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Barriers to front propagation in ordered and disordered vortex flows

Dylan Bargteila) and Tom Solomonb)
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(Received 14 April 2012; accepted 31 July 2012; published online 28 September 2012)

We present experiments on reactive front propagation in a two-dimensional (2D) vortex chain

flow (both time-independent and time-periodic) and a 2D spatially disordered (time-independent)

vortex-dominated flow. The flows are generated using magnetohydrodynamic forcing techniques,

and the fronts are produced using the excitable, ferroin-catalyzed Belousov-Zhabotinsky chemical

reaction. In both of these flows, front propagation is dominated by the presence of burning invariant
manifolds (BIMs) that act as barriers, similar to invariant manifolds that dominate the transport of

passive impurities. Convergence of the fronts onto these BIMs is shown experimentally for all of

the flows studied. The BIMs are also shown to collapse onto the invariant manifolds for passive

transport in the limit of large flow velocities. For the disordered flow, the measured BIMs are

compared to those predicted using a measured velocity field and a three-dimensional set of ordinary

differential equations that describe the dynamics of front propagation in advection-reaction-diffusion

systems. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4746764]

The dynamics of a wide range of reacting systems can be

characterized by the propagation of fronts that separate

distinct phases in the reacting system. Such fronts can be

defined for systems such as wildfires, plasmas,
1

plankton

blooms,
2

epidemics,
3

phase transitions in matter,
4

and

chemical reactions.
5,6

The behavior of reaction fronts has

been well-studied in the reaction-diffusion (RD) limit, i.e.,

in a stagnant system in which molecular diffusion is the

dominant mixing mechanism. In many real systems, how-

ever, the propagation of fronts is strongly influenced by

the presence of fluid flows. The behavior of these more

general advection-reaction-diffusion (ARD) systems has

been studied extensively for turbulent flows, especially

for engineering applications involving turbulent combus-

tion. The propagation of fronts in laminar flows or in

flows with large coherent structures, however, is still

poorly understood. This is a problem with significant

applications, e.g., in microfluidic chemical reactions,
7

cellular or embryonic scale biological systems,
8,9

and

population dynamics in oceanic flows with large-scale

coherent vortices.10 In this paper, we present experiments

on front propagation in a simple, laminar flow composed

of a chain of alternating vortices and in a spatially disor-

dered, vortex-dominated flow. We show that front propa-

gation is dominated by local barriers in the flow called

burning invariant manifolds11 (BIMs) which could form

the basis for a general theory of front propagation in

ARD systems. These BIMs are generalizations of invari-

ant manifolds that act as barriers to transport of passive

impurities. The BIMs are shown to be directional—they

block fronts propagating in one direction but allow fronts

propagating the opposite way to pass through. We dem-

onstrate experimentally how BIMs can be measured in

both time-independent and time-periodic fluid flows,

and we show that the BIMs collapse onto the invariant

manifolds for passive transport in the limit of large flow

velocities.

I. INTRODUCTION

It is well known12,13 that mixing of passive impurities in

laminar fluid flows can be chaotic with nearby tracers separat-

ing exponentially in time, resulting in significant enhance-

ments in mixing. Mixing and transport in time-independent

and time-periodic flows can be characterized by invariant

manifolds14,15 which act as transport barriers, along with their

intersections (or “lobes”) which have been used to analyze

long-range transport.15–17 Although originally developed to

describe passive transport in simple time-independent and

time-periodic flows, the concept of the invariant manifold has

been extended to a wide range of flows, based on an approach

that identifies Lagrangian coherent structures (LCS) in the

flows, manifold-like structures which act as temporary barriers

to transport.18 LCS approaches have been used successfully to

describe transport in several systems of significant practical

importance, including pollution mitigation in Monterey Bay19

and near the coast off Florida20 and predictions of the path of

oil flowing from oil spills in the Gulf of Mexico.21,22

In a recent article,11 a new approach based on invariant

manifolds was proposed to describe the behavior of reaction
fronts propagating in a fluid flow. Here, we present experi-

ments that test this approach for analyzing front propagation

in predominately two-dimensional (2D) laminar flows. Simi-

lar to the role played by invariant manifolds as barriers for

passive transport, structures called burning invariant mani-

folds (BIMs) act as one-way barriers for front propagation in

ARD systems.11 We test these ideas experimentally in or-

dered flows consisting of a chain of alternating vortices (both

time-independent and time-periodic) and in a spatially disor-

dered, vortex-dominated flow. We use the excitable, ferroin-

catalyzed Belousov-Zhabotinsky (BZ) chemical reaction,6,23

which produces pulse-like reaction fronts that can be
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triggered in a controlled manner. We experimentally identify

BIMs for chemical fronts propagating in these flows and ana-

lyze these BIMs based on a three-dimensional (3D) mathe-

matical formalism.

