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We present the results of experiments on the effects of chaotic fluid mixing on the 
dynamics of reacting systems.  The flow studied is a chain of alternating vortices in an 
annular geometry with drifting and/or oscillatory time-dependence.  The dynamical 
system is the oscillatory or excitable state of the well-known Belousov-Zhabotinsky 
chemical reaction.  Results from two sets of experiments are as follows:  (1) Fronts 
propagating in the oscillating vortex chain are found to mode-lock onto the frequency of 
the external oscillations.  It is also found that the presence of a significant “wind” (drift of 
the vortices in the lab frame) causes fronts propagating against the wind to freeze.  (2)  
Synchronization of oscillating reactions in an extended flow (vortex chain with large 
number of vortices) is found to be enhanced significantly by the presence of 
superdiffusive transport characterized by Lévy flights that connect different parts of the 
flow. 

1.   Introduction 
There has been a significant amount of research during the past three decades on 
front propagation and pattern formation in reaction-diffusion (RD) systems1,2.  
The paradigm for RD systems is the Belousov-Zhabotinsky (BZ) chemical 
reaction3,4, a reaction that can oscillate almost periodically for several hours 
when well-mixed.  When poured into a petri dish with no flow, however, target 
and spiral patterns form, due to an interaction between local oscillations of the 
chemistry and diffusive coupling between different parts of the system.  The BZ 
system has been studied extensively since the patterns formed are similar in 
many respects to those found in a wide variety of RD systems, including spiral 
waves of electrical activity in the heart5, waves of “spreading depression” in the 
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brain that are responsible for migraine headaches6, and patterns that form in 
populations of slime mold in a dish7. 

By definition, an RD system has no fluid flows.  Most fluid systems, 
however, are not stagnant; fluid flows dramatically enhance mixing well beyond 
that due to molecular diffusion alone.  Despite the importance of fluid mixing 
on the pattern formation process, the more general advection-reaction-diffusion 
(ARD) problem has only recently begun to receive significant attention, and 
most of this attention has been theoretical8,9,10,11,12,13,14.  The issue is of particular 
interest in light of studies15 that indicate that fluid mixing can be chaotic even 
for simple, well-ordered, laminar fluid flows.  The importance of chaotic mixing 
in ARD systems has particular relevance for the design of microfluidic devices 
(“factories-on-a-chip”), cellular-scale processes in biological systems and for 
understanding the spreading of diseases in a moving population. 

In this article, we present results of some experimental studies of ARD 
dynamics.  The reaction is the Belousov-Zhabotinsky reaction, and the flow is a 
chain of counter-rotating vortices with both oscillatory and drifting time-
dependence, a flow that has been shown to produce chaotic mixing.  Two 
experiments are discussed:  (1) the effects of cellular flows on the propagation 
of fronts; and (2) the effects of chaotic mixing and superdiffusive transport on 
the collective dynamics and synchronization of oscillatory reactions. 

 
 

 
 
Figure 1. (a)  Sketch of the alternating vortex chain.  The entire chain of vortices can oscillate 
and/or drift in the lateral direction.  (b)  Poincaré section for oscillating vortex chain, showing 
ordered regions of transport in vortex cores and chaotic region around and between vortices.  (c) 
Poincaré section for oscillating and drifting vortex chain. 
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The alternating vortex chain flow and its mixing properties are discussed 
in Section 2.  Details about how the flow is produced experimentally and about 
the chemistry are presented in Section 3.  In Section 4, we describe the 
experiments on front propagation in this system, along with numerical 
simulations of the same phenomena.  Experiments on the collective dynamics of 
oscillating reactions – and the impact of chaotic mixing on these dynamics – are 
described in Section 5.   

 

2.   Chaotic mixing in the alternating vortex chain. 
The alternating vortex chain used in these studies is shown schematically in 
Figure 1.  A simple model of the velocity field of this flow (assuming free-slip 
boundary conditions and no three-dimensional components to the flow) is as 
follows: 
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The vortex chain can oscillate and/or drift in the lateral direction with maximum 
oscillation speed vo and drift speed vd. 

