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Abstract 
 

We present the results of experiments on advection-reaction-diffusion processes.  Two 
flows are studied:  a blinking vortex flow and a chain of alternating vortices.  Mixing in both 
of these flows has been shown to be chaotic in general.  The fluid is composed of the 
chemicals for the Belousov-Zhabotinsky (BZ) chemical reaction.  We investigate the effects 
of chaotic mixing on the patterns that form in this system.  Three experiments are described:  
(a) pattern formation in the oscillatory BZ reaction; (b) front propagation and mode-locking 
for the excitable BZ reaction in an oscillating vortex chain; and (c) synchronization of a 
network of fluid oscillators by superdiffusive transport and Lévy flights.  The experiments are 
complemented by numerical simulations that illustrate the chaotic transport of these flows. 
 
 
I.  Introduction 
 

For several decades, there has been a significant amount of interest in patterns that form 
in reaction-diffusion systems [1],[2], e.g., chemically-reacting or biological systems without 
any fluid flows.  But most fluid systems are not stagnant; rather, there are typically flows, and 
these flows dramatically affect the mixing properties of the system.  This, in turn, has a 
significant effect on the pattern formation process since reaction of different species in the 
flow is limited by mixing.  The problem is particularly interesting in light of recent studies 
that have shown that mixing can be chaotic, even for simple, laminar fluid flows.  The 
general advection-reaction-diffusion problem has recently begun to receive theoretical and 
numerical attention, particularly in the regime where mixing is chaotic [3],[4],[5],[6],[7],[8], 
[9].  However, there have been very few experimental studies of advection-reaction-diffusion 
systems.  In this article, we review some experiments that we have conducted on pattern-
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formation processes in advection-reaction-diffusion systems with chaotic advection.  Three 
sets of experiments are described:  (1) Pattern formation of an oscillatory chemical reaction in 
a flow with chaotic mixing [10]; (2) front propagation and mode-locking for an advancing 
chemical reaction in an oscillating vortex chain [11],[12]; and (3) synchronization of 
chemical oscillators in a fluid flow via superdiffusive transport [13].   
 
II.  Pattern formation in a blinking vortex flow 
 

In 1984, Aref demonstrated [14] that mixing is typically chaotic in a simple, laminar fluid 
flow composed of two point vortices that blink on and off periodically (Figure 1a).  We have 
built an experiment that generates this flow in a simple, table-top apparatus.  The flow is 
generated via a magnetohydrodynamic technique [10],[15] (Figure 1b).  An electrical current 
passes radially through a thin layer of an electrolytic solution (either dilute sulfuric acid or 
the chemicals for the Belousov-Zhabotinsky reaction).  This current -- which converges at 
one of two center electrodes -- interacts with a strong magnetic field produced by a Nd-Fe-Bo 
magnet below the fluid layer.  The result is a flow that circles around that particular electrode.  
Blinking of the vortices is achieved by alternating periodically between the two center 
electrodes.  The result is a flow that alternates between circling around one vortex and 
circling around the other.  
 

The fluid is composed of the chemicals typically used for the Belousov-Zhabotinsky (BZ) 
reaction [16],[17], a chemical reaction that is well-known for its oscillatory (and sometimes 
chaotic) time dependence when well-mixed.  (See Reference 10 for details about the 
chemicals used in this reaction.)  In the absence of any fluid flow, the  reaction forms a 
pattern of spirals and/or bulls-eye patterns, typical of reaction-diffusion systems (Figure 2a).  

