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Abstract 

We discuss experimental and numerical studies of the effects of 
Lagrangian chaos (chaotic advection) on the stretching of a drop of an 
immiscible impurity in a flow.  We argue that the standard capillary 
number used to describe this process is inadequate since it does not 
account for advection of a drop between regions of the flow with 
varying velocity gradient.  Consequently, we propose a Lagrangian-
generalized capillary number CL number based on finite-time 
Lyapunov exponents.  We present preliminary tests of this formalism 
for the stretching of a single drop of oil in an oscillating vortex flow, 
which has been shown previously to exhibit Lagrangian chaos.  
Probability distribution functions (PDFs) of the stretching of this drop 
have features that are similar to PDFs of CL.  We also discuss on-going 
experiments that we have begun on drop stretching in a blinking 
vortex flow. 
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I .  Introduction  

For the past couple of decades, it has been well-understood that fluid elements in well-
ordered laminar flows can follow trajectories that are chaotic in the sense that nearby tracers 
separate exponentially in time1,2.  This effect – referred to as Lagrangian Chaos or chaotic 
advection – can result in significant enhancements in local mixing of impurities as well as long-
range transport.  Less attention has been given however to the importance of Lagrangian chaos 
when discussing dynamical processes occurring in fluid flows. 

In this article, we describe studies of the effects of Lagrangian chaos on multiphase fluid 
processes.  In particular, we examine the importance of Lagrangian effects in the stretching and 
breakup of drops of an immiscible impurity as they are advected through a flow.  We define a 
Lagrangian-generalized Capillary number that is based on finite-time Lyapunov exponents.  We 
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then present preliminary results of experimental and numerical studies for the stretching and 
breakup of drops of oil floating on the surface of a chain of oscillating vortices3,4, a flow whose 
mixing properties have been well-studied5,6,7.  Statistics of the stretching of the drop are 
compared with those of the Lagrangian capillary number.  

In Section II, we review the basic theory commonly used to describe drop stretching in a 
flow, and present a generalized approach that incorporates the Lagrangian framework into the 
analysis.  In Section III, we describe the oscillating vortex flow and explain the experimental and 
numerical techniques used in these studies.  Experiments on the stretching and breakup of oil 
drops in the flow are discussed in Section IV, along with numerical simulations of the finite-time 
Lyapunov exponents.  Preliminary studies of droplet stretching in a blinking vortex flow are 
presented in Section V.  We discuss the results and conclude in Section VI.  

 
I I . Drop-stretching and breakup:  Euler ian versus Lagrangian approaches 

There are two main frameworks for analyzing the effects of fluid flows on processes – an 
Eulerian framework and a Lagrangian framework.  The Eulerian framework is based on 
snapshots of the velocity field describing a fluid flow.  In the Lagrangian framework, however, 
an impurity or fluid element is followed as it moves through the flow. Of course, the motion of 
an impurity can be determined from the Eulerian framework by treating the velocity field as a set 
of differential equations that can be integrated to determine the trajectory, so the two frameworks 
are not independent.  However, the Lagrangian framework can reveal complexity that would not 
be expected from the velocity field itself.  The most salient example of this is Lagrangian chaos 
(or chaotic advection), where a tracer in a simple, laminar, well-ordered velocity field might 
follow chaotic trajectories in the sense that nearby tracers separate exponentially in time.  

The stretching and breakup of drops of immiscible impurities is a subject that has been 
studied extensively by other investigators8,9.  However, almost all of those studies have analyzed 
the phenomena from an Eulerian perspective.  But not only is a drop stretched by its surrounding 
flow, it is also advected to different regions which may have significantly different velocity 
gradients.  Our assertion is that the Lagrangian framework, in fact, is the more natural framework 
for studying these processes.  

We begin by reviewing the standard (Eulerian) description used for drop stretching, after 
which we introduce a generalization to account for advection.  

