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Abstract. We present results of experimental and numerical studies of Lagrangian chaos (chaotic 
advection) in an oscillating vortex chain.  We first review previous experiments on enhanced 
diffusive and superdiffusive transport in this flow.  Superdiffusion occurs only as a transient and 
only at certain well-defined resonant frequencies.  At these frequencies, long “ flights”  are found 
numerically in the trajectories with lengths with scaling similar to that of Lévy flights.  We then 
discuss on-going experiments of the effects of Lagrangian chaos on more complicated dynamical 
processes occurring in this flow.  Specifically, we study the dynamics of coupled Belousov-
Zhabotinsky chemical oscillators in the oscillating vortex chain. We analyze the system as a 
network with each vortex and its contents forming the nodes of the network.  Coupling between 
the nodes then is via Lagrangian chaos.  With Lagrangian chaos, there is either nearest neighbor 
coupling (enhanced diffusion) or long-range coupling (superdiffusion and Lévy flights) which 
could make this system an experimentally-realizeable “small world”  network.  Three different 
modes of synchronization are found:  unsynchronized oscillations, traveling waves, global 
“blinking”  states, and a state in which lobes responsible for enhanced transport mediate the 
synchronization.  

INTRODUCTION 

It is well known that simple, laminar fluid flows can have surprisingly complicated 
mixing properties.  Even if the velocity field itself is very well-ordered and 
deterministic, the trajectories of fluid elements or impurities in the flow may follow 
chaotic trajectories in the sense that nearby trajectories will separate exponentially in 
time [1,2].  There have been several studies of the effects of Lagrangian chaos on the 
mixing of passive impurities (e.g., miscible dyes).  An important outstanding question, 
however, is how the presence of Lagrangian chaos affects dynamical processes 
occurring in a fluid flow. 

In this article, we present the results of experimental and numerical studies of 
Lagrangian chaos in a simple two-dimensional flow composed of a chain of alternating 
vortices that sways periodically in the lateral direction.  We start by discussing the 
nature of the chaotic mixing in this oscillating vortex chain and how this chaotic 
behavior affects long-range transport.  We then discuss on-going experiments on 
coupled chaotic oscillators in this fluid flow and how Lagrangian chaos affects the 
global dynamics and synchronization of these coupled oscillators.   
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FIGURE 1.  Alternating vortex chain for case with free-slip boundary conditions.  The no-slip case 
would look similar, except that the velocities would vanish at the top and bottom boundaries.  Time 
dependence is manifested as lateral oscillation of the entire velocity field with an amplitude B and an 
angular frequency ω. 

MODEL FLOW AND EXPERIMENTAL TECHNIQUES 

The flow studied is a chain of alternating vortices, as shown in Fig.1.  This system 
was originally proposed as a two-dimensional cross-section of oscillatory (time-
periodic) Rayleigh-Bénard convection [3-5].  In fact, experiments on time-periodic 
Rayleigh-Bénard convection demonstrated the presence of Lagrangian chaos [4].  
Numerically, a simple model was proposed for this flow, based on the following 
streamfunction [6]: 
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The term Bsinωt denotes the lateral oscillation of the vortex chain.  We will scale the 
oscillation amplitude by the vortex width w; from hereon, we will denote the 
amplitude by this non-dimensional b ≡ B/w.  For a flow with stress-free boundary 
conditions,  
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and for a flow with rigid (no-slip) boundary conditions, 
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where qo = 3.973639, q1 = 5.195214, q2 = 2.126096, A1 = 0.06151664 and A2 = 
0.103887 [7].  The velocity field can be obtained by applying Hamilton’s equations of 
motion to this streamfunction: 
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Numerical simulations [4,5] of particle trajectories in this flow demonstrate 
Lagrangian chaos denoted by trajectories that separate exponentially in time. 