If the flow is stationary (vo = vd = 0), then tracers in the flow follow closed, 
ordered trajectories within the vortices.  Long-range transport is achieved via a 
combination of advection of tracers around the vortices and diffusion of tracers 
across the separatrices between vortices16,17.  If the vortex chain oscillates 
laterally (vo ≠ 0, vd = 0), tracers near the separatrices follow chaotic 
trajectories18,19 and move between adjacent vortices, as shown in a Poincaré 
section (Figure 2a).  Tracers near the vortex centers follow ordered trajectories, 
remaining confined to a single vortex.  Long-range transport in this flow has 
been shown experimentally to be typically enhanced diffusion, with a variance 
σ2(t) = 2D*t with D* an enhanced diffusion coefficient. 

The addition of drift to the vortex chain (vo ≠ 0, vd ≠ 0) changes the chaotic 
mixing.  If vd > vo, the chaotic region often divides into two separate regions, 
with an additional ordered, snake-like region winding around and between the 
vortices.  Transport in this case is superdiffusive with the variance growing as 
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σ2(t) ~ tγ with 1 < γ < 2.  Tracers in a chaotic region in this case follow Lévy 
flight trajectories, alternately sticking to ordered regions within vortex cores and 
undergoing long, snake-like flights between distant parts of the vortex chain.  
The oscillating/drifting vortex chain is notable by the fact that superdiffusion 
can be “turned on” or “turned off” by adjusting the relative magnitudes of vo and 
vd. 

3.   Experimental methods 
The flow is generated with a magnetohydrodynamic technique, shown in Figure 
2.  Two rings of ¾”-diameter magnets are arranged in a circular piece of 
plexiglass, which is mounted coaxially onto a voltage-programmed motor.  
Above this magnet assembly is a shallow cylindrical container with a central 
electrode, an outer electrode, and two (slightly raised) plastic rings which define 
the region of interest.  A thin layer (2 mm deep) of an electrolytic solution 
(usually the BZ chemicals) carries a radial electrical current that interacts with 
the magnets to produce an annular chain of vortices.  Lateral movement of the 
vortex chain is accomplished by rotating the magnet assembly either 
periodically (for oscillating time dependence), with a constant angular velocity 
(for drifting time dependence) or a combination of the two. 

Previous publications describe the chemistry used for the excitable20,21 and 
oscillatory22,23 BZ reaction in these experiments.  A key aspect of the excitable 
reaction is the use of Ruthenium as a catalyzer.  The Ru-catalyzed BZ reaction 
is photosensitive; illumination with blue/green light inhibits the reaction.  We 
use a video projector to project a red ring over most of the annular region, and 
blue/green everywhere else to limit the reaction to the region of interest and to 

 
(a) (b) Plexiglass side−walls Electrodes

Magnet assembly

Motor

 
 
Figure 2. Experimental apparatus.  (a)  Exploded view of magnetohydrodynamic forcing, along 
with the annular vortex chain.  (b) Side view of apparatus. 
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control its propagation direction.  Details about the techniques are described in 
Ref. 21. 

 

4.   Front propagation 

4.1.   Mode-locking in oscillating vortex chain 
A numerical study of front propagation by Cencini et al10  predicted mode-
locking of fronts in the oscillating vortex chain.  In general, mode-locking is 
when an oscillating system matches its frequency to that of a periodic external 
driving.  In the case of a front propagating in the oscillating vortex chain, mode-
locking is manifested as the front moving an integer number N of wavelengths 
(with one wavelength equal to two vortices in the flow) in an integer number M 
of drive periods.  Simulations of mode-locking are shown in Figure 3; 
experimental sequences of similar mode-locking behavior are shown in Figure. 
4. 

 (a)                                                               (b) 

 
 
Figure 3. Simulations showing mode-locking with (N,M) = (1,1) for (a) and (1,2) for (b). 

