ] ∗ δ(t − kτ) (5.51)

=
∞∑

k=−∞
rect( t−kτ

τ ) · x(t − kτ)︸ ︷︷ ︸
=x(t)

(5.52)

= x(t) ·
∞∑

k=−∞
rect( t

τ − k)

︸ ︷︷ ︸
=1

= x(t). (5.53)
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Taking the Fourier transform on both sides yields:

X(Ω) = F{x(t) } = F{ [ rect( t
τ ) · x(t) ] ∗

∞∑
k=−∞

δ(t − kτ) } (5.54)

= F{ rect( t
τ ) · x(t) } · F{ 1

τ III( t
τ ) } (5.55)

=
[ ∫ ∞

−∞
rect( t

τ ) · x(t) e−jΩt dt

]
· 2π

τ

∞∑
k=−∞

δ(Ω − k 2π
τ ) (5.56)

= 2π
∞∑

k=−∞

[
1
τ

∫ τ/2

−τ/2
x(t) e−jΩt dt

]
· δ(Ω − k 2π

τ ) (5.57)

= 2π
∞∑

k=−∞

[
1
τ

∫ τ/2

−τ/2
x(t) e−j2πkt/τ dt

]
︸ ︷︷ ︸

=Xk

· δ(Ω − k 2π
τ ) (5.58)

⇒ X(Ω) = 2π
∞∑

k=−∞
Xk δ(Ω − k 2π

τ ). (5.59)

The Fourier transform of periodic signals is discrete in frequency. The weights of the
spectral impulses are determined by the complex Fourier series coefficients Xk.

H-5.8 The Fourier Transform of Discrete Periodic Signals:

Assume that a discrete-time periodic signal x[n] = x[n−N ] with period N > 0 is obtained
from sampling a continuous-time periodic signal x(t) = x(t − NT ) with period NT and
sampling time T > 0, i.e. x[n] = x(nT ).

xp(t) = x(t) · 1
T III( t

T ) = x(t) ·
∞∑

n=−∞
δ(t − nT ) =

∞∑
n=−∞

x[n] · δ(t − nT ). (5.60)

Since x(t) is periodic we can write its Fourier transform after H-5.7 as:

Xp(Ω) = 2π
∞∑

k=−∞
Xk δ(Ω − k 2π

NT ) (5.61)

with Xk = 1
NT

∫
NT

xp(t) e−j2πkt/NT dt (5.62)

= 1
NT

∫
NT

[
∞∑

n=−∞
x[n] · δ(t − nT ) ] e−j2πkt/NT dt (5.63)

= 1
NT

∞∑
n=−∞

x[n] e−j2πknT/NT

∫
NT

δ(t − nT ) dt︸ ︷︷ ︸
= μ[n]−μ[n−N ]

(5.64)

= 1
NT

N−1∑
n=0

x[n] e−j2πkn/N . (5.65)
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Motivated, by equation (5.61) we define the notion of a discrete Fourier transform (DFT)
for a discrete-time periodic signal x[n] = x[n − N ] as:

X[k] = DFTN{x[n] } =
N−1∑
n=0

x[n] e−j2πkn/N (5.66)

(one can also show that x[n] = DFT−1
N {X[k] } = 1

N

N−1∑
k=0

X[k] ej2πkn/N .) (5.67)

Using the definition of the DFT we can write:

Xp(Ω) = 2π
NT

∞∑
k=−∞

X[k] δ(Ω − k 2π
NT ).

The discrete Fourier transform (DFT) is the natural extension of the continuous-time
Fourier transform for signals that are both discrete and periodic. Note that both x[n] and
X[k] are discrete and periodic with period N :

X[k − N ] =
N−1∑
n=0

x[n] e−j2π(k−N) n/N =
N−1∑
n=0

x[n] e−j2πkn/N ej2πNn/N︸ ︷︷ ︸
=1

= X[k]. (5.68)

The properties of the DFT are very similar to the ones of the continuous-time Fourier
transform and the DTFT, but in a cyclic sense. For example, we can define the notion of
a cyclic convolution of two periodic sequences x[n] = x[n−N ] and h[n] = h[n−N ] via:

y[n] = x[n]©N h[n] =
N−1∑
k=0

x[k] · h[n − k] = DFT−1
N {X[k] · H[k] }. (5.69)

Since, both x[n] and X[k] are periodic with period N it is usually sufficient to con-
sider/compute them for the range n = 0 . . . N − 1 and k = 0 . . . N − 1 only. As such, it is
possible to use the DFT formula as a means to calculate samples of the DTFT of certain
time-limited signals:

If x[n] = 0 for n < 0 and n ≥ N then X[k] = X(ω)|ω= 2πk
N

. (5.70)

Furthermore, the independent variable k of the DFT is discrete and not continuous. We
can therefore use computers to evaluate the DFT formula numerically for arbitrary (time-
limited) input signals. Fast algorithms for the computation of DFTs have become collec-
tively known as fast Fourier transforms (FFTs) and are readily available in computational
software packages such as MATLAB and LabView.

A technique that is frequently used in the context of N -point DFTs is zero padding.
Consider two non-periodic sequences x[n] and h[n] such that Lx + Lh ≤ N and

x̃[n] = x̃[n − N ] with x̃[n] = {. . . , x[0], x[1], . . . , x[Lx − 1], 0, 0, . . . , 0︸ ︷︷ ︸
N points

, . . .}. (5.71)

We assume a time alignment such that x̃[0] = x[0]. Let h̃[n] be defined analogously.
One can then show that for n = 0 . . . N − 1 we have x[n] � h[n] = x̃[n]©N h̃[n]. A fast
computation of this convolution operation can be accomplished via FFTs.
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