In Sec. II, we present background about invariant mani-

folds for passive transport, previous experiments on front

propagation in vortex flows, and the theory of burning invari-

ant manifolds. The experimental techniques used for investi-

gating BIMs in both the vortex chain and disordered vortex

flow are explained in Sec. III. Experimental results illustrat-

ing BIMs in the vortex chain flows are presented in Sec. IV.

The results for the spatially disordered flows are shown in

Sec. V. Section VI presents a discussion of these results,

along with continuing experiments.

II. BACKGROUND

A. Passive mixing and invariant manifolds

The vortex chain flow (Fig. 1) has become a paradigm

in studies of passive mixing. If the flow is time-independent,

tracers follow closed trajectories, never leaving whichever

vortex they are initially in. If molecular diffusion is included,

long-range transport can occur via advection of tracers

around a vortex and diffusion across the boundary between

one vortex and the next. The result24,25 is long-range trans-

port where the variance hx2i grows linearly in time:

hx2i ¼ 2D�t, where D� is an enhanced diffusion coefficient

which is typically a couple of orders of magnitude larger

than the molecular diffusion coefficient. If the vortex chain

oscillates periodically in a lateral direction, tracers can be

advected between vortices, following chaotic trajectories

with nearby tracers separating exponentially in time.26

Transport in this case is usually also diffusive in nature,

although there are very narrow frequency ranges where

transport is superdiffusive (with hx2i � tc with 1 < c < 2)

for significant transient times.27

When analyzing passive mixing theoretically, one typi-

cally follows the motion of an infinitesimal fluid element or a

passive impurity in the flow. If the flow is time-independent,

then the x- and y-coordinates of the impurity fully specify the

velocity field at that point, which allows for prediction of the

time-evolution of the tracer’s location; consequently, a 2D

phase space describes the kinematics of the impurity. If the

flow is time-periodic, then there is a third dimension associ-

ated with the phase of the oscillation. This third time-

dimension is usually accounted for with the use of Poincar�e
sections which plot the tracer’s location once every period.

For the vortex chain flow of Fig. 1, passive mixing can

be characterized by integration of the x- and y-velocity

field26

dx=dt ¼ uxðx; y; tÞ ¼ sinðp½xþ b sinðxtÞ�Þ cosðpyÞ;
dy=dt ¼ uyðx; y; tÞ ¼ �cosðp½xþ b sinðxtÞ�Þ sinðpyÞ: (1)

In these equations, x, y, and the oscillation amplitude b are

non-dimensionalized by the vortex width D, and the velocity

is non-dimensionalized by maximum flow speed U. This is a

simplified model that assumes a purely 2D flow with free-

slip boundary conditions. This model has been used very

successfully during the past 20 years to analyze both passive

transport16,17,26 and front propagation11,28–32 in experiments

with vortex chain flows, even though the experiments have

no-slip boundary conditions and typically have a weak, sec-

ondary, 3D flow due to Ekman pumping.33

Transport in the vortex chain can be understood by con-

sidering fixed points in the flow and invariant manifolds

attached to those fixed points. Figure 2 shows an example of

invariant manifolds for passive transport for both the time-

independent and time-periodic vortex chain flows. The verti-

cal (black) lines denote the boundaries between adjacent

vortices in the flow, which also happen to be the invariant

manifolds for passive transport for a time-independent flow.

The Eulerian (hyperbolic) fixed points are at the ends of

these manifolds. The folded curve (red) corresponds to a per-

iodic (oscillatory) flow; this is the unstable manifold of the

bottom, middle fixed point for that flow. The manifolds are

defined as the set of points that would advect to the unstable

fixed point under time reversal. To numerically compute the

manifolds, we initially locate a large number of tracers very

close to the bottom, middle fixed point. The positions of

these tracers are integrated numerically for several periods

of oscillation of the vortex chain, during which the tracers

map out the manifold.34 The complicated folding structure

seen here is typical of manifolds for chaotic mixing.

An invariant manifold acts as an impenetrable barrier

across which no tracers can pass in either direction in the ab-

sence of molecular diffusion. For a time-independent flow,

the manifolds effectively isolate the individual vortices in

the flow; no tracers can cross from one vortex to the next

without diffusion. The manifolds are impenetrable barriers in

the time dependent case as well. This does not, however, pre-

vent long-range transport of impurities across the system,

FIG. 1. Chain of alternating vortices.

FIG. 2. Invariant manifolds for passive transport in vortex chain flow. The

vertical (black) lines show the boundaries between adjacent vortices; these

lines are also the invariant manifolds for passive transport for a time-

independent (stationary) flow. The other (red) curve is an invariant manifold

for a time-periodic flow where the vortices oscillate laterally.

037103-2 D. Bargteil and T. Solomon Chaos 22, 037103 (2012)

Downloaded 28 Sep 2012 to 134.82.60.151. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



since the manifold is stretched and folded repeatedly, resulting

in a manifold structure that spans many vortices in the flow.

In fact, were the simulation continued indefinitely, the mani-

fold would stretch and fold into an infinite-hierarchical struc-

ture that covers all of the vortices in the system. Tracers in the

flow can never cross the manifold, but they can follow the

manifold as it stretches and folds through the vortex chain.