A. Droplet stretching and breakup in Euler ian framework 

When discussing the behavior of immiscible impurities in a flow, a Capillary number is 
defined8,9 as follows (see Fig. 1):  

γ
µGa

C =  ,        (1) 

where µ is the viscosity of the drop, G is the velocity gradient experienced by the drop, a is the 
typical radius of the drop, and γ is the surface tension between the drop and the surrounding 
fluid.  The capillary number can be thought of as a measure of the competition between two 
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effects – the tendency of the flow to stretch a drop into an elongated shape, and the tendency of 
the surface tension to minimize surface area and pull the drop back to a circular shape.  From this 
perspective, the Capillary number can be rewritten as a ratio of time scales:  

 
f

cC
τ
τ= ,        (2) 

where τc = µa/γ is the capillary time scale and τf = G-1 is the velocity time scale.   

Given a ratio between the viscosity of the drop and the surrounding fluid, the magnitude 
of C determines the behavior of the drop.  We can characterize the elongation of the drop by the 
quantity 

 1
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max −=
r

rξ ,        (3) 

where rmax and rmin are the maximum and minimum distances from the drop center to its 
perimeter.  (For small elongation, the drop is an ellipse and ξ reduces to the eccentricity of that 
ellipse.)  If C is small, the surface tension dominates and the drop remains close to a circular 
shape.  As C is increased, the flow becomes more and more significant and the drop stretches 
more and more, with ξ growing monotonically with C.  If C exceeds a critical value Cc, then the 
drop breaks up into a collection of smaller droplets9.  

There is an assumption in this approach:  namely, the drop needs to stay in the same 
region of the flow throughout the processes to maintain constant G and therefore constant C.  In 
fact, experiments that have been done to test these theories have typically been performed with 
feedback systems that hold the drop in the same region.10   

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Sketch showing the symbols used in the Eulerian definition 
of the Capillary number.   The typical radius and viscosity of the drop 
are denoted by a and µ, respectively, and γ denotes the surface tension 

between the drop and the surrounding fluid.  The arcs denote an 
extensional flow in which the drop is held. 
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In nature, drops do not usually stay in one place in a fluid flow, especially in the vicinity 
of a hyperbolic fixed point (such as in the extensional flow of Fig. 1) where the stretching of the 
drop is most pronounced.  Here is where the Lagrangian framework comes into play.  In a real 
flow, a drop does not just sit in one place experiencing just one velocity gradient.  Rather, it 
moves around the flow, between regions of varying shear.  Clearly, the capillary number as 
defined here is not sufficient in general; at the very least, something has to be done about the "G" 
in the numerator.  

B. Lagrangian-generalized capillary number 

Ultimately, the standard capillary number has to be replaced with a generalized 
“Lagrangian capillary number”  that accounts for the effects of advection.  In this manner, the 
movement of the drop between regions of varying shear can be accounted for.  This is 
particularly important in light of the possibility of Lagrangian chaos in laminar fluid flows.  

The time scale τf which characterizes the tendency of the flow to stretch the drop needs to 
be replaced by a Lagrangian timescale, something that takes into account the fact that how much 
a drop stretches depends not just on the velocity gradient that the drop is experiencing now, but 
rather on a Lagrangian average of the strain experienced by the drop during its motion.  A natural 
choice is the inverse λ-1 of the largest Lyapunov exponent, defined by the relation  

 �
�

�
�
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=

∞→ t
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t

)/)(ln(
lim 0

maxλ ,     (4) 

where ∆0 is the initial separation of two nearby passive tracers in the flow, and ∆(t) is the 
separation of the same two tracers after a time t. 

This is not the complete story however.  As defined here, the Lyapunov exponent 
effectively averages over the entire motion of the drop, but the drop has only a finite memory.  
The time scale for this memory is just the capillary time scale τc.  So, instead of the standard 
Lyapunov exponent, we use the finite time Lyapunov exponent 
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and use the capillary time τc to set the duration of this finite time.  The result is a Lagrangian 
capillary number 
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Note that this Lagrangian capillary number reduces to the Eulerian capillary number in the limit 
where τc � 0 since λ(τc�0) = G.  This makes sense, because in the limit where τc � 0, the drop 
has no memory, and therefore the stretch of this drop should be dependent only on the local 
velocity gradient.  
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Given this proposed definition for a Lagrangian-generalized capillary number, the 
magnitude of CL – which is now a time-varying quantity since it changes as the drop moves 
through the flow – would be expected to be related monotonically to the stretch of the drop ξ.  
And since CL is proportional to the finite-time Lyapunov exponent (which also varies in time), a 
drop moving through a flow would be expected to be a probe of finite-time Lyapunov exponents; 
specifically, the elongation of the drop at any time would be a measure of λ(τc).   

