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Transport barriers to self-propelled particles in fluid flows
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We present theory and experiments demonstrating the existence of invariant manifolds
that impede the motion of microswimmers in two-dimensional fluid flows. One-way
barriers are apparent in a hyperbolic fluid flow that block the swimming of both smooth-
swimming and run-and-tumble Bacillus subtilis bacteria. We identify key phase-space
structures, called swimming invariant manifolds (SwIMs), that serve as separatrices be-
tween different regions of long-time swimmer behavior. When projected into xy space, the
edges of the SwIMs act as one-way barriers, consistent with the experiments.
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Dynamically defined transport barriers [1,2] impede the motion of passive particles in a wide
range of fluids, from microbiological and microfluidic flows to oceanic, atmospheric, and stellar
flows. For steady and time-periodic flows, transport barriers are identified with invariant manifolds
of fixed points and Kolmogorov-Arnold-Moser surfaces [3–5]. More recently, these ideas have
been extended to aperiodic and turbulent flows [6–10]. However, in many systems of fundamental
and practical importance, the tracers are active rather than passive. Examples include propagating
chemical reaction fronts [11,12], aquatic vessels [13], and artificial and biological microswimmers
[14,15], including Janus particles [16,17] and flagellated bacteria [18,19].

Invariant manifold theory has previously been extended to incorporate propagating reaction
fronts in a flow [20–24]. This theory identifies analogs of passive transport barriers, called burning
invariant manifolds (BIMs), which are one-way barriers to front propagation. Experiments on front
propagation in driven fluid flows [25–28] demonstrate the physical significance of these theories.
Despite this success with reaction fronts, a comparable understanding of more general active
systems is lacking.

This paper presents theory and supporting experiments for a foundational and universal invariant
manifold framework that describes barriers for active tracers in laminar fluid flows. We focus on
self-propelled particles, i.e., swimmers, and propose the existence of swimming invariant manifolds
(SwIMs) that (i) act as absolute barriers blocking the motion of smooth swimmers in position-
orientation space; (ii) project to one-way barriers in position space; and (iii) provide insight into
the motion of nonsmooth (e.g., tumbling) swimmers. We also find that (iv) one-way barriers exist
even for tumbling swimmers, and these barriers turn out to be identical to the BIMs that were
previously shown to be barriers for reaction fronts [20]. Our experiments use smooth-swimming and
run-and-tumble strains of Bacillus subtilis bacteria [Fig. 1(a), inset] as active tracers in a laminar,

*sberman4@ucmerced.edu
†kmitchell@ucmerced.edu
‡tsolomon@bucknell.edu

2469-990X/2021/6(1)/L012501(9) L012501-1 ©2021 American Physical Society

https://orcid.org/0000-0002-9259-2845
https://orcid.org/0000-0001-8131-3989
https://orcid.org/0000-0001-6554-8948
https://orcid.org/0000-0001-9008-0769
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.6.L012501&domain=pdf&date_stamp=2021-01-14
https://doi.org/10.1103/PhysRevFluids.6.L012501


SIMON A. BERMAN et al.

FIG. 1. (a) Cross-flow experiment; data obtained are in the red square. Inset: 100× image of a fluorescent B.
subtilis. (b) SFPs and SwIM edges (in red and blue) of the hyperbolic flow; α > 0. Arrows indicate the direction
of n̂ (and the blocking direction) for the equilibria and the SwIM edges. Streamlines of the flow are plotted in
black. (c) Stable SwIMs (blue surfaces) of the qin

± SFPs for α = 1. Black (gray) planes show stable (unstable)
invariant surfaces. Yellow curves represent heteroclinic orbits connecting pairs of SFPs. (d) Constant-y cross
section of the swimmer phase space. Blue orbits represent cross sections of the stable SwIMs.

hyperbolic flow in a microfluidic cross-channel [Fig. 1(a)]. Absent Brownian motion, passive tracers
in a linear hyperbolic flow cannot traverse the passive invariant manifolds (separatrices) forming a
cross along the channel centerlines [dashed lines in Fig. 1(b)], whereas self-propelled tracers can.
Nevertheless, we show that barriers to active particles still exist. We also present theory extending
our analysis to the mixing of swimmers in a vortex flow.