B. Front propagation

The speed at which a front propagates through a system

with no advection (i.e., in the RD regime) is well-described

by the Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP)

theory: V0 ¼ 2
ffiffiffiffiffiffiffiffiffiffi
D0=s

p
, where D0 is the molecular diffusion

coefficient of the reacting components and s is reaction time

scale.35,36 When a vortex chain flow is added (Fig. 1), it is

reasonable to propose that a reaction front propagating in

this ARD system will propagate at a speed that is still

described by the FKPP prediction, but with the molecular

diffusivity D0 replaced with the enhanced diffusivity D�.
Previous studies of reaction fronts in the oscillatory vortex

chain, however, found a very different result.30–32 Reaction

fronts in this case often mode-lock to external forcing, prop-

agating an integer number of vortex pairs in an integer num-

ber of drive periods. These time-periodic flows exhibit

enhanced diffusion coefficients orders of magnitude larger

than for the time-independent vortex chain, yet the mode-

locking causes some fronts to move slower than in the

unforced case. The mode-locking results imply that an exten-

sion of FKPP theory is not sufficiently general for ARD

systems.

Subsequent experiments37,38 have indicated that the

addition of a uniform “wind” to the vortex flow results in

fronts that are often pinned to a vortex for a wide range of

imposed wind speeds, propagating neither forward against

the wind nor being blown backward. Based on this pinning

result, the mode-locking observed for the time-periodic flow

can qualitatively be explained as a ratcheting mechanism

due to periodic pinning from what can be thought of as an

oscillatory imposed wind. This heuristic argument, however,

does not provide a complete theory to explain the origins of

the mode-locking nor does it give sufficient insight into front

propagation in a wide range of laminar flows. Ultimately, a

new approach is needed.

C. Burning invariant manifolds

A recent paper11 introduced a general, geometric theory

of front propagation in laminar ARD systems motivated by

the theory of invariant manifolds in advection discussed in

Sec. II A. That theory, which we describe in this section,

forms the basis for the analysis in this paper.

Whereas the passive transport problem requires a 2D

system of ordinary differential equations (ODEs), the analy-

sis of the motion of a front requires an additional variable. In

addition to the x- and y-coordinates of a small section of the

front, it is also necessary to specify the angle h that the front

makes with respect to the horizontal. This results in an

expanded, 3D set of differential equations to describe front

dynamics

_x ¼ ux þ v0 sin h; _y ¼ uy � v0 cos h; (2a)

_h ¼ �2ux;x sin h cos h� ux;y sin2 hþ uy;x cos2 h; (2b)

where ðx; y; hÞ is the position and orientation of a front ele-

ment, u is the fluid flow velocity vector field, and v0 is RD

burn speed (V0) non-dimensionalized by the maximum flow

speed U. The first term in each of Eqs. (2a) represents advec-

tion of the front with the 2D flow, and the second term in

each of Eqs. (2a) represents the reactive burning of the front

relative to the flow, in a direction perpendicular to the front.

Equation (2b) quantifies the rotation of a front due to the

flow.11 This system of equations assumes an incompressible

flow; furthermore, we assume a constant front propagation

speed for a given reaction and do not model local variations

in v0 due to front curvature. The reaction is assumed not to

feed back on the velocity field in this model. It is also

interesting to note that the model presented here in Eqs. (2a)

and (2b) is equivalent to the set of equations of motion for

self-propelled elongated particles in flows with chaotic

advection.39,40

In the same way that the 2D ODEs for passive transport

have stationary solutions (fixed points) with attached stable

and unstable manifolds, this expanded 3D model also has

fixed points with attached manifolds, which we call burning
fixed points and BIMs, respectively. The BIMs are infinite,

1D curves in a 3D phase space. To make physical sense of

them, we project them down from the 3D phase space onto

the 2D physical, xy-space.

We can use the non-dimensional RD front velocity

v0 ¼ V0=U to identify several distinct regimes. The FKPP

regime is recovered in the limit in which the advection in

an ARD system vanishes, i.e., v0 !1. In this regime,

there are no fixed points or manifolds. The passive mixing

regime is recovered in the opposite limit, when v0 ! 0, i.e.,

advection with the flow overwhelms the reaction-diffusion

dynamics. In this regime, the burning fixed points are the

same as the Eulerian fixed points, and the BIMs are the

same as the passive invariant manifolds.

In the intermediate regime (finite v0), the hyperbolic

fixed points for passive transport split into two burning fixed

points. A reaction triggered at an Eulerian fixed point in the

flow is not a stationary solution of the 3D dynamics. The

reaction will burn outward from the advective fixed point

until it approaches the burning fixed points, which are the

points where the local advection is equal in magnitude to v0

but opposed to the burning direction. In analogy with the

invariant manifolds of the passive case (v0 ! 0), the BIMs

extend from the burning fixed points.