We have recently assembled an experimental configuration that generates this flow 
using a magnetohydrodynamic technique [8,9], as shown in Fig. 2.  An electrical 
current passing through a thin (2 mm) electrolytic solution (salt water or dilute sulfuric 
acid) interacts with an alternating magnetic field produced by a chain of alternating 
Nd-Fe-Bo magnets underneath the fluid layer.  Lorentz magnetic forces resulting from 
this interaction produces alternating horizontal forcing in the fluid layer which, in 
combination with the plexiglass side walls, produces the alternating chain of vortices.  
Time dependence is imposed externally with a plunger that oscillates slowly up and 
down, displacing the fluid laterally across the fixed pattern of vortices.1  This system 
has an advantage experimentally over time-periodic Rayleigh-Bénard convection in 
that it allows independent control of both the amplitude and frequency of the lateral 
oscillations. 

 

 
 

FIGURE 2.  Diagram of experimental apparatus.  (a) Side view; (b) exploded view showing 
magnetohydrodynamic (MHD) forcing technique. 

 
For transport measurements, fluorescent dye is injected into the center vortex, and 

the system is illuminated with black light.  The entire apparatus is imaged from above 
with a CCD video camera, and the images are digitized and analyzed on a PC-
compatible computer.   

                                                           
1 The period of oscillation is chosen to be several times the viscous diffusion time (~4 s) for the fluid 
layer.  This is important to avoid “ frozen”  oscillations of the vortices which would be different 
kinematically from the model in Equations (1) – (3). 

Electrolytic Soln. 
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FIGURE 3.  Sequence showing the mixing of dye due to Lagrangian chaos in the oscillating vortex 
chain; amplitude of oscillation b = 0.12; oscillation period = 19 s; time (from the top): 0, 1, 2, 3, 4 and 
10 periods of oscillation. 

ENHANCED TRANSPORT OF PASSIVE TRACERS 

A sequence of images showing transport of a miscible dye is shown in Fig. 3.  
Several important features are visible:  (a) A significant amount of stretching and 
folding is seen, typical of chaotic processes.  (b)  “Lobes”  of dye (and clear fluid) are 
exchanged between adjacent vortices in the chain.  This is the primary mechanism for 
mixing between the vortices [9,10].  (c) Ordered regions are visible in the vortex 
centers in the later images.  This is typical of Lagrangian chaos (and chaotic systems in 
general):  the phase space – real space in this case – is divided into ordered and chaotic 
regions, and any tracers initially in one of these regions will not cross into the other.  
The boundaries between the ordered and chaotic regions are therefore transport 
barriers.2   

                                                           
2 A hole develops in the center vortex as well, even though dye that is initially within an ordered region 
should never leave.  The cause of this hole is a weak, three-dimensional secondary flow that carries fluid 
up through the vortex centers.  In this experiment, the dye that was injected into the center vortex was 
initially primarily near the top of the fluid layer, so the secondary flow circulated clear fluid up from 
below. 
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Quantitatively, a complete description of this process requires solution to the 
advection-diffusion equation:  
 

 cucDtc ∇⋅−∇=∂∂
�

�2/ , (5) 
 

where c(x,y,t) is the concentration field, u
�

 is the velocity field describing the 
oscillating vortex chain, and D is the molecular diffusion coefficient.  Equation (5) 
cannot be solved in general, so other techniques must be used to analyze transport in 
the presence of fluid flows in general, and in situations with Lagrangian chaos in 
particular.   

In advection-diffusion processes, it is common to consider the long-time growth of 
the variance of the concentration field and compare this growth to a power law of the 
form: 

 
 γtr ~2 >< . (6) 

 
If γ = 1, then the process is termed “normal”  (although enhanced) diffusion, in which 
case Equation (5) is approximated by the effective diffusion equation:  

 
 cDtc 2*/ ∇=∂∂ , (7) 

 
where D* is the effective diffusion coefficient.  Previous experiments [9,11] have 
shown that at many typical frequencies in this system, the transport can be 
approximated quite well by normal diffusion with an effective diffusion coefficient 
that grows linearly with the oscillation amplitude B for small B.  

 

 
 
FIGURE 4.  Simulations of the frequency dependence of the long-time limit of the enhanced diffusion 
coefficient D*.  (a) No-slip boundary conditions; (b) free-slip boundary conditions. 