In our model, an ellipsoidal swimmer in two dimensions is described by q = (r, n̂), comprising
its position r = (x, y) and swimming direction n̂ = (cos θ, sin θ ). Absent noise and active torques,
a swimmer with a fixed swimming speed v0 in a fluid velocity field u(r) obeys [14,15,29,30]

ṙ = u + v0n̂, θ̇ = ωz

2
+ α n̂⊥ · E · n̂, (1)

where ωz = ẑ · (∇ × u) is the vorticity, n̂⊥ = (− sin θ, cos θ ), and E = (∇u + ∇uT)/2 is the sym-
metric rate-of-strain tensor. The shape parameter α equals (γ 2 − 1)/(γ 2 + 1), where γ is the aspect
ratio of the ellipse; α varies from −1 to 1, where α = 0 is a circle, and |α| = 1 is a rod. Positive
(negative) values of α correspond to swimming parallel (perpendicular) to the major axis. The
case α = −1 coincides with the dynamics of a propagating front element [20] and the optimal
(least-time) swimmer trajectories [13,31].

Equation (1) with v0 = 0 models passive transport. The linear hyperbolic flow, u = (Ax,−Ay)
has a passive saddle fixed point at r = 0. The y and x axes are the stable and unstable manifolds,
respectively, defined as invariant sets whose points approach the passive fixed point forwards and
backwards in time. Passive particles cannot cross these passive manifolds [Fig. 1(b)].
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For swimmers in the hyperbolic flow, Eq. (1) becomes

˙̃x = x̃ + cos θ, ˙̃y = −ỹ + sin θ, θ̇ = −α sin(2θ ), (2)

with dimensionless variables r̃ = (A/v0)r and˜t = At . The natural analogs of the passive fixed point
are the fixed points of Eq. (2), called swimming fixed points (SFPs) [32]. There are four SFPs.
Two SFPs lie on the y axis with the swimmer facing outward: qout

± = (±ŷ,±ŷ). The remaining
SFPs lie on the x axis with the swimmer facing inward: qin

± = (±x̂,∓x̂). The SFPs are plotted in
Figs. 1(b)–1(d). These equilibria are saddles, for all v0 and α.

We set α = 1, approximating the shape of B. subtilis as a rod. Since the SFPs are saddles, they
possess stable and unstable manifolds in the x̃̃yθ phase space, which we call swimming invariant
manifolds, or SwIMs, to distinguish them from those for passive advection. For α > 0, the inward
SFPs have two stable and one unstable directions. Hence, they each possess a two-dimensional (2D)
stable SwIM [Fig. 1(c)], which together form a warped sheet in phase space, referred to simply as
the SwIM. The SwIM separates phase space into two regions: to the left [right] of the SwIM, all
swimmer trajectories are ultimately leftward-escaping (LE) [rightward-escaping (RE)] [Fig. 1(d)].

The SwIM is only a strict phase-space barrier for perfectly smooth-swimming tracers, which
is not the case for real swimmers. For example, tumbling bacteria apply brief active torques to
suddenly change their swimming direction; we expect these bacteria to be able to cross the SwIM
during their tumbles. Even for “smooth-swimming” bacteria, the swimming direction fluctuates;
bacteria wiggle as they swim due to rotational diffusion [33,34] and the kinematics of swimming
with helical flagella [35]. Hence, bacteria near the SwIM may occasionally cross it due to these
small fluctuations in θ .

The SwIM shown in Fig. 1(c) produces one-way barriers to swimmers when projected onto the
x̃̃y plane, barriers that are valid even for noisy swimmers. For a general 2D flow u(r), a static,
parametrized curve R(s) with local normal vector N̂(s) is a one-way barrier to swimmers when the
swimmer velocity across the curve, [u(R(s)) + v0n̂] · N̂(s), is nonpositive for all n̂. Hence, if the
condition

−u(R(s)) · N̂(s)

v0
� 1, for all s, (3)

is met, then the curve R(s) is a one-way barrier with local blocking direction N̂(s). For the
hyperbolic flow, all nonstationary trajectories along the line x̃ = −1 move leftward, regardless of
θ [Fig. 1(d)]. Evaluating the left-hand side of Eq. (3) along this line [in dimensional variables,
R(s) = (−v0/A, s) and N̂ = x̂], we obtain identically 1. Therefore, this line is a one-way barrier,
preventing rightward motion but not leftward. Furthermore, because Eq. (3) is independent of α

and the time dependence of n̂, we expect any curve satisfying it to be a one-way barrier for all
swimmers, regardless of their shape or motility pattern. In particular, we expect the line x̃ = −1 to
be a barrier to both the smooth-swimming and the tumbling strains of bacteria.