One of the goals, then, of our experiments is to test these ideas by monitoring the 
elongation ξ of a drop as it moves through a flow, and compare the statistics of ξ to those of the 
finite-time Lyapunov exponents and the Lagrangian-generalized capillary number.  

Note that if this definition of CL is appropriate, then it is significant even if there is no 
Lagrangian chaos.  Technically, Lagrangian chaos requires a positive (infinite-time) Lyapunov 
exponent.  But finite-time Lyapunov exponents can be positive even in the absence of any 
deterministic chaos.  

 

I I I . Numer ical and exper imental methods 

The primary flow studied is an oscillating vortex chain as shown in Fig. 2.  The flow can 
be either time-independent or periodic; in the latter case, the entire velocity field oscillates 
laterally.  The velocity field can be modeled by applying Hamilton’s equations of motion to the 
following streamfunction11:   

)(]}sin[sin{),,( yWtBxk
k

A
tyx ωψ += ,    (7) 

where B and ω are the amplitude and angular frequency of the lateral oscillation, and W(y) is a 
function that accounts for the boundary conditions.  (From hereon, we will use the symbol b = 

 
 
Figure 2.  Sketch of alternating vortex chain used in these studies.  When time-periodic, the 
entire flow oscillates laterally.  This sketch corresponds to the case with free-slip boundary 

conditions.  The no-slip case looks qualitatively similar, although the velocities go to zero at 
the top and bottom. 
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2B/λ to denote the oscillation amplitude as a fraction of a vortex width.)  For the free-slip case, 

 ),sin()(
d

y
yW

π=        (8) 

where d is the vertical extent of the vortex chain.  The y-dependence for the no-slip boundary 
conditions is given by12 

 )sin()sinh()cos()cosh()cos()( 2122110 yqyqAyqyqAyqyW +−= , (9) 

 
where qo = 3.973639, q1 = 5.195214, q2 = 2.126096, A1 = 0.06151664 and A2 = 0.103887.  
Simulations of particle motion in these flows are conducted by integrating the velocity field 
using 4th-order Runge-Kutta techniques.  A typical Poincaré section (Fig. 3) shows the division 
of the system into ordered regions in the vortex centers and a chaotic sea that wraps around the 
edges of the vortices3,11.   

Experimentally, the flow is realized with the use of a magnetohydrodynamic tech-
nique13,14, as shown in Fig. 4.  An electrical current passes through a thin layer of an electrolytic 
solution (salt water or dilute H2SO4).  This current interacts with magnetic fields produced by a 
chain of alternating polarity magnets, resulting in vortices whose separatrices are located directly 
above the magnet centers.  Time dependence is imposed by displacing the fluid slowly back and 
forth across the magnet chain with the use of a plunger.  Typical frequencies of oscillation are 
around 0.050 Hz, giving the oscillations a long enough period such that (a) no waves are excited; 
and (b) the period is significantly longer than the viscous diffusion time (~4 s).  

Transport measurements are conducted by injecting a fluorescent dye (uranine) into the 
center vortex and illuminating with black-light.  For studies with immiscible impurities, a 
fluorescent oil is used – APD® oil dye P/N 801.  A CCD video camera mounted above the 
apparatus images the system, and these images are digitized on the computer.   

 
Figure 3.  Typical Poincaré section for oscillating vortex flow.  Tracers in the central 
regions of the vortices undergo ordered trajectories, while those near the vortex edges 

follow chaotic paths. 
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Figure 4.  Experimental apparatus.  (a) Side view; (b) exploded view of 
magnetohydrodynamic forcing.  The central region of the flow (where the vortex 

chain is) measures 3.8 x 26.7 cm, and the fluid layer is 0.20 cm thick in this region. 