          
Figure 4. Experimental sequences showing mode-locking with (N,M) = (1,1) for (a) and (1,2) for (b). 
Each image is acquired one period of oscillation after the previous one.
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The velocity at which a mode-locked front propagates is well defined:   
vf = Nλ/MT = (N/M)λf.  Velocities of propagating fronts are plotted in Figure 
5a, along with the theoretical predictions for mode-locked velocities.  (There are 
no fitted parameters in these plots.)  Mode-locking is apparent over a wide range 

of frequencies for both the (1,1) and (1,2) mode-locking regimes.  There is also 
a significant region of overlap between the two where the velocity alternately 
(and erratically) switches between the (1,1) and the (1,2) mode-locking values.  
A parameter-space diagram showing the amplitudes and frequencies for the 
(1,1) and (1,2) mode-locking regimes is shown in Figure 5b.  Once again, a 
significant overlap region is found. 

Mode-locking behavior is quite robust in this system.  It is of interest that 
the numerical predictions are for a two-dimensional flow with free-slip 
boundary conditions, whereas the experimental flow has no-slip boundary 
conditions and a weak, secondary, three-dimensional flow due to Ekman 
pumping24.  Despite these quite significant differences in the details of the flow, 
the mode-locking behavior seen in the experiments is identical to that predicted 
numerically. 

4.2.   Freezing of fronts in the presence of a uniform wind 
The drifting vortex chain (vo = 0, vd ≠ 0) is mathematically equivalent – if a 
transformation is made to a co-drifting reference frame – to a stationary vortex 
chain with an imposed uniform wind.  For a front propagating against this wind 
(in the co-drifting frame), three types of behavior are possible25:  (1) if the wind 

  
Figure 5. (a)  Experimental results showing non-dimensional front speed ξ as a function of non-dimensional 
frequency ν.  The dotted lines show the theoretical predictions (with no fitted parameters) for mode-locked 
speeds.  (b)  Parameter-space plot showing Arnol’d tongues for (1,1) and (1,2) mode-locked states.  Filled 
diamonds denote unlocked states, whereas open squares, open circles and open triangles denote states with 
(1,1), (1,2) and combination (1,1)/(1,2) mode-locking, respectively. 

(a) (b)
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(denoted non-dimensionally as ε = W/vrd, where vrd is the reaction-diffusion – 
no flow – front propagation speed) is small, then the front propagates forward 
against the wind; (2) for intermediate values of ε, the front remains “frozen” – 
trapped in the leading vortex, neither propagating forward nor being blown back 
by the wind; (3) for large values of ε, the wind blows the front backwards.  
These three different regimes are shown in Figures 6a, b and c, respectively. 

Figure 7 shows front velocities (denoted non-dimensionally by ν = vf/vrd) 
for three different values of the non-dimensional vortex strength μ = U/vrd.  The 
dashed diagonal line corresponds to the case with no vortex flow (μ = 0); in this 
case, the effects of the wind are a simple Galilean transformation and ν = 1 - ε.  
A striking feature of this behavior is the large range of wind speeds over which 
the fronts are frozen (ν = 0); for μ = 40, fronts remain frozen at almost 10 times 
the RD front propagation velocity.  The width of the frozen front regime 
collapses onto the μ = 0 result for small vortex strength.  The minimum wind for 

                      
 
Figure 6. Experimental sequences showing front propagation in the presence of an opposing, uniform  
wind blowing right-to-left.  (a)  Small wind; front propagates forward to the right.  (b) Intermediate 
wind; front is frozen in the leading vortex.  (c) Strong wind; front is blown back to the left by the 
wind.  (d) Sequence showing front frozen in a random vortex flow with opposing wind. 
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freezing of fronts is ε = 1 for all values of μ.  This makes sense, since a front 

must burn across a vertical separatrix between vortices to propagate forward.  
Since the flow is perpendicular to the front propagation direction at the 
separatrix, it can’t propagate forward if the wind exceeds the RD propagation 
speed.   

Freezing of reaction fronts is not limited to ordered vortex flows.  
Experiments have also been done with random vortex flows in which similar 
freezing behavior is seen (Figure 6d).  Details of the experiments with random 
flows are reported elsewhere25. 

The experiments reported in this section are all with stationary flows.  
Nevertheless, the results should have implications for front propagation in a 
wide range of time-dependent, two-dimensional flows that are dominated by 
vortex behavior (which is very common in 2D flows).  A moving vortex in a 
time-dependent flow can often be viewed (temporarily) in a co-moving 
reference frame as a stationary vortex with an imposed wind.  From this 
perspective, a vortex passing through a reaction front traveling in the same 
direction should be expected to pin and drag the front. 