 
The dependence of D* on the oscillation frequency f = ω/2π is significantly more 

complicated.  Numerically [12], the dependence is dominated by well-defined 
resonance peaks, as seen in Fig. 4.  (Experimentally, it is very difficult to map out the 
frequency dependence because of the extreme sensitivity to small changes in f.)  
Furthermore, for the frequencies near the resonance peaks, there is a transient period of 
superdiffusion where the variance grows faster than linearly –  γ > 1 – although the 
long-time behavior is still diffusive (γ = 1).  The duration of the transient gets longer 

(a) (b) 
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and longer the closer the frequency is to one of the resonant frequencies; in fact, it has 
been shown theoretically [13] that the long-time behavior is superdiffusive precisely at 
these resonant frequencies. 

The explanation for these resonance peaks is found by considering the motion of 
individual tracers in the flow.  For most frequencies, Lagrangian chaos results in 
particle trajectories that have the appearance of random, Brownian-like (diffusive) 
motion, as seen in Fig. 5(a) for the case with f = 0.095.  For frequencies near the 
resonance peaks, however, the trajectories include long “ flights”  (jumps), some as long 
as tens or even hundreds of vortex widths, as seen in the f = 0.106 case in Fig. 5(a).  
Quantitatively, these jumps can be described by a Lévy distribution [14,15] 

 
 µ−LLp ~)( , (8) 

 
with 2 < µ < 3, as seen in Fig. 5(b).  This power law behavior is valid up to a cut-off 
length that grows (and presumably diverges) as the frequency nears the resonant value. 

 

    
 
FIGURE 5.  Evidence of Lévy flights in the free-slip simulations.  (a)  Sample trajecotories.  The lower 
curve corresponds to a frequency f = 0.095, away from the resonance peaks.  The upper curve 
corresponds to f = 0.106, near one of the resonance peaks.  (b) Probability distribution functions for the 
flight lengths L.  The frequencies are f = 0.106 (filled triangles), 0.103 (open squares), and 0.095 (open 
circles). 

 
It has been well-established [16-20] that if tracers follow trajectories with flights 

that scale as in Equation (8) that the transport will be superdiffusive.  In this situation, 
the transport is superdiffusive only for a transient period, consistent with the fact that 
the flights follow a Lévy distribution only up to a maximum length.  The cause of the 
(truncated) Lévy flights is a resonance between the period of oscillation and typical 
times for fluid elements to circulate within a vortex, as shown in the cartoon in Fig. 6.  
At these resonant frequencies, a tracer that has crossed from one vortex to another 
loops around and finds itself at the opposite corner just at the right time to cross over 
again.  The result is a snake-like trajectory which crosses several vortices in a short 
period of time.  Another way of explaining these flights is with the use of “ tangle 
islands”  [21] that appear within the chaotic regions (inside the lobes) for frequencies 
near the resonant ones [12]. 

(a) (b) 
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FIGURE 6.  Cartoon showing resonance between circulation times and oscillation periods, responsible 
for the flights. 

 
We have, then, a system where the transport can be either diffusive or (transiently) 

superdiffusive, depending on the frequency of oscillation.   

LAGRANGIAN CHAOS AND COUPLED CHEMICAL 
OSCILLATORS 

Up to this point, we have been discussing kinematical issues; namely, given a flow 
and some impurities, we have discussed how the impurities move in the flow.  But 
Lagrangian chaos can have a significant effect on dynamical processes as well.  
Different scenarios are possible:  (a) The velocity field itself can be partially advected 
with the flow (although it is more common to discuss advection of vorticity, which is 
derived from the velocity field), in which case the transport can feed back onto the 
flow itself.  (b) There could be interactions between the various impurity molecules 
causing deviations from the advection-diffusion equation (Eq. 5).  For instance, if the 
impurity and the surrounding fluid are immiscible, surface tension can inhibit the 
amount by which the impurity can be stretched by the flow.  (c)  The “concentration”  
field might be an active, reacting field, rather than a passive field that is merely 
advected.  This last situation classifies as an advection-diffusion-reaction problem, 
which can be described by the equation 

 

 )(/ 2 cfcucDtc +∇⋅−∇=∂∂
�

�

, (9) 
 

where f(c) is some function denoting reaction of the impurity either with itself of with 
some additional chemicals in the system.  