Geometrically, Figs. 1(c) and 1(d) show that the line x̃ = −1 is the leftmost extent of the 2D
SwIM projected onto the x̃̃y plane, i.e., it is the left edge of the SwIM. By symmetry, the right SwIM
edge x̃ = 1 is also a one-way barrier, which allows swimmers to pass through it from left to right, but
not vice versa. Hence, the stable SwIM edges form barriers to inward-swimming particles. Similarly,
the horizontal edges of the 2D unstable SwIMs of the outward SFPs form one-way barriers, blocking
outward-swimming particles [Fig. 1(b)].

We test our theoretical predictions with microfluidic experiments on swimming bacteria. We
fabricate polydimethylsiloxane (PDMS) cells with channels of width and depth 1 mm in a cross-
shaped geometry [Fig. 1(a)]. Dilute bacterial suspensions are pumped into both ends of the
vertical channel and out both ends of the horizontal channel using syringe pumps. Microscopy
movies are recorded in the center of the channel at 40×. Passive tracer analysis reveals that
the flow in the center [red square in Fig. 1(a)] is well approximated by a planar, 2D linear
hyperbolic flow. The bacteria used are B. subtilis, either the smooth-swimming strain OI4139 or the
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FIG. 2. (a) Experimental trajectories for smooth-swimming B. subtilis; A = 0.44 s−1. Passive manifolds
are shown by dashed lines. (b) Right-swimming trajectories. Positions are scaled by v0/A. The theoretically
predicted SFP qin

− (blue circle) and the SwIM edges (red and blue lines) are shown. (c) Left-swimming
trajectories and qin

+. (d) Rectified plot showing all trajectories as if leaving through the upper-right quadrant.
(e) All trajectories entering with |̃x| > 1 rectified to enter the upper-left quadrant.

green-fluorescent-protein-expressing (GFP) run-and-tumble strain 1A1266. The bacteria’s swim-
ming speeds v0 in the flow have a mean of 25 and 16 μm/s and a standard deviation of 11 and
6 μm/s for the smooth-swimming and tumbling GFP strains, respectively. Though the bacteria
swim in three dimensions, we obtain trajectories only for those whose motion is predominantly 2D
(according to the protocol described in the Supplemental Material, Sec. 1.2 [36]), corresponding
well to the 2D theory.

Figure 2 shows trajectories of smooth-swimming bacteria, some of which overlap [Fig. 2(a)].
Trajectories of passive, nonswimming bacteria in the same experiment (Supplemental Material,
Fig. S1 [36]) are blocked by the vertical passive separatrix [dashed line in Fig. 2(a)]. Hence, the
region in Fig. 2(a) where the LE and RE swimmer trajectories overlap is a signature of the self-
propulsion of the swimmers. Our theory predicts that the width of this region is the distance between
the vertical SwIM edges shown in Fig. 1(b), i.e., 2v0/A. In the experiments, v0 is approximately
constant in time for individual bacteria; however, different bacteria have different values for v0 [37].
Consequently, the width of the overlap region is undetermined in Fig. 2(a).

Variations in v0 are accounted for by rescaling the spatial coordinates by v0/A, as in Eq. (2). The
scaled, nondimensional trajectories are shown in Figs. 2(b)–2(e). The location of the inward SFPs
and their SwIM edges is revealed by plotting trajectories for right-swimming and left-swimming
bacteria separately [Figs. 2(b) and 2(c)]. The behavior of inward-swimming bacteria near an inward
SFP is similar to that of a passive tracer moving near the hyperbolic fixed point. The key difference
is that active tracers moving near SFPs can cross the SwIM edge from |̃x| < 1 to |̃x| > 1 but not in
the other direction.