 
 
 
 
 
 
 
 
 
 

Figure 1.  (a) Blinking vortex flow.  The fluid alternates between circling around the left 
vortex and around the right vortex.  (b) Apparatus used to generate the flow.  An electrical 
current passes radially through a thin layer of an electrolytic solution, converging on one of 

two electrodes in the middle.  The current interacts with a magnetic field produced by a 
permanent magnet, resulting in a flow that circles around the electrode. 
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With the flow turned on, the patterns change dramatically (Figures 2b, c and d).  For these 
images, the blinking period T and the flow amplitude A vary; however, the dimensionless 
blinking period μ – which is the product of A and T, divided by the square of the radius of the 
system – is held fixed.  The dimensionless blinking period determines the mixing patterns 
that form, but does not determine how long it takes for those patterns to form.  With 
decreasing T,  the flow mixes faster and faster.  In Reference 10, we define a mixing time 



determined by the interplay between advective mixing and molecular diffusion; conceptually, 
this is the time that it takes for chaotic mixing to stretch elements in the flow into tendrils that 
are thin enough for molecular diffusion to finish the mixing.  

Figures 2 e, f, g and h show mixing fields determined numerically for the same conditions 
as for Figures 2 a – d.  These fields are obtained by simulating the motion of triplets of 
tracers, initially very close to each other.  At each time step, the mixing field at a point is 
defined as the ratio of the largest separation between the tracers in the triplet divided by the 
initial separation.  It is apparent when comparing Figures 2 b-d with Figures 2 f-h that for the 
advection-reaction-diffusion case, the mixing fields do a good job of capturing the dominant 
pattern formation behavior for the oscillatory reaction.  (The only exception is for the 
reaction-diffusion limit for which the mixing fields cannot capture the patterns.)  

The implication of these studies is that pattern formation in a reacting system with chaotic 
mixing can be understood quite well by considering almost purely the mixing behavior of the 
system without much regard to the details of the reaction itself.  We expect, therefore, that 
mixing fields should be able to capture the dominant pattern formation process for a wide 
range of advection-reaction-diffusion systems.  

More details about these experiments can be found in Reference 10.  
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Figure 2.  (a)-(d) Images of Belousov-Zhabotinsky patterns in blinking vortex flow.  For 
all cases, the non-dimensional blinking period μ = 0.52 (see Reference 10 for definition).  
(e)-(h) Mixing fields for the same flows.  (a) and (e):  no flow.  The blinking frequency is 

0.010 Hz for (b) and (f), 0.030 Hz for (c) and (g), and 0.050 Hz for (d) and (h). 
 



III.  Front propagation and mode-locking 
 

There are numerous processes that are governed by the growth of one species in the 
system at the expense of another species.  The interface between the two regions is often 
referred to as a front, and there has been a significant amount of interest in the manner in 
which this front moves in reaction-diffusion systems.  In fact, there is a well-known theory by 
Fisher and Kolmogorov [18],[19] that predicts a definitive value for the front propagation 
speed, given information about the reaction kinetics and the molecular diffusion coefficient. 
The question arises as to how front propagation is affected by the presence of fluid flows in 
the system, particularly in situations where the mixing is chaotic.  Chaotic mixing processes 
can often be quantified as enhanced diffusion, so it is natural to predict that the Fisher-
Kolmogorov (FK) theory will still work as long as the molecular diffusion coefficient in the 
theory is replaced with the enhanced diffusion coefficient.  Recent theoretical/numerical 
studies [5], however, have indicated that a simple extension of the FK theory does not 
necessarily work for cellular flows with periodic time dependence.  Specifically, these studies 
showed that mode-locking is possible for front propagation in an oscillating chain of vortices 
(Figure 3), a flow which had been shown previously [15],[20],[21] to display chaotic mixing.  
 
 

 

(a) (b) Plexiglass side−walls Electrodes

Magnet assembly

Motor

 
 
Figure 3.  (a) Exploded view of magnetohydrodynamic forcing and resulting flow, composed 
of an annular chain of 20 counter-rotating vortices.  (b) Side view of experimental apparatus.  

An electrical current passes radially through a thin layer of an electrolytic solution.  This 
current interacts with an alternating magnetic field produced by two rings of magnets mounted 
in an assembly below the fluid layer.  The magnet assembly is mounted coaxially on a motor 
whose motion can be controlled to oscillate, drift with a constant angular velocity, or move 

with a combination of both drift and oscillations. 