Similar to invariant manifolds for passive transport, BIMs

act as barriers to front propagation in ARD systems. However,

BIMs act as oriented (one-way) barriers to front propagation,

blocking reactions impinging in one direction but allowing

reactions propagating in the opposite direction to pass.

III. EXPERIMENTAL TECHNIQUES

For our investigation, we utilize the excitable, ferroin-

catalyzed BZ reaction41—a solution composed of 0.22 M
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sulfuric acid, 0.36 M sodium bromate, 0.12 M Malonic acid,

and 0.12 M sodium bromide is mixed under a vent hood until

clear, and then 0.025 M ferroin indicator is added turning the

solution a deep orange color. (More ferroin is added during

the course of the experiments over several hours as the color

fades.) The entire solution is poured into the apparatus. A

reaction front is triggered by the insertion of a silver wire in

the flow, which oxidizes the indicator in the vicinity of the

wire, changing the color of the fluid in that region from orange

to blue. This region then oxidizes the fluid nearby, producing

a front that propagates outward from the trigger point. In all

experiments, the front propagation speed V0 in the absence of

a flow is 0.007 cm/s. The reaction is excitable: it relaxes back

to its original orange color after about a minute and can be re-

triggered. To subdue undesired, spontaneous self-triggering in

the larger disordered flow system, a sodium bromide inhibitor

is added near the side-walls of the apparatus where spontane-

ous self-triggering is the most problematic. The BZ reaction is

electrolytic in both its unreacted and reacted phases.

Both the vortex chain and the spatially disordered flow

are generated using magnetohydrodynamic forcing techni-

ques17,41,42 (Fig. 3). We place a plexiglass container with a

thin (2 mm) layer of the chemicals comprising the BZ reac-

tion above an arrangement of permanent magnets and then

pass a current horizontally through the fluid. The current

interacts with the magnetic field to produce a Lorentz force

that drives a horizontal flow in the fluid layer.

The vortex chain flow uses a strip of 1.9 cm diameter

Nd-Fe-Bo magnets arranged in a line with alternating polar-

ity mounted on a translation stage. The container holding the

fluid has a flow channel measuring 1.9 cm� 27 cm (bounded

by thin plastic strips) placed directly over the strip of mag-

nets. Passing DC current (using a constant current power

supply) lengthwise through the channel generates a steady

flow of counter-rotating vortices, each with width D¼ 1.9 cm

and unity aspect ratio, as in Fig. 1. By using the translation

stage to laterally oscillate the magnets under the flow chan-

nel, we can oscillate the vortices.

The disordered vortex array uses an arrangement of 558

Nd-Fe-Bo magnets with 0.6 cm diameter placed under a

28 cm square container (Fig. 3). The magnets are arranged

with no ordering in their spatial distribution or polarity. Pass-

ing DC current through the fluid generates a disordered,

vortex-dominated flow that is time-independent.

While the flow field for the oscillating vortex chain can

be modeled easily (Eq. (1)), the flow field for the disordered

vortex array is unknown and needs to be measured experi-

mentally. In order to measure the velocity field of the disor-

dered flow, we introduce the BZ reagents into the cell

without the ferroin catalyst or powdered chemical reactants.

This mixture—which is still electrolytic—has a kinematic

viscosity that is nearly identical to the BZ reaction that we

use to make other measurements; consequently, passing the

same current through this mixture should result in approxi-

mately the same flow that occurs with the BZ reaction. We

then place 500 lm black tracer particles in the fluid over a

white background, illuminate them using an LCD projector,

and image them roughly three times per second using a CCD

camera with a 50 ms exposure time. We then use these

sequences of images to locate the particles in each frame and

track their motion through time.

Velocity data for the disordered flow are calculated by

fitting parametric parabolas to the x- and y-coordinates over

short intervals of time. Derivatives of these parametric fits

are then used to calculate the x- and y-components of the ve-

locity. Due to the difficulty of sampling the entire flow with

particles, as well as the irregularity of the points at which we

calculate the velocities of tracer particles, we interpolate our

sparse velocity data onto a uniform grid using Delaunay tri-

angles and cubic splines.

The magnetohydrodynamic forcing is not the only thing

driving fluid motion in these experiments. The propagating

chemical reaction itself produces small density gradients that

can drive buoyancy-forced convection; furthermore, since

the fluid has a free surface, temperature gradients from the

reaction also induce Marangoni convection.43–47 The veloc-

ities associated with these reaction-driven flows are typically

around 50 times slower than the flows driven magnetohydro-

dynamically in these experiments; consequently, we do not

consider the effects of these reaction-driven flows on the

dynamics of the propagating front nor as part of our model

flow 1. For systems with weaker or no externally imposed

flows, however, it would be important to consider the effects

of reaction-driven flows in the system.

