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Abstract – We present experiments on reaction fronts and self-sustaining trigger wave patterns
in an advection-reaction-diffusion system with chaotic mixing. The flow is a two-dimensional array
of oscillating vortices, and the reaction is the excitable Belousov-Zhabotinsky chemical reaction.
Reaction fronts are found to mode-lock for a wide range of frequencies, and the mode-locking
results in “faceted” fronts that line up along the directions of the underlying vortex array. Self-
sustaining trigger wave patterns are also found composed of large scale spiral and spiral-pair
patterns, similar to patterns in the reaction-diffusion (no flow) limit but with a significantly larger
typical length scale and with clear anisotropy that reflects the vortex array.

Copyright c© EPLA, 2008

Reaction-diffusion (RD) systems are often characterized
by front propagation and by the formation of trigger wave
patterns – self-sustaining patterns of outward propagating
rings or of rotating spirals. Reaction-diffusion models [1]
are used to explain a wide range of phenomena, including
propagating flame fronts [2], waves of electrical activity in
the heart [3], patterns formed by predator-prey popula-
tion systems [4], and morphogenesis [5,6]. By definition,
an RD system is one in which there is no fluid motion;
however, many reacting systems are affected significantly
by enhanced mixing due to fluid flows. Flows play a signif-
icant role in, for example, microfluidic reactors, solidifica-
tion in a flowing liquid, forest fires in the presence of a
wind, and the spreading of a disease in a moving popu-
lation. The general advection-reaction-diffusion (ARD)
problem has only recently begun to receive attention [7–9].
In this article, we present ARD experiments on reac-
tion fronts and trigger waves in a laminar fluid flow
with chaotic advection [10,11]. We use the well-known
Belousov-Zhabotinsky (BZ) chemical reaction [12–15] in
a flow that is composed of a two-dimensional (2D) array
of counter-rotating vortices that oscillate laterally in a
circular motion.
Reaction fronts in an RD system propagate with

a speed given by the Fisher-Kolmogorov-Petrovsky-
Piskunov (FKPP) prediction [16,17]: v= 2

√

D/τ , where
D is the molecular diffusion coefficient and τ is the
reaction time scale. The presence of a flow with chaotic
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mixing results in enhanced mixing that often is diffusive
with enhanced diffusivity D∗ [18]. However, it is not
sufficient simply to replace D with D∗ in the FKPP
prediction to determine front speeds for ARD systems.
Recent theories [19,20] and experiments [21,22] showed
that vortices in a flow have a significant effect on one-
dimensional front propagation. In particular, a moving
vortex tends to pin and drag a front [23]; in the reference
frame of the vortex, the front is frozen in the face of an
imposed wind.
If a chain of vortices oscillates periodically, mode-

locking often occurs. Mode-locking is often found in
oscillating systems that are forced periodically by an
external perturbation. If the amplitude of the perturba-
tion is large enough, the natural oscillation of the system
may change and “lock” to the external perturbation, with
the two oscillating with frequencies that are rationally
related, e.g., 1 : 1 or 1 : 2 or 3 : 2, etc. For front propaga-
tion in a cellular flow, mode-locking behavior has been
found [20–22] in which the front propagates an integer
number N of wavelengths λ (vortex pairs) in an integer
numberM of drive periods T , resulting in a front velocity:

v=Nλ/MT =
N

M
λf, (1)

where f is the frequency of oscillation. The previous
studies were essentially one-dimensional (1D), conducted
for a chain of vortices. The experiments presented here
extend the previous studies to a geometry that allows for
fully 2D propagation.
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Fig. 1: Self-sustaining trigger wave patterns in reaction-
diffusion (no flow) limit. (a) Outward-propagating target
patterns. (b) Spiral-pair generator.