 
We have reproduced some of these numerical simulations to illustrate locking  

phenomena [12].  Mode-locking is defined for a propagating front as follows:  when mode-
locked, the front advances an integer number N of wavelengths in an integer number M of 
drive periods.  Figure 4(a) shows a numerical sequence showing a (N,M) = (1,1) mode such 
that the front advances two vortex widths (1 wavelength of the flow) in 1 drive period.  
Figure 4(b) shows a numerical sequence for a (1,2) mode-locked state.  
 



We have tested these predictions with experiments on front propagation in an oscillating 
vortex chain [11],[12].  The flow and apparatus are show in in Figure 3.  There are 20 
vortices in the vortex chain, which is oriented in an annular configuration.  As with the 
blinking vortex flow described in Section II, the vortex chain is forced 
magnetohydrodynamically.  Two rings of 20 Nd-Fe-Bo magnets are set in a magnet 
assembly, above which rests a thin layer of an electrolytic solution.  The magnets alternate in 
polarity, as shown in Figure 3.  An electrical current passes radially through the fluid layer 
and interacts with the alternating magnetic field.  The result is a chain of 20 alternating 
vortices in the fluid layer.  The magnet assembly is mounted co-axially on a motor which can 
be programmed to rotate in an oscillatory pattern, with a constant drift velocity, or with a 
combination of drift and oscillatory terms; the vortex chain itself moves with the magnet 
assembly.  For the experiments discussed in this section, the magnet assembly is programmed 
to oscillate sinusoidally, although the frequency and amplitude of the oscillations are varied.  

                         (a)                 (b) 

        
 

Figure 4.  Simulations showing mode-locking with (N,M) = (1,1) for (a) and (1,2) for (b). 

The chemical reaction used is an excitable version of the Belousov-Zhabotinsky reaction.  
(See References 11 and 12 for details of the chemistry.)  The chemicals are initially orange in 
color, but a green front can be triggered by inserting a silver wire into the flow momentarily.  
Once initiated, the front propagates across the system.  The reaction is actually a “pulse” 
rather than a front – the green reacting zone is followed by a return of the system to the 
orange state behind the leading edge.  In the absence of any flow at all, the result is a green 

 
 
Figure 5.  Space-time plot for an experimental run that is mode-locked with (N,M) = (1,2). 



ring that propagates outward with the rest of the system remaining orange.  The orange 
section can be re-triggered multiple times, either if the green front returns due to flows in the 
system or with the re-insertion of a silver wire.  The reaction is also photo-sensitive and can 
be inhibited by strong illumination with blue and green light.  In the experiments, a region 
covering two vortex widths is illuminated, and the reaction is triggered next to this region.  
The reaction can then propagate only in one direction around the annulus.  The duration of 
the experiment can be extended by following the front with the blinding region, erasing the 
region behind the advancing front and enabling the pulse to travel multiple times around the 
annulus.  

In the absence of any periodic time dependence, the front advances through the system 
due to several factors:  (a) advection carries the front around a vortex; (b) the front “burns” its 
way inward toward the vortex centers; and (c) when the front reaches a corner of a vortex, it 
“burns” across the separatrix between adjacent vortices and triggers the reaction in the next 
vortex.  
 

        
Figure 6.  Experimental sequences showing mode-locking with (N,M) = (1,1) for (a) and 

(1,2) for (b). 

(b) 

 
When the system is forced with oscillatory time dependence, the front propagation shows 

many of the characteristics of chaotic mixing in the oscillating vortex chain.  Despite the 
chaotic behavior, though, the front typically (for large enough amplitude) propagates with a 
constant velocity, as shown in the spacetime plot of Figure 5.  Sequences of images (Figure 
6) show that the system is showing mode-locking; compare Figure 6a with Figure 4a and 
Figure 6b with Figure 4b.  The propagation speed can be determined from the slope of the 
spacetime plot (Figure 5).  If plotted as a function of oscillation frequency (Figure 7), two 
dominant modes are apparent – a (1,1) and (1,2) mode.  When locked, the propagation speed 
grows linearly with frequency.  