IV. RESULTS: VORTEX CHAIN FLOW

The evolution of a single reaction front triggered at a

fixed point in a time-independent flow can be used to identify

FIG. 3. Schematics of the disordered vortex flow apparatus. Top: Side view

of apparatus. A spatially disordered array of magnets is placed under a con-

tainer of electrolytic solution. A DC electrical current is passed through the

solution using two electrodes. Bottom: Top view of the apparatus. Magnetic

field is shown entering or exiting the plane of the image.
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BIMs in the vicinity. Figure 4 shows the evolution of reac-

tions triggered in this manner for two different values of v0.

If a reaction front is triggered at the Eulerian fixed point

between two BIMs, the front propagates in a channel

bounded by these two BIMs, shown in red in both panels

of Fig. 4. As expected, the BIMs for a flow with large v0

(Fig. 4(a)) are farther from the passive manifold, and the BIMs

are closer to the passive manifold if v0 is smaller (Fig. 4(b)).

The flow is not perfectly two-dimensional in these vor-

tex flows; rather, there is a small, three-dimensional second-

ary flow—Ekman pumping33—that can cause some slight

penetration of reaction fronts through BIMs. Nevertheless,

the fronts can be shown to converge quite well onto the

BIMs. Figure 5 shows the approach of a front to the top-

most portion of the right BIM in Fig. 4(a), along with a line

whose slope denotes the speed V0 for a reaction front in the

absence of a flow. The front slows down asymptotically to a

speed which is an order of magnitude smaller than V0, indi-

cating good convergence.

The BIMs are more complicated for a vortex chain with

periodic time dependence (Figs. 6 and 7). First, since the flow

is periodic, the BIMs undulate periodically in time, so a

sequence of fronts from a single trigger event is not sufficient

to visualize the BIMs. Instead, the BIMs are determined by

doing a series of experiments, each in which a front is trig-

gered at the Eulerian fixed point (which oscillates back and

forth) at different phases of the oscillation. For each experi-

ment, the front evolves in time, and we take a snapshot of the

front at a phase of 0, i.e., when the lateral oscillation crosses

the mid-point in the positive direction.48 The fronts—from all

of these experiments—imaged at these phases are displayed in

Figs. 6 and 7. As with the simpler time-independent case,

these images reveal the BIMs as bounding curves that form a

channel through which the front evolves. The images are not

perfect because the BIMs are close together near the Eulerian

fixed point; consequently, the initial trigger occasionally over-

laps one of the BIMs, and part of the evolving front in those

cases starts outside the channel formed by the BIMs.

FIG. 4. Sequence of fronts for time-independent flows, along with the exper-

imentally extracted BIMs (in red). (a) Maximum flow speed U¼ 0.045 cm/s,

v0 ¼ 0:16. (b) U¼ 0.090 cm/s, v0 ¼ 0:078.
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FIG. 5. Convergence of reaction front to a BIM. The blue symbols show the

bottom-most edge of the downward-propagating reaction above the highest

point of the right BIM in Fig. 4(a). The straight line (red) shows the speed

V0 at which a front would propagate in the absence of any flow. The ARD

front slows to a speed an order of magnitude smaller than V0.

FIG. 6. Sequence of fronts for time-periodic flow with U ¼ 0:090 cm/s

(v0 ¼ 0:078), oscillating with frequency X ¼ 0:16 rad/s and (non-dimen-

sional) amplitude b ¼ 0:15. Time after trigger for fronts (in multiples of the

oscillation period T) are (a) 0.3, 0.9, and 1.0; (b) 1.1 and 1.4; (c) 1.5 and 1.8;

and (d) 1.9 and 2.1. (Each image includes the previous fronts.) Edge

enhancements of the fronts are shown, in order to make it possible to see

multiple fronts in the same image. The red curves in (a)-(c) show the experi-

mentally extracted BIMs for the first two periods of oscillation of the vortex

chain, and the additional red curve in (d) shows a continuation of the right-

part of the BIMs after an additional oscillation period.

FIG. 7. Sequence of images showing BIMs for a time-periodic flow with U
¼ 0:090 cm/s (v0 ¼ 0:0078), X ¼ 0:16 rad/s, and b ¼ 0:30. Time after trigger

for fronts (in multiples of the oscillation period T) is (a) 0.42, (b) 0.55, (c) 0.87,

(d) 1.10, (e) 1.60, and (f) 2.10. The red curves show the BIMs surrounding the

bottom center Eulerian fixed point. (g) shows a superposition of gradient-

enhanced images; ridges in this image help in determination of the BIM structure.
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The BIMs for the time-periodic case are determined by

a combination of two approaches. Figure 7(g) shows a super-

position of gradient enhanced images—each taken from the

same phase of oscillation—which has ridges (maxima) in

regions where the moving fronts tend to be blocked. The

ridges in the superposition image give a first approximation

of the structure of the BIMs. This gradient method is less

effective for the time-periodic case than for the time-

independent case, since only the images from the same phase

of oscillation can be used, significantly limiting the amount

of data that can be added to the superposition image. The

second approach uses sequences of fronts, shown in Figs. 6

and 7. Since the fronts in these images are triggered predom-

inately between a pair of BIMs, they approach and converge

on the BIMs, which form a channel through which the front

evolves. So, as in the time-independent case (Fig. 4), the

BIMs are revealed as the bounding curves in these images.