 
 

Figure 5.  Sequence showing the spreading of a miscible dye in the oscillating 
vortex chain; the oscillation period is 19 s and the dimensionless amplitude b = 
0.12.  Time from the beginning (from the top):  0, 1, 2, 3, 4, and 10 oscillation 

periods. 



 8 

 

An example of the spreading of a miscible impurity is shown in Fig. 5.  Classic stretching 
and folding behavior is seen in this sequence, typical of chaotic systems.  The division of the 
system into ordered and disordered regions (similar to those seen in Fig. 3) is manifested in these 
images by the dark regions in the centers of all the vortices; it takes a long time for dye to 
penetrate into these regions – mixing into these regions is accomplished only by molecular 
diffusion and a weak, secondary flow that carries impurities up through the center (as well as 
clear fluid up through the center of the center vortex)3,15.  The long-range transport of passive 
impurities in this system has been studied extensively and is reported on in previous articles.3,4,6 

For the experiments in which a drop of oil is followed, the computer stores only the 
coordinates of pixels brighter than a user-defined threshold, enabling us to collect data at a rate 
of 5-10 images per second for several hours (if the drop stays within the visible region)16,17.  
After the run, the saved coordinates for each frame are re-assembled to determine the r and θ  
coordinates of the perimeter of the drop.  The elongation ξ can then be determined from the 
maximum and minimum values of these r-coordinates.  

 
 
 

Figure 6.  Sequence showing the breakup of oil; b=0.12 (left sequence) and b=0.24 (right 
sequence).  Time from after start of run (from the top):  18 s, 39 s, 75 s, 189 s, and 1890 s, 

corresponding to 1, 2, 4, 10 and 99 periods of oscillation. 
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Figure 7.  Experimental sequence showing the movement and stretching of a droplet of oil as it  
is advected around a vortex. 

 

IV. Preliminary exper imental and numer ical results – drop stretching and breakup 

Experimental evidence of the importance of a Lagrangian framework when considering 
multiphase processes can be seen by considering the breakup of an immiscible impurity by the 
oscillating vortex flow14 (Fig. 6).  In both sequences (columns) of image, the oil initially fills the 
central vortex but is broken down into a distribution of droplets by the flow.  All of the 
parameters are the same for the two cases except for the amplitude b of the lateral oscillation of 
the vortex chains.  For the case where b = 0.12 (left column of images), the final steady-state 
distribution of droplets has a larger average size that for the case with b = 0.24 (right column); 
this is a common result where an increase in oscillation amplitude results in smaller droplets in 
the steady state.  With an oscillation amplitude b = 0.06 (not shown), the final steady-distribution 
includes significantly larger drops – drops that are typically broken up for larger amplitudes.  
Clearly, the Eulerian capillary number is insufficient to capture this dependence of the break-up 
process on the oscillation amplitude, since the velocity gradients in the flow are independent of b 
with oscillation frequencies as small as those used in these experiments.   

The breakup of filaments of oil in a flow with Lagrangian chaos is a complicated problem 
that will be the subject of future work.  Currently, we are exploring the stretching of a single 
droplet as it is advected through the flow.  The sequence in Fig. 7 shows a droplet as it is 
advected around a vortex.  The drop is stretched most as it passes by the hyperbolic fixed points 
at the corners of the vortex.   

The capillary time scale τc is determined with the flow turned off.  With the computer 
acquiring data, we reach into the apparatus with a stick and manually stretch the drop and allow 
it to relax back while collecting data.  This process is repeated several times, resulting in a series 
of relaxation curves, as shown in Fig. 8.  These curves are fit to decaying exponentials of the 
form ξ=ξoe

-t/τc, from which a capillary time scale can be determined.  
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Figure 8.  Relaxation of a drop that is repeatedly stretched and then allowed to relax back to a circular shape.  These 

curves (for small elongation ξ) are fitted to an exponential relation to determine the capillary time scale τc. 
 