A parameter space diagram (Figure 8) reveals the conditions for which the fronts are 
mode-locked.  For small amplitudes of oscillation, the system does not mode-lock – the front 
speed fluctuates in time and there is no repeating pattern.  For larger amplitudes, locking has 
been found for both the (1,1) and (1,2) locking tongues, and there is a region of overlap 
where the front switches alternately between the (1,1) and (1,2) modes during a single run.  

These results agree with the predictions of Reference 5.  The fact that the system mode-
locks indicates clearly that a simple extension of the FK theory is not valid, and that a new 
theoretical treatment is needed to predict front propagation in an advection-reaction-diffusion 



system.  In particular, the role of coherent structures (vortices, in this case) needs to be 
assessed.  Our expectation is that deviations from FK predictions will be common, potentially 
even for turbulent flows, since coherent flow structures are quite common in many natural 
fluid flows.  
 

 
Figure 7.  Experimental results showing non-dimensional front speed ξ as a function of 
non-dimensional frequency ν.  The dotted lines show the theoretical predictions (with no 

fitted parameters) for mode-locked speeds. 
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Figure 8.  Parameter-space plot showing Arnol’d tongues for (1,1) and (1,2) mode-locked 
states.  Filled diamonds denote unlocked states, whereas open squares, open circles and 
open triangles denote states with (1,1), (1,2) and combination (1,1)/(1,2) mode-locking, 

respectively. 

 

 
 
 
More details about these experiments can be found in References 11 and 12.  

 



IV.  Synchronization of a continuous network of oscillators 
 

The third set of experiments [13] deals with synchronization of chemical oscillators.  
There has been a tremendous amount of research recently into networks of oscillators and 
how they synchronize.  Those studies were energized in the past few years by a theoretical 
study [22] that showed that network connectivity could be enhanced significantly in a Small-
World Network with random short-cuts that connect distant parts of the network, in addition 
to regular, nearest-neighbor connections.  

Our experiments consider synchronization in a continuous (rather than discrete) fluid 
network in which fluid mixing is the dominant mechanism of communication in the network.  
The flow is the same alternating vortex chain discussed in Section III, except that in addition 
to periodic oscillations, the vortex chain can also drift.  If there are no oscillations but there is 
a drift, a snake-like region forms that winds around and between the vortices (Figure 9a).  A 
tracer in this snake region rapidly moves between vortices and can traverse a long distance in 
a very short period of time.  If the vortex chain has both oscillatory and drifting motion, then 
there can be a combination of both ordered and chaotic trajectories.  If the drift velocity vd is 
greater than the maximum oscillation velocity vo, then the snake region (or portions of it) is 
maintained (Figure 9b).  In this regime, tracers in a chaotic region alternately rotate within a  
vortex, move between one vortex and the next, or stick to the snake region and undergo rapid 
motion to a distant vortex.   

Trajectories such as this that alternately stay within a localized region and undergo rapid 
long-range jumps are referred to as Lévy flights [23],[24] (depending on the statistics of the 
jumps), and transport in this case is typically superdiffusive with a variance that grows faster 
than linearly in time.  This is in contrast to normal, enhanced diffusion with a linear growth in 
the variance.  The result is a system that typically shows normal diffusion for vd < vo and 
superdiffusion for vd > vo (Figure 10).  
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Figure 9.  Transport in the drifting vortex chain (a) without oscillations and (b) with 
oscillations.  In the absence of any oscillations, all trajectories are ordered and the flow is 
divided into two types of regions, one in which tracers rotate within a vortex core, and the 
other in which tracers move rapidly around and between vortices in a snake-like jet region.  

If there is oscillatory time dependence as well, chaotic regions forms, denoted by erratic 
pattern of dots in (b). 