The experimental data are consistent with the theoretically predicted one-way barrier property
of the SwIM edges. This is clearest when we use the symmetry of Eqs. (2) [(̃y, θ ) �→ (−ỹ,−θ ) and
(̃x, θ ) �→ (−x̃, π − θ )] to rectify the trajectories, such that all trajectories are displayed as though

L012501-4



TRANSPORT BARRIERS TO SELF-PROPELLED …

FIG. 3. Experimental x̃θ trajectories for smooth-swimming B. subtilis; A = 0.44 s−1. The theoretical SwIM
(α = 1) is plotted in blue. (a) All trajectories. Leftward-escaping trajectories are shown in green, and rightward-
escaping trajectories in magenta. (b) Selected trajectories; the beginning of each is marked with an open square.

entering from the upper inlet and escaping to the right. Under this transformation, Fig. 2(d) shows
that all trajectories are bounded from the left by the SwIM edge at x̃ = −1, in agreement with
the theory. Indeed, any bacterium crossing this SwIM edge from left to right would violate the
one-way barrier property. Furthermore, all bacteria that enter with |̃x| > 1 [Fig. 2(e), rectified such
that initial x̃ < −1] are swept away from the center of the cell, consistent with the SwIM edges at
|̃x| = 1 as barriers to inward-swimming bacteria. Note that a single experiment with a fixed value of
A inherently probes a range of values of the key parameter v0/A, owing to the natural heterogeneity
of bacterial swimming speeds. The data from an experiment in a slower flow are also consistent
with our theoretical predictions (Supplemental Material, Fig. S2 [36]).

The delineation between LE and RE swimmers by the SwIM in the x̃θ plane is shown experi-
mentally in Fig. 3 (see [36] for the measurement of θ ). Most of the trajectories in Fig. 3(a) respect
this barrier, although there is a slight breach of the SwIM for some of the bacteria, due to the
variations in θ discussed previously. These vertical fluctuations in individual trajectories [Fig. 3(b)]
cause momentary crossings of the “horizontal” part of the SwIM.

Angular fluctuations are, of course, particularly pronounced for the tumbling strain of bacteria
[Fig. 4(a)], leading to highly irregular x̃θ trajectories. However, for bacteria with well-defined
tumble events, the x̃θ trajectories [Fig. 4(b)] give insight into the short-term direction (right or
left) of their x̃̃y motion [Fig. 4(c)]. The bacterium in these two plots begins to the right of the SwIM;
the corresponding x̃̃y trajectory moves to the right during this period. The bacterium undergoes
a significant tumble at x̃ = 0.2, jumping above and to the left of the SwIM [Fig. 4(b)], with a
corresponding change in direction in the x̃̃y plane [Fig. 4(c)].

Despite the dramatic fluctuations in their orientations, the tumbling bacteria’s x̃̃y trajectories
respect the vertical lines x̃ = ±1 as one-way barriers, as predicted. Any RE swimmer must have
entered with x̃ > −1 [Fig. 4(d)], and any swimmer that enters with x̃ < −1 must move leftward,
away from the SwIM edge [Fig. 4(e)]. Furthermore, though the trajectories in Fig. 4(d) cross the
horizontal passive manifold, they do not cross the lower red line at ỹ = −1, respecting its outward-
blocking nature.

In arbitrary flows, SwIM edges may not act as barriers for tumbling bacteria because they do
not satisfy Eq. (3) in general. However, BIMs—which were introduced as one-way barriers to front
propagation—always satisfy Eq. (3). In 2D time-independent flows, BIMs are the one-dimensional
SwIMs for the α = −1 case of Eq. (1) [i.e., α = −1 trajectories q(t ) that are asymptotic to
SFPs], which satisfy the condition −u(r(t )) · n̂(t )/v0 = 1 [21,27,36]. Therefore, we now recog-
nize BIMs as one-way barriers for all swimmers of a fixed swimming speed v0, including those
exhibiting rotational diffusion, tumbling, or other reorientation mechanisms. In particular, BIMs are
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FIG. 4. (a) Selected trajectories of run-and-tumble B. subtilis; A = 0.44 s−1. Passive manifolds are shown
by dashed lines. (b) x̃θ plot and (c) x̃̃y trajectory for a single bacterium with well-defined tumbling events. (d),
(e) Scaled and rectified trajectories for tumbling bacteria, as in Figs. 2(d) and 2(e).