The red curves in Figs. 6 and 7 show our best estimate

of the BIMs for the middle, bottom fixed point. (There are

BIMs associated with all of the burning fixed points in the

flow.) These curves show only part of each BIM; with each

oscillation period, the reaction front is extended, revealing

more of the BIM, as shown in Fig. 6. The right-most part of

the BIMs in Fig. 6(c) maps one period later to the additional

portion of the BIMs shown in Fig. 6(d). This behavior is sim-

ilar to that of the invariant manifolds for passive transport

(Fig. 2). In the same manner that passive impurities in a

time-periodic flow can be transported many vortices by fol-

lowing the periodically undulating manifold, a reaction front

can propagate an arbitrarily large number of vortices by fol-

lowing the periodically undulating BIM.

There are two significant differences between manifolds

for passive transport and BIMs for propagating reactions.

First, even though a passive manifold is stretched and folded

an arbitrarily large number of times, there is no segment of a

passive manifold that ever spans the channel of the vortex

chain, i.e., from the top to the bottom in any of the images of

the vortex chain. A BIM, however, can have segments that

span from one boundary to the opposite, e.g., the left BIM in

Fig. 7. A spanning BIM does not necessarily cut off long-

range front propagation for time-periodic flows since the

BIMs undulate periodically, with the front following the

undulating BIM.

A second significant difference is the fact that BIMs are

directional. Figure 8 shows two different experiments with

fronts propagating in opposite directions and impinging on

the same set of BIMs. In each case, the front passes through

the first BIM and is then blocked by the second BIM. This is

in contrast to manifolds for passive transport that block mix-

ing in either direction.

The BIMs clearly play a significant role in the mode-

locking behavior seen in previous experiments. Figure 9

shows four snapshots (taken at the same phase in successive

periods of oscillation of the vortex chain) of the propagation

of a front that is initially triggered off-screen to the left. The

pair of BIMs directly in front of the leading edge of the reac-

tion is shown in each image. The reaction front can be seen

to converge onto the BIM within a couple of periods, and it

remains locked to this BIM indefinitely after that, giving rise

to the mode-locking behavior seen in earlier studies.

V. DISORDERED VORTEX ARRAY

Our studies of front propagation in the disordered vor-

tex flow allow us to explore the applicability of the BIM

formalism to more complicated and realistic flows. These

experiments also (a) further demonstrate convergence of

fronts on BIMs; (b) verify the oriented nature of the BIMs;

and (c) verify that passive manifolds are the limiting case

of burning manifolds for small v0. Additionally, we explore

the effect on front propagation of singularities from the pro-

jection of the 3D burning manifolds down to 2D (physical)

space.

The velocity field measured for the disordered flow is

shown in Fig. 10. The propagation of a BZ reaction front

triggered near the top of the apparatus is shown in Fig. 11.

The first three panels show raw images of the chemical front

(with background subtraction). The pulse nature of the reac-

tion is evident in the first image; most of the region behind

the front has reset and is re-triggered in later images in the

sequence as the reaction circulates back around the vortices.

The last panel in Fig. 11 shows the results of image analysis

to extract the leading edge of these three fronts. In this

image, the reaction data shown in the first three panels are

thresholded for intensity and smoothed, which removes

much of the noise from the data. A Roberts-Cross edge

FIG. 8. Fronts triggered (a) to the left and (b) to the right of a pair of BIMs

in a time-periodic vortex chain flow with the same experimental parameters

as in Fig. 7. In each case, the front passes through the first BIM that it

encounters and is then stopped by the second.

FIG. 9. Sequence of images of a front triggered at the left and propagating

to the right in a time-periodic vortex chain flow; same experimental parame-

ters as in Fig. 7. The images shown are taken in intervals of one period of

oscillation. The red curves show the pair of BIMs immediately in front of

the leading edge of the front. The front in this case mode-locks to the BIM

structure.
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enhancement filter is then used to pick out the reaction front

from the reaction bulk. To accentuate the visual clarity of the

scheme, Fig. 11 has additionally had some noise manually

removed and the reaction front has been thickened by dilating

the pixels in the image. These additional image treatments

were not applied to data used for analysis.

The time-independence of the disordered vortex flow

allows us to utilize the gradient technique discussed in

Sec. IV for Figure 7(g), here shown in Fig. 12. Wherever a

BIM is present, the reaction front stops propagating (pro-

vided the front shares the orientation of the BIM), while in

other regions, the front propagates freely. Therefore, by per-

forming a superposition of gradient enhanced images, BIMs

can be picked out as bright ridges in the image. In Figure 12,

one particular reaction snapshot is shown in white, several

gradient enhanced reaction fronts are shown in green, and

the BIMs are shown in red. One can observe the green reac-

tion fronts compounding along the BIMs as described.