We contend that Lévy flights and superdiffusion play a role in a fluid system similar to 
the role of short-cuts in a Small World network.  We have investigated this experimentally by 
studying synchronization of the oscillatory BZ reaction (with the same chemistry as in 
Section I) in the oscillating/drifting vortex chain.  In the absence of any time-dependence 
(i.e., a stationary vortex chain), each vortex acts like an isolated BZ reactor with only 



minimal communication, since transport between vortices is purely via molecular diffusion.  
If the flow is time dependent with vd  < vo, there is chaotic mixing between adjacent vortices, 
and the system spontaneously forms traveling waves (Figure 11a), although the traveling 
waves evolve in a very complicated manner as a function of time.  For time-dependent 
forcing with vd > vo, the system typically synchronizes in one of two different ways.  In most 
cases (Figure 11b), co-rotating synchronization is observed where the odd vortices 
synchronize with each other and the even vortices synchronize with each other, but there is an 
arbitrary phase different between these two sets of vortices.  In some cases, however, the 
system synchronizes globally with all the vortices blinking red/blue in unison (Figure 11c).  
 

 
The synchronization behavior is summarized with a parameter space plot in Figure 12.  

Comparing Figure 12 with Figure 10, it can be seen that the system typically synchronizes if 
the transport is superdiffusive with Lévy flight trajectories, similar to the small-world 
networks for discrete networks.  

The implication of these results is that superdiffusive transport may be a necessary 
(although probably not sufficient) condition for synchronization in an extended fluid system, 
i.e., one in which the total system size is appreciably larger than characteristic length scales 
of the fluid flow.  It is also intriguing to consider Lévy flights in these studies as playing a 
role similar to the “short-cuts” in the Small World networks.  But there are differences as 
well.  First, Lévy flights in the vortex chain are not random; rather, they connect every vortex 
to every other one with a magnitude that decays algebraically (instead of exponentially) with 
separation.  Second, the amount of fluid participating in the flights depends on the sizes of 
ordered regions in the flow, something that has not been analyzed in detail yet.  

We also speculate that techniques used to predict synchronization in a continuous fluid 
flow could be applied to discrete systems with large numbers of nodes, especially if the nodes 
are mobile.  For a moving population of people, for example, it might be possible to treat the 
population as a “fluid” and measure its transport properties.  Synchronization of various 
processes in this population (e.g., disease outbreak) might then be predicted by determining 
whether mixing in the population is diffusive or superdiffusive.  
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Figure 10.  Parameter space plot showing regions of normal (open squares) and superdiffusive 

transport (filled triangles and diamonds) for the oscillating and drifting vortex chain.  Two types 
of superdiffusive regimes are denoted, one characterized by two chaotic regions separated by an 
ordered jet region (triangles) and the other denoted by one chaotic region with flight-producing 

islands (diamonds).  The solid line corresponds to vd = vo. 

 



  

  

 
 

 

(a) 
 

 

 
 

Figure 11.  Sequences of images of BZ reaction in oscillating/drifting vortex chain.  (a) Wave 
behavior seen when vd < vo.  (b) Co-rotating and (c) global synchronization for vd > vo. 
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Figure 12.  Parameter space diagram showing the different types of behavior for the BZ 
reaction in the oscillating/drifting vortex chain. The asterisks correspond to completely 

desynchronized states.  The open squares denote traveling wave states.  The filled triangles 
and diamonds correspond to co-rotating and globally synchronized states, respectively.  The 

solid line corresponds to vd = vo. 



V.  Continuing work 
 

Numerous issues remain unanswered in advection-reaction-diffusion processes.  We are 
currently conducting several additional experimental investigations on subject:  (a) the effects 
of superdiffusive transport on front propagation processes; (b) the growth of a chemical 
region in a flow with chaotic mixing; and (c) chaotic traveling waves in an advection-
reaction-diffusion system.  
 
Acknowledgements 
 
This work was supported by the US National Science Foundation Grants DMR-0404961 
and REU-0097424. 
 