Self-sustaining trigger wave patterns are common in RD
systems in which fronts can propagate in two dimensions.
Figure 1 shows two different mechanisms by which these
patterns can form. Target patterns (concentric, outwardly-
propagating rings) form if there are slight imperfections or
impurities that continually retrigger fronts at one or more
locations in the system (fig. 1a). Alternately, if a front is
broken, the ends curl inward to form a spiral that continu-
ally rotates. If both ends of a broken front curl inward, the
result is a pair of spirals that acts as a generator for a self-
sustaining pattern of outward propagating rings (fig. 1b).
Alternately, individual rotating single spiral patterns are
also possible.
The flow studied in these experiments is a square array

of counter-rotating vortices, generated using magneto-
hydrodynamic forcing (fig. 2). An electrical current
(85mA) passes horizontally through a 3mm thick layer
of an electrolytic solution. This current interacts with an
alternating magnetic field produced by a 40× 40 array
of 1/4 inch (0.64 cm) diameter Nd-Fe-B magnets located
below the fluid layer. Lorentz magnetic forces push the
fluid horizontally in one direction above magnets with the
north side up and push the fluid in the opposite direction
above magnets with the south side facing up. The result
is a 25.4 cm× 25.4 cm square array of 1600 vortices in the
fluid layer.
For small electrical current, the vortex array described

above is time-independent, and there is no chaotic mixing
between adjacent vortices. Periodic time dependence and
chaotic fluid mixing are achieved by oscillating the fluid
layer horizontally across the vortex array in a circular
motion. This oscillatory time dependence is imposed with
the use of two pairs of displacement plungers on a pivoting
lever that oscillate in the side reservoirs, displacing fluid
slowly back and forth across the vortex array. For all
cases in this paper, the amplitude of the oscillation is 0.12
as a fraction of the vortex width. The phase difference
between the two perpendicular plunger sets is π/2 radians,
ensuring circular oscillations of the fluid over the vortex
array. Previous studies of a 1D analog of this flow (a chain
of oscillating vortices) have demonstrated chaotic mixing
between vortices and (for most frequencies) enhanced

diffusive mixing [18,24]. Similar chaotic transport and
enhanced diffusion apply to the 2D vortex array when
oscillating.
The fluid layer is composed of the chemicals for the

ferroin-catalyzed, excitable BZ reaction [15]1. Before each
run, a line of 1.0M NaBr is injected around the perimeter
to shield the region of interest (ROI) from fronts that
trigger spontaneously in the reservoirs. A front is then
intentionally triggered within the ROI by momentarily
dipping the end of a silver wire into the fluid.
In the absence of any lateral oscillations of the fluid

(i.e., the plunger sets are inactive) a front triggered
near the left side of the ROI progresses as shown in
fig. 3a. The front advances by a combination of advection
around individual vortices and reactive burning across
separatrices between one vortex and its neighbors. Since
the excitable BZ reaction produces pulse-like fronts with
a refractory process, the front continually re-triggers
within individual vortices, leaving significant activity in
the vortices behind the advancing front. The result is a
pattern that reflects the underlying vortex structure on
small scales and resembles a roughly circular front on large
scales.
The behavior is quite different in the presence of lateral

oscillations and chaotic mixing (fig. 3b–d). First, the front
is an isolated, pulse-like front with no significant activ-
ity in its wake. This is due to chaotic advection which
enhances mixing of the inhibitor in the wake of the advanc-
ing front, preventing re-triggering of the reaction within
individual vortices. Second, signatures of chaotic advec-
tion are evident in the advancing front. The front no longer
relies on reactive burning to cross between vortices – it
is instead advected across separatrices between vortices,
following the lobe structure typical of chaotic advection in
an oscillating vortex flow (see fig. 2 from ref. [18]).
Third, the underlying anisotropy of the vortex array

can have a significant effect on the shape of the front,
especially if the front is mode-locked to the external
forcing. To investigate mode-locking in these experiments,
spacetime plots are made from time sequences along a
horizontal strip in the images. Figures 4a–c show the
motion of the fronts in figs. 3b–d, respectively. The
spacetime plots in figs. 4a and c are taken at the mid-
height of the images, whereas that for fig. 4b is taken near
the bottom. Front velocities can be determined from the
inverse of the slope of these spacetime plots. When mode-
locked, the slope is clearly defined, such as in fig. 4a and
the second half of fig. 4b; if the front is not mode-locked,
the slope is less well defined, as in fig. 4c and the first half
of fig. 4b.
Mode-locking can be verified rigorously by comparing

front velocities to those from eq. (1). As seen in fig. 4d,

1The recipe used: separately mix 48.9 g sodium bromate and

202ml of 1M sulfuric acid in 472ml water, 11.25 g Malonic acid

in 112.5ml water, and 11.25 g sodium bromide in 112.5ml water.