With the flow turned on, the plots of elongation are more complicated (Fig. 9).  For a 
time-independent flow (no lateral oscillations), there is no Lagrangian chaos, so the oil drop 
circles around in a closed loop within a single vortex.  The trajectory repeats itself, and the drop 
simply stretches and relaxes periodically, resulting in a plot of ξ that is almost periodic.  The 
resulting probability distribution function (PDF) for the stretch values (Fig. 9b) is a somewhat 
flat distribution with sharp drop-offs at the minimum and maximum stretch values.  

If the flow is time-periodic (with lateral oscillations), then the drop follows a chaotic 
trajectory if initially placed near the edges of a vortex.  In this case, the drop moves around the 
chaotic region rather than circling on a single closed path.  The resulting graph of ξ (Fig. 9c) is 
significantly different than that for the time-independent case.  First, there is much more 
significant stretching, due to the fact that the drop doesn’ t just circle in a closed loop; rather the 
drop samples all of the chaotic region.  In particular, the drop occasionally is advected near the 
hyperbolic fixed points where the velocity gradient is largest.  The graph of ξ has significant 
spikes corresponding to these moments when the drop goes past these fixed points.  

The PDF for stretching for the chaotic case is shown in Fig. 9d.  The distribution has 
exponential tails that are (in some cases) asymmetrical.  The PDF varies based on the capillary 
time scale for the drop – Fig. 9d shows PDFs for small (squares) and large (circles) capillary 
times.   

If the definition for the Lagrangian capillary number in Eq. (6) is appropriate, the 
statistics of the finite-time Lyapunov exponents λ(τc) experienced by a tracer moving through the 
flow should mimic the statistics in Fig. 9.  Numerically-determined maps of λ(τc) for the 
oscillating vortex flow are shown in Fig. 10 for three different oscillation amplitudes and four 
different time scales.  In the long-time limit, λ(τc� ) reduces to the largest standard Lyapunov 



 11 

exponent, which is a positive constant in the chaotic region and 0 in the ordered region.  In this 
limit (bottom row in Fig. 10), the maps of finite-time Lyapunov exponents resemble the Poincaré 
section for this flow (compare with Fig. 3).  

We simulate the motion of a passive tracer through the flow, noting the value of λ(τc) at 
each point along its motion.  From these values, we can determine a PDF for λ(τc) (Fig. 11 a).  
Multiplying λ(τc) by the capillary time scale τc gives us the Lagrangian-generalized capillary 
number CL defined in Eq. 6.  The PDF showing the statistics for the resulting CL experienced by 
a tracer moving through the flow are shown in Fig. 11b and c.  Note the qualitative similarity 

 

  
 

 
 

Figure 9.  Drop elongation in the presence of a flow.  (a)  Time-series of elongation ξ for time-independent flow (b = 0); 
(b) probability distribution function (pdf) corresponding to (a); (c) time-series of elongation ξ for time-periodic flow with 

b = 0.12; (d) pdf corresponding to (c).  The squares in (d) correspond to τc 
�  1 s and the circles correspond to τc = 3 s. 
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between Fig. 11c and Fig. 9d; in particular, we find exponential tails and asymmetrical 
distributions, similar to what we found for the experimental PDFs of the stretching ξ of the drop 
in the flow.  This is consistent with the proposal that the Lagrangian capillary number is the 
appropriate quantity for describing drop stretching.  

     
 
 

Figure 10.  Maps of finite-time Lyapunov exponents for the oscillating vortex flow; b=0.06 (left column),  
b=0.12 (middle column) and b=0.24 (right column).  Non-dimensional time-scales for the maps are  

(from the top down):  2, 5, 10 and 25. 

V. On-going work – the blinking vor tex flow. 

There are some issues that complicate experimental verification of the Lagrangian 
capillary number with the oscillating vortex flow.  Most significant is the finite size of the drop, 
especially considering the limited size of the chaotic region for the oscillating vortex flow (see 
Fig. 3).  As a result, the drop is not always completely within the chaotic regime.  In fact, it is 
quite likely that the drop in these studies frequently overlaps the ordered and chaotic regions.   