We have initiated experimental studies of advection-diffusion-reaction processes in 
the oscillating vortex flow.  Specifically, we are looking at dynamics of the Belousov-
Zhabotinsky (BZ) chemical reaction [22-25] in the flow and how the global behavior 
of the system is affected by Lagrangian chaos.   
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The procedure is quite straightforward: the apparatus is filled initially with 
chemicals typically used to demonstrate the BZ reaction in its oscillatory state3.  Using 
ferroin as an indicator, the reaction oscillates between a red and blue color.  The 
typical oscillation period for this mixture in a well-stirred batch reactor is about 40-50 
seconds.  The CCD video camera used for the imaging is fitted with a blue filter; 
consequently, in all the images, the blue phase appears white while the red phases 
appear black. 

 

   
 

   
 
 
 
FIGURE 7. Snapshots of network behavior.  In all cases, white (dark) regions correspond to the blue 
(red) phase of the BZ reaction.  (a) Time-independent flow; no Lagrangian chaos.  The chemical 
reactions in the vortices oscillate independently of each other.  (b) Time-periodic forcing, small 
amplitude (b = 0.1), resonant frequency for lateral oscillations (f = 0.050 Hz).  Lobe structures are 
clearly seen marked by the red (dark) phase of the BZ reaction.   

 
The behavior of the network in the absence of any time dependence is shown in 

Figs. 7a and  8a.  Since there is no Lagrangian chaos for the time-independent flow, 
the only communication between vortices is via molecular diffusion, a very weak 
mixing mechanism.  Initially (before the starting time in Fig. 8a), the chemical 
oscillations in the different vortices are in phase since the system is initially well 
mixed (from pouring the fluid into the system).  But after a moderate amount of time, 
the oscillations drift with respect to each other, as seen both in snapshots (Fig. 7a) and 
in a space-time plot (Fig. 8a).  This drifting can be used to determine a characteristic 
“coherence time” τc, which is on the order of 400 s.  

  

                                                           
3 The solution used in the experiments is composed of 400 ml of 1M sulfuric acid, 11.44 g of malonic 
acid, 4.18 g of potassium bromate, 0.44 g of cerium ammonium nitrate and 4 ml of 0.025 M ferroin. 

(a) 

(b) 
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FIGURE 8. Space-time plots showing the dynamics of the networks; the horizontal direction is the 
distance across the vortex chain, and the vertical direction is time.  (a) Time-independent flow (same 
conditions as Fig. 2a).  (b) Time-periodic flow; small amplitude (b = 0.1), f = 0.037 Hz.  (c) Time-
periodic flow; small amplitude (b = 0.1), f = 0.050 Hz.  (d) Time-periodic flow; larger amplitude (b = 
0.2), f = 0.050 Hz.   Total time spanned is 2500 s for (a) and 300 s for the other three. 

 
For studies of the dynamics with time-periodic (lateral) oscillations, two different 

initial conditions are used:  (1) Initially-synchronized:  the entire apparatus is swept, 
mixing the contents of the entire vortex chain and starting off all the vortices with the 
same phase.  (2) Initially unsynchronized:  the oscillations are allowed to proceed for 
the time-independent flow until the oscillations are out of phase, after which the time-
dependent forcing is turned on.  The results presented here are preliminary. 

At most frequencies studied, if the oscillations start out synchronized, they drift in 
phase and become unsynchronized within 20 periods of oscillation.  If the pattern 
starts out unsynchronized, it tends to remain that way at these frequencies.  In many 
cases, patterns will appear within vortices that are clear ghosts of the lobe structure 
seen in the passive transport.  (Compare Figure 7b with Figure 3.)    In studies of 
transport of dye in this flow, the lobes are only visible for a short period of time; 
basically, as long as there are strong concentration gradients.  For the network of 
coupled chemical oscillations presented here, though, it is quite remarkable that the 
lobes remain visible indefinitely as all the lobes are tagged (and remain tagged) with 
the same chemical phase.  Figure 8c shows a space-time plot for the same conditions 

(a) (b) 

(c) (d) 
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as Fig. 7b; the lobes can be seen in this plot as dark oscillatory structures within the 
vortices but synchronized throughout the chain.  