independent of the strength of the rotational noise, i.e., the swimmer’s rotational Péclet number (Pe).
Their structure is completely determined by the flow geometry, flow strength, and swimming speed.
The robust bounding behavior occurs in our experiments because the SwIM edges coincide with the
BIMs for linear hyperbolic flows, which are always the colored vertical and horizontal lines plotted
in Fig. 1(b) at a distance v0/A from the passive saddle point. In general nonlinear flows, on the other
hand, SwIM edges and BIMs depart from each other. Thus, the SwIM edges are the more relevant
barriers for perfect smooth swimmers, whereas the BIMs are more relevant for noisy swimmers, as
we illustrate with the following example.

We consider the swimmer dynamics, Eq. (1), in the vortex-lattice flow [14,15,32,38] u =
(sin(2π x̃) cos(2π ỹ),− cos(2π x̃) sin(2π ỹ)), where we use nondimensional coordinates r̃ = r/L
and ˜t = tU/L for a flow with maximum speed U and length scale L. Near r = 0, the flow is
approximately the linear hyperbolic flow, with A = 2π . Thus, the origin is surrounded by SFPs
[Fig. 5(a)] analogous to those of Eq. (2) [32].

In analogy with the preceding microfluidic experiments that identified the positions of RE
trajectories, we perform the following numerical experiment. We integrate the initial conditions
of swimmers selected at random inside a single vortex cell but outside the gray square shown in
Fig. 5(a). We then plot only those initial positions for which the swimmer trajectory enters the
gray square at the upper edge ỹ = 0.25 and subsequently exits through the right edge at x̃ = 0 (see
[36] for animations). These trajectories are analogous to the RE trajectories in the experimental
hyperbolic flow. Figure 5(a) shows the result of the calculation for perfect smooth swimmers,
along with the SwIM edge for the 2D stable SwIM of the vortex flow (solid curve) and the
corresponding BIM (dotted curve). Clearly, these initial conditions are bounded by the SwIM edge,
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FIG. 5. Bounding properties of SwIM edges and BIMs in a vortex flow; v0/U = 0.1, α = 1. (a) Initial
positions (black dots) of smooth swimmers that enter the gray square from the upper side and exit it on the right
side (magenta arrow). The stable SwIM edge and stable BIM of the lower-right SFP are shown as solid blue and
dotted blue curves, respectively. (b) Same as (a), for swimmers with rotational diffusivity Dr ; DrL/U = 0.86.

showing that the SwIM edge again bounds those trajectories that exit right, even in a nonlinear
flow. We repeat the calculation with a moderate-intensity white-noise term added to θ̇ in Eq. (1) to
simulate rotational diffusion for realistic smooth-swimming bacteria [34]. The resulting set of initial
conditions [Fig. 5(b)] breaches the SwIM edge, but it remains bounded by the BIM, consistent with
the absolute one-way barrier property of BIMs for all swimmers, regardless of their reorientation
mechanism or Pe.

In summary, we have shown theoretically and experimentally that the trajectories of self-
propelled particles in externally driven fluid flows are constrained by the presence of one-way
barriers, i.e., SwIM edges and BIMs. Despite the simplicity of our model, we are able to fully explain
certain properties of the trajectories of swimming bacteria in an externally driven microfluidic flow.
Our SwIM framework provides a foundation for understanding the critical barrier structures that
dominate the mixing of a wide range of self-propelled tracers in laminar flows. For example, BIMs
must also block gyrotactic [39,40] and chemotactic swimmers, since these barriers are independent
of biases in the swimming direction. We further expect that the SwIM approach can be generalized
to more complicated, time-periodic, time-aperiodic, and weakly turbulent flows. It remains an open
question how our approach may apply to the trajectories of self-propelled agents in active matter
systems featuring self-driven flows, such as individual bacteria within a swarm [41] or motile defects
in active nematics [42–44].

We thank Nico Waisbord and Jeff Guasto for providing the smooth-swimmer strain used in
these experiments, Jack Raup and Joe Tolman for assistance with milling, Matt Heinzelmann for
assistance with the incubation techniques, and Brandon Vogel for guidance on PDMS techniques.
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and No. CMMI-1825379.
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