With this in mind, we have plans to study droplet stretching in a second system to 
complement the oscillating vortex flow studies.  The flow that will be used is the blinking vortex 



 13 

flow, motivated by Aref’s 1984 paper on chaotic advection1.  The flow and the apparatus used to 
study this flow are shown in Fig. 12.  A cylindrical container holds a shallow layer of an 
electrolytic solution.  Two point electrodes (denoted by “+”  in Fig. 12a) are located off-center 
along the center line of the cell, and a ring electrode surrounds the fluid.  The entire apparatus 
sits on top of a 2.5”  diameter Nd-Fe-Bo magnet which produces a uniform magnetic field 
throughout the region of interest.  Current flows radially outward, alternating periodically 
between the two center electrodes.  The result is a flow that rotates alternately around the left and 
right center electrodes.   

 
 

 
 

Figure 11.  Results of numerical simulations of statistics of finite-time Lyapunov exponents and Lagrangian 
capillary number.  (a) Probability distribution functions (PDFs) of finite-time Lyapunov exponents; τc = 10 (left 

curve), τc = 1 (right curve).  (b) PDF for Lagrangian capillary number CL = τcλ(τc); τc = 1 (left curve), τc = 10 (right 
curve).  (c) Enlargement of PDF for CL for τc = 1. 

 

Poincaré sections for the blinking vortex flow (see Ref. 1) reveal a chaotic region that 
covers the center region of the flow.  In conjunction with the fact that this system is significantly 
larger than the oscillating vortex flow, it is our expectation that it will be possible to track oil 
drops in the flow that remain entirely within the chaotic region.   

Preliminary tests have been conducted to verify that the experimental system does, in 
fact, have chaotic mixing like Aref’s blinking vortex flow.  The advection of a line of fluorescent 

(a) (b) 

(c) 
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dye in this flow is shown in Fig. 13.  The classic stretching and folding seen in this figure 
verifies that mixing is chaotic in this system, as expected based on the results of Aref’s 1984 
simulations.  

We are currently studying the stretching of oil in this blinking vortex flow.  The results of 
these studies will be the subject of a future article.  

 

Magnet 
Electrodes 

+            + 

(a) (b) 

Figure 12.  Blinking vortex flow.  (a)  Sketch of flow.  (b) Side view of  
apparatus that generates the flow. 

 

       
 

Figure 13.  Mixing of dye in the blinking vortex flow; oscillation period T = 20 s.  The  
time after injection of dye is 35 s (1.8 periods of oscillation) for the left image and 60 s  

(3 periods of oscillation) for the right image. 
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VI. Discussion and conclusions 

In this article, we have argued that the behavior of a drop in a flow should be examined 
from a Lagrangian perspective, which is the natural framework since it follows the motion of the 
drop.  This is particularly important in light of the fact that trajectories for tracers can be chaotic 
even for laminar, well-ordered flows.  We have proposed a generalization of the capillary 
number that accounts for the advection of a drop through the flow and the varying shear 
experienced by that drop.  We have done some preliminary tests of this idea in an oscillating 
vortex flow, comparing the statistics of the stretching ξ of a drop with those of the Lagrangian 
capillary number CL.  The preliminary results were encouraging – probability distribution 
functions of both ξ and of CL for drops in a chaotic region have asymmetrical exponential tails.  

Although it is clear that a Lagrangian generalization of the capillary number is needed, 
much more work needs to be done to determine if the particular form proposed in Eq. 6 is the 
most appropriate form.  More experimental runs are needed with a wide variety of flow 
parameters.  Data that will be obtained with the blinking vortex flow will also help establish the 
limits of validity of the proposed Lagrangian capillary number for drop stretching.  

If the capillary number is sufficiently large, the drop will break-up.  Studies are currently 
in progress to assess whether there is a critical value of CL above which advected drops can be 
expected to break.  We are also investigating the opposite process; namely coarsening of a 
distribution of initially-small droplets into larger drops in a flow.   
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