At a couple of well-defined frequencies, the system synchronizes forming global 
traveling waves, as seen in Figure 8(b).  These traveling waves appear regardless of 
whether the system starts as initially synchronized or unsynchronized.  At these 
frequencies, traveling waves are observed propagating left-to-right, right-to-left, 
outward from a source in the middle of the vortex chain and inward toward the middle.  
And in a couple of the experimental runs, the system remained globally-synchronized 
(each vortex oscillating almost perfectly in phase) for 60 oscillation periods. 

DISCUSSION 

In analyzing the results of the advection-reaction-diffusion experiments described in 
the previous section, it is necessary to consider transport effects, since coupling 
between the vortices is determined by transport of the contents between vortices.  As 
discussed earlier in this article, at most frequencies transport in the vortex chain is 
diffusive (although enhanced).  In the vicinity of certain well-defined frequencies, 
though, the transport is characterized by transient superdiffusion and flights.  If we 
think of our system as a network, then comparisons can be made between regular and 
“small world”  networks discussed in recent studies [26].  The main ideas are 
illustrated in Figure 9 below: 

 
 
 
 
 
 
 
 
 

FIGURE 9.   Coupling scenarios for networks.  (a) Regular, nearest-neighbor coupling. (b) Random 
coupling. (c) “Small-world”  coupling of Watts and Strogatz. 

 
Figure 9(a) shows regular, nearest-neighbor coupling where each node is connected to 
one or two of its nearest neighbors but does not communicate with any other node 
directly.  This type of coupling leads to “clustering”  where local groups of nodes tend 
to have similar behavior.  By contrast, in a randomly-coupled network (Fig. 9b), 
clustering is not observed; however, this type of network has a property referred to as 
the “Small World Effect”  whereby the number of jumps needed – on the average – to  
connect any two arbitrary nodes grows logarithmically with the total number of nodes 
(rather than growing linearly).  A third type of network was proposed recently by 
Watts and Strogatz [26] which captures both clustering and the small-world effect with 
a mostly-regular network with a few random “short-cut”  connections. 

(a) (b) (c) 
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Much has been said about these types of network connections, and these 
classifications have been applied to a wide variety of network systems.  But little is 
known about the effects of these different coupling schemes on the dynamics of 
processes occurring on these networks.  The experiments presented here on coupled 
chemical oscillations in an oscillating vortex chain might provide an experimental 
system whereby the effects of coupling schemes on the dynamics can be investigated.  
The coupling here is via transport, which at most frequencies is diffusive, which is 
inherently a nearest-neighbor coupling mechanism (mixing occurs primarily between 
adjacent vortices).  On the other hand, at or near the resonant frequencies for transient 
superdiffusion, the flights that appear allow mixing between distant vortices in a short 
period of time.  These flights are, in some sense, analogous to the short-cuts in the 
Watts/Strogatz small-world model 

As to whether the difference in the observed dynamics from the previous section 
can be explained from this framework, the results are still inconclusive, and more data 
is needed.  In particular, the frequencies for the traveling waves and globally-
synchronized states need to be compared carefully with the frequencies for the peaks 
in the long-term effective diffusion coefficient.  These experiments are currently in 
progress. 

In modeling the behavior, the time scales for mixing in this experiment need to be 
considered.  Specifically, how fast must mixing occur to enable synchronization?  The 
longest flight time (from one end of the network to the other) is approximately 100 
seconds, whereas typical circulation times are approximately 20 s.   The period of the 
chemical oscillation is around 40 s, which is shorter than the longest flight times.  
However, our conjecture is that the relevant time scale is the coherence time 400 s, 
discussed earlier, which is significantly longer than all of the mixing timescales.  
Furthermore, the model of Ref. 1 needs to be modified, since Lévy flights can connect 
every vortex with every other vortex, but with a probability distribution that depends 
both on the separation between the vortices and also on the size of the portion of the 
chaotic region that gives rise to flights.  
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