The front shown in Fig. 12(a) is triggered experimen-

tally at an Eulerian hyperbolic fixed point and converges

onto nearby burning invariant manifolds, similar to the

behavior seen with the time-independent vortex chain flow

(Fig. 4). There is a pair of BIMs on either side of the trigger

point that act as barriers, forming a channel through which

the evolving front propagates.

The convergence and one-sided barrier nature of the

BIMs can be seen with fronts triggered far away from the

Eulerian fixed point, as seen in Figs. 12(b) and 12(c). These

fronts still converge on the same BIMs as fronts triggered at
FIG. 10. Velocity field for the spatially disordered flow. (Top left) Irregular

and sparse measured velocity data. (Top right) Velocity data interpolated to

a uniform grid. Both panels show velocity field overlaid on a vorticity field

(shown in red and blue) calculated from the interpolated velocity field. (Bot-

tom) Enlarged velocity field, boxed region at bottom of top right image.

FIG. 11. Propagation of a BZ reaction front in the spatially disordered flow.

The first three panels show the front at times t1; t2, and t3 ¼ 240; 540, and

840 s after the trigger. The fourth panel shows the extracted leading edges of

these three fronts.

FIG. 12. Superposition of reaction fronts as they evolve in time. (a) Fronts

extracted from a reaction triggered at a hyperbolic fixed point in the flow. An

individual snapshot of the reaction is in white. Time-advanced reaction fronts

appear in green. Experimentally extracted BIMs are in red. Each front shown is

advanced in time by 10 s. (b) and (c) Propagation of fronts triggered away from

the Eulerian fixed points. In these two images, the same BIM structures are

shown (red). Arrows are added to indicate the direction of reaction propagation.

Despite the fronts being triggered far away from the Eulerian fixed point, they

still converge on the BIMs. Additionally one observes the left BIM blocking a

left-propagating front and vice versa, while the other BIM is burned through

(video online). [URL: http://dx.doi.org/10.1063/1.4746764.1]; [URL: http://

dx.doi.org/10.1063/1.4746764.2].
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the fixed point (Fig. 12(a)). The BIMs are attractors in phase

space, and the strong convergence we observe in experi-

ments for remote triggers agrees with this characterization.

Additionally, Fig. 12 clearly shows that BIMs are oriented

structures. In Fig. 12(b), one can see a front triggered to the

right of the pair of BIMs propagating towards the left side of

the frame. The front burns through the right BIM, which is

oriented to the right, but the front stops cleanly on the left

BIM, which shares the orientation of the front. Fig. 12(c)

shows this same orientation phenomenon in the other

direction.

We can also experimentally observe the dependence of

the separation between BIMs upon the ratio v0 ¼ V0=U by

varying the speed of the flow. In Fig. 13, we show three struc-

tures corresponding to three different ratios of v0. One of these

curves (the blue one) corresponds to the invariant manifold in

the passive transport limit (v0 ! 0), determined experimen-

tally with the same magnetohydrodynamic techniques as used

for the reaction, but replacing the reaction with a passive, neu-

trally buoyant dye. In this limiting case, the BIMs collapse

onto one structure with no orientation—namely, the passive

invariant manifold. As the non-dimensional burn speed v0

increases, the separation between BIMs becomes greater.

Using our experimentally measured velocity field for the

flow, we are able to theoretically predict the location of

BIMs in the flow using the 3D ODE in Eq. (2). Theoretical

calculations are performed by initializing a front element

near a hyperbolic advective fixed point in the flow with an

orientation angle h whose normal is aligned with the stable

direction of the advective fixed point. Equation (2) is then

integrated using a 4th-order Runge-Kutte method. This cal-

culation ideally results in the front element burning outward

from the Eulerian fixed point toward the burning fixed point.

Near the burning fixed point, the front element ideally makes

a hard turn along one of the two unstable directions of the

fixed point and proceeds to map out half of the BIM. This

method allows for direct visualization of both the BIM and

the splitting of the Eulerian fixed point into the two burning

fixed points. Since one front element will burn toward a sin-

gle burning fixed point and then turn down one of the two

unstable directions, four front elements are needed to map

out the BIM pair of each Eulerian fixed point.

These calculations are performed for the zoomed-in ve-

locity field shown in the bottom panel of Fig. 10, correspond-

ing to the experimentally determined BIMs from Figs. 12.

These calculations match the upper branches of the experi-

mentally extracted BIMs quite well, as shown in Fig. 14.

The sparseness of the velocity data in this particular region

leads to some discrepancies between the velocity field we

used to calculate our BIMs and the actual flow field. For this

reason, we are not able to calculate both unstable branches

of the BIMs shown in Fig. 14. In regions of the flow with

dense sampling of the velocity field, the simulations capture

all branches of the BIMs.

Looking at a wider region of the spatially disordered

flow, we experimentally measure BIMs throughout the entire

apparatus (excluding a region near the sidewalls). Some

of these experimentally measured BIMs are shown in

Fig. 15(a). Using our measured velocity field, we can once

again calculate BIMs in the flow. Theoretical calculations

are performed for a sample of the BIMs in Fig. 15(a) and are

shown overlaid on the experimental BIMs in Fig. 15(b).