Both the freezing front behavior in this section and the mode-locking 
behavior from the previous section indicate the critical importance of vortex 
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Figure 7. Non-dimensional front propagation speed ν as a function of non-dimensional wind ε with μ = 
4 (open diamonds), 12 (filled circles) and 40 (asterisks).  The dashed line is the theoretical limit for μ = 
0. 
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structures in the propagation of reaction fronts in a flow system.  These 
experiments indicate the importance of considering coherent vortex structures in 
any general theory of front propagation in ARD systems. 

5.   Collective oscillatory behavior and synchronization by 
chaotic mixing  

The ARD behavior is quite different if the oscillatory version of the BZ reaction 
is used in the vortex chain flow.  In this case, each vortex and its contents act 
like an oscillating node of a network, and communication between these nodes 
is via chaotic mixing23.  The problem is particularly interesting in light of recent 
studies of networks and the manner in which they are connected.  As discussed 
in Section 1, oscillatory time-dependence of the vortex chain (or combination 
oscillation and drift with vd < vo) results in chaotic mixing with enhanced 
diffusive transport.  Diffusive behavior is analogous to a network with well-
ordered, nearest-neighbor connections.  Superdiffusive transport (for vd > vo) is 
associated with Lévy flights that can travel long distances in a short period of 
time.  These flights are similar in many respects to “short-cut” connections in 
Small-World network models26.  So, the oscillating/drifting vortex chain flow 
gives us the ability to study how the large-scale collective behavior of a fluid-
based network is affected by the type of transport (diffusive or superdiffusive). 

If the vortices are stationary (vd = vo = 0), then communication between 
them is via molecular diffusion across the separatrices; coupling in this case is 
very weak and the vortices are essentially isolated.  With the oscillatory BZ 
reaction in this flow, the contents of each vortex oscillate almost periodically, 
independent of the rest.  Oscillations of the BZ reaction may start off initially 
synchronized (due to mixing in the apparatus when the chemicals are added) but 
de-synchronize within a few periods of the chemical oscillations.  Ultimately, 
the chemicals in each vortex oscillate independently of the rest. 

If oscillatory and/or drifting time-dependence is added to the vortex chain, 
three types of collective behavior are observed (Figure 8).  In every situation in 
which the transport is diffusive (e.g, for vd < vo), aperiodic traveling waves are 
found, regardless of the initial conditions. (Figure 8a).  Sometimes the waves 
travel counterclockwise around the annulus and sometimes clockwise. Often the 
waves emanate from a source and travel in both directions around the annulus to 
a sink on the other side, with the locations of the source and sink drifting with 
respect to the chain.  The behavior sloshes continuously and unpredictable 
between these different states; we have not encountered a situation where the 
traveling waves remain consistent in their behavior. 
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If the transport is superdiffusive (vd > vo) then one of two types of global 
synchronization are observed.  In most cases, “co-rotating” synchronization is 
osbsered (Figure 8b), where odd vortices are all synchronized with each and 
even vortices are all synchronized with each other, but where the phase 
difference between the two chains can be anything.  The lack of synchronization 
between the two chains in this case is due to the isolation of the two chaotic 
regions that is usually (but not always) found for flows with vd > vo (see Fig. 
1c).  Mixing in these chaotic regions skips adjacent vortices, connecting odd 
vortices to odd vortices and even vortices to even vortices.  In some cases if vd is 
just slightly larger than vo, Lévy flight trajectories and superdiffusion are 
possible even for a situation with only one, connected chaotic region.  In this 
case, global synchronization is found with the BZ chemicals in all vortices 
oscillating in unison (Figure 8c).  More details about the experimental results 
are presented in Ref. 23. 

The implication of these results is that superdiffusive transport may be a 
necessary (although probably not sufficient) condition for synchronization in an 
extended fluid system, i.e., one in which the total system size is appreciably 
larger than characteristic length scales of the fluid flow.    These results could be 
important in interpreting synchronization behavior found in natural systems, 
such as algae blooms in the Gulf of Mexico and phytoplankton blooms in the 
Atlantic Ocean. 
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