 
References 
                                                 
[1] Grindrod, P.  The Theory and Applications of Reaction-Diffusion Equations:  Patterns and Waves 
(Clarendon Press, Oxford, 1996). 
[2] Ben-Avraham, D & Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems (Cambridge 
University Press, Cambridge, 2000). 
[3] Tel, T., de Moura, A., Grebogi, C. & Karolyi, G.  Chemical and biological activity in open flows:  A 
dynamical system approach.  Phys. Rep. 413, 91-196 (2005). 
[4] Abel, M., Celani, A., Vergni, D. & Vulpiani, A.  Front propagation in laminar flows.  Phys. Rev. E 64, 
046307 (2001). 
[5] Cencini, M., Torcini, A., Vergni, D. & Vulpiani, A.  Thin front propagation in steady and unsteady cellular 
flows.  Phys. Fluids 15, 679-688 (2003). 
[6] Karolyi, G., Pentek, A., Toroczkai, Z., Tel, T. & Grebogi, C.  Chemical or biological activity in open chaotic 
flows.  Phys. Rev. E 59, 5468-5481 (1999). 
[7] Karolyi, G., Pentek, A., Scheuring, I., Tel, T. & Toroczkai, Z.  Chaotic flow:  The physics of species 
coexistence.  Proc. Nat. Acad. Sci. U.S.A.  97, 13661-13665 (2000). 
[8] Neufeld, Z. Excitable media in a chaotic flow. Phys. Rev. Lett. 87, 108301 (2001). 
[9] Neufeld, Z., Kiss, I. Z., Zhou, C. & Kurths, J.  Synchronization and oscillator death in oscillatory media with 
stirring.  Phys. Rev. Lett. 91, 084101 (2003). 
[10] Nugent, C. R., Quarles, W. M. & Solomon, T. H. Experimental studies of pattern formation in a reaction-
advection-diffusion system.  Phys. Rev. Lett. 93, 218301 (2004). 
[11] Paoletti, M. S. & Solomon, T. H. Experimental studies of front propagation and mode-locking in an 
advection-reaction-diffusion system.  Europhys. Lett. 69, 819-825 (2005). 
[12] Paoletti, M. S. & Solomon, T. H. Front propagation and mode-locking in an advection-reaction-diffusion 
system.  Phys. Rev. E 72, 046204 (2005). 
[13] Paoletti, M. S., Nugent, C. R. & Solomon, T. H. Synchronization of Oscillating Reactions in an Extended 
Fluid 
System.  Phys. Rev. Lett., in press (2006). 
[14] Aref, H.  Stirring by chaotic advection. J. Fluid Mech. 143, 1-21 (1984). 
[15] Solomon, T. H., Tomas, S. & Warner, J. L. The Role of Lobes in Chaotic Mixing of Miscible and 
Immiscible Impurities. Phys. Rev. Lett. 77, 2682-2685 (1996). 
[16] Winfree, A.T. Spiral waves of chemical activity. Science 175, 634-636 (1972). 
[17] Showalter, K. Pattern-formation in a ferroin-bromate system. J. Chem. Phys. 73, 3735-3742 (1980). 
[18] Kolmogorov, A. N., Petrovskii, I. G. & Piskunov, N. S. Moscow Univ. Math. Bull. (Engl. Transl.) 1, 1 
(1937). 
[19] Fisher, R. A. Proc. Annu. Symp. Eugen. Soc. 7, 355 (1937). 
[20] Solomon, T. H. & Gollub, J. P.  Chaotic particle transport in time-dependent Rayleigh-Bénard convection.  
Phys. Rev. A 38, 6280-6286 (1998). 
[21] Camassa, R. & Wiggins, S.  Chaotic advection in a  Rayleigh-Bénard flow.  Phys. Rev. A 43, 774-797 
(1991). 



                                                                                                                                                        
[22] Watts, D. J. & Strogatz, S. H.  Collective dynamics of ‘small-world’ networks.  Nature. 393, 440-442 
(1998). 
[23] Shlesinger, M.F., Zaslavsky, G. M. & Klafter, J.  Strange kinetics.  Nature 363, 31-37 (1993). 
[24] Solomon, T. H., Weeks, E. R. & Swinney, H. L.  Observation of anomalous diffusion and Lévy flights in a 
two-dimensional rotating flow.  Phys. Rev. Lett. 71, 3975-3978 (1993). 