These theoretical calculations of BIMs from the velocity

field give further insight into front propagation dynamics. In

the full 3D phase space of the system, the BIM is an infin-

itely long 1D curve. To visualize the BIM in the physical ap-

paratus, we project this curve into the 2D xy-plane. When

we perform this projection, the smooth BIM may appear to

be kinked, due to the curve holding different values of h at

the same (x,y) coordinate. Some of these kinks can be

observed in Fig. 15(b).

Fronts propagating along a BIM display interesting

behavior when they encounter these kinks. The front will

sometimes pinwheel around the kink, mirroring the behavior

of the BIM in phase space (obtaining multiple values for the

orientation at a single point in xy-space), as shown in

FIG. 13. BIMs measured with three values of the ratio v0 ¼ V0=U; v0 ¼ 0,

0.11, and 0.18 for the blue, green, and red curves, respectively. The v0 ¼ 0

case is measured by detecting transport barriers for passive mixing.

FIG. 14. Theoretical calculation (in blue) of the pair of BIMs, along with

experimental BIMs (in red). While not all branches of these BIMs could be

calculated, the branches shown are in good agreement with experiment.
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Fig. 16. This mechanism enables the front to fill in the vortex

cores around which BIMs tend to reside. It appears that the

portion of the BIM which continues on after the kink has no

clear physical significance in controlling front propagation,49

though this issue must be explored further by experiment.

VI. DISCUSSION

In this paper, we present experimental results that estab-

lish the validity of a theory of BIMs (Ref. 11) as fundamental

structures guiding the propagation of fronts in ARD systems.

The BIMs act as one-way barriers for front propagation,

blocking reactions propagating in one direction, but allowing

reactions propagating in the opposite direction to pass. This

framework works experimentally both for a vortex chain

flow (both time independent and time periodic) and for a spa-

tially disordered flow, indicating the likely generality of this

approach.

Even though BIMs act as barriers to front propagation,

they do not necessarily prevent long-range motion of the

fronts nor do they necessarily prevent fronts from filling in

regions within a flow. First, when projected down to 2D, the

BIMs often form segments around which the fronts can

wrap, as in Fig. 16. The same behavior occurs in the time-

independent vortex chain flow; in Fig. 4, the red BIMs have

similar cusps around which the fronts can pinwheel, thereby

filling the vortex centers. Second, for time-periodic flows,

the BIMs undulate periodically in time, and even though the

fronts cannot pass through a similarly oriented BIM, they

can follow the undulating BIMs across the system, as in the

data for Figs. 6 and 7.

We are currently using the BIM formalism to analyze

the previous experiments that showed front-pinning for vor-

tex flows with an imposed wind.37,38 It is our expectation

that analysis will show that those time-independent flows

contain BIMs that span the entire width of the system with-

out 2D cusps; consequently, there is no possibility for fronts

to wrap around the BIMs nor is there any time-dependence

to enable long-range front propagation.

As shown in these experiments, BIMs can be success-

fully predicted, given the 3D ODEs (Eq. (2)) and a suffi-

ciently resolved velocity field, even for spatially complicated

flows. However, this formalism is rigorously valid only for

time-independent and time-periodic flows. We are currently

investigating the possibility of extending the formalism to

time-aperiodic flows, using an approach similar to that used

to extend the theory of passive invariant manifolds to

Lagrangian coherent structures,18 which act as temporary

barriers to passive transport in more complicated flows.

Finally, it is our expectation that the BIM formalism will

provide the basis for formulating a general theory to predict

the speeds of reacting fronts in a range of advection-reaction-

diffusion systems. Theory is already being developed50 that

uses the BIM formalism to explain the mode-locking that sets

the propagation speeds often found for time-periodic flows.

Furthermore, we are investigating an approach based on an

extension of the theory of lobes16,17—regions formed from

FIG. 15. A sample of experimentally measured BIMs for the disordered vor-

tex array. (a) Green and red BIMs block fronts moving in opposite direc-

tions. Adjacent green and red BIMs are pairs arising from the splitting of the

invariant manifold for passive mixing in that region. (b) Same experimental

BIMs with theoretical calculations overlaid. Blue calculated BIMs match

red experimental BIMs and magenta calculations match green (video online)

[URL: http://dx.doi.org/10.1063/1.4746764.3].

FIG. 16. These panels show a front pinwheeling around the projection kink

of a theoretically calculated BIM (in red). Each panel is separated by 30 s

(video online). [URL: http://dx.doi.org/10.1063/1.4746764.4]
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the overlap of stable and unstable invariant manifolds—used

to predict enhanced diffusivity due to chaotic mixing. Much

in the way that lobes formed from invariant manifolds control

long-range passive transport, it seems plausible that lobes can

be defined from the overlap of BIMs and that this burning

lobes can be used to predict front speeds.
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