Mix the three solutions together under a vent hood until clear, mix

in 8ml ferroin indicator and then pour into apparatus.
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Fig. 2: (a) Exploded view of magnetohydrodynamic forcing. A 40× 40 array of magnets with alternating polarity sits below a
fluid layer through which a current passes, producing an array of vortices. (b) Side view of apparatus. The fluid layer is 3mm
thick. A pair of displacement plungers slowly oscillates the fluid left-right across the vortex array; another set (not shown)
oscillates the fluid horizontally in-out of the plane of the page.

Fig. 3: Fronts propagating in vortex array. (a) No oscillations or chaotic mixing. (b) Lateral oscillations, f = 0.050Hz. The entire
front is mode-locked in this case. A movie of this sequence is available online (fig3b movie.avi, 4.6MB). (c) Oscillations with
f = 0.070Hz. The bottom part of the front is mode-locked, but the rest is not. (d) Oscillations with f = 0.080Hz. Mode-locking
is not evident in this case.
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Fig. 4: (a) Spacetime plot corresponding to front motion along a line at the midheight in fig. 3b; frequency f = 0.050Hz, mode-
locked. (b) Spacetime plot along line near bottom of fig. 3c; f = 0.070Hz; mode-locking starts about halfway through the run.
(c) Spacetime plot along line at midheight of fig. 3d; f = 0.080Hz; mode-locking not evident. (d) Front velocities; experimental
values (filled diamonds) are compared with theoretical mode-locking predictions from eq. (1). The diagonal solid lines show
theoretical predictions for mode-locking with (N,M) = (3, 1), (2,1) (1,1), (1,2), (1,3) and (1,4), respectively, from left to
right.

for a large range of frequencies, the front velocities agree
quite well with those for (N,M) = (1, 2) mode-locking,
i.e., where the front propagates one wavelength every
two drive periods. It is reasonable that the (1,2) mode-
locking regime dominates since this is the locking ratio
for which the front propagates one vortex every period
of the forcing. Mode-locking in the (1,1) regime is also
apparent in fig. 4d, although the range of frequencies is
significantly less than that for the (1,2) regime. There are
also hints of mode-locking with other locking ratios, but
the evidence is not as clear as for (1,2) and (1,1) locking.
For more discussion of mode-locking in front propagation,
see refs. [21,22] and [23].
When mode-locked, the front tends to be flat and

“faceted”. After a brief transient, a mode-locked front
advances in rhythm with the external forcing, with a
periodic pattern of lobes, as seen in fig. 3b. The front
initially grows as a coarse-grained arc, but it quickly
starts to align with the underlying vortex array. Trail-
ing parts of the front catch up to the leading edge, due
to sideways propagation of the front – chaotic advection
applies in both the x- and y-directions. The result is an
almost perfectly straight, “faceted” front whose macro-
scopic orientation reflects the anisotropy of the underlying
(small-scale) vortex array, similar to the manner in which
faceted crystals reflect the microscopic anisotropy of pack-
ing of individual molecules in the crystals. This faceted

behavior is self-correcting; if any part of the front momen-
tarily lags, the neighboring parts of the front propagate
laterally to fill in the gap.
If a front is not mode-locked or is only partially locked,

the faceted behavior is not as striking, although the
large-scale structure is still influenced by the small-scale
anisotropy of the vortex array. An example of a partially
locked front is shown in figs. 3c and 4b. The frequency of
oscillation (0.070Hz) is larger than that for figs. 3b and 4a
(0.050Hz), and most of the front cannot keep up with
the larger velocity needed to remain locked. Although still
anisotropic, there is less of a self-correcting mechanism to
correct for deviations from a faceted front. About halfway
through this particular run, the bottom portion of the
front manages to mode-lock to the external forcing and
surges ahead of the rest of the front due to the higher
frequency. A front at a higher oscillation frequency is
shown in figs. 3d and 4c; either this front is unlocked or
is locked (temporarily) in a regime with a higher-order
(N,M) combination.
Self-sustaining patterns of trigger waves are found in

this ARD system with chaotic mixing, as seen in fig. 5.
These patterns are generated in a slightly different manner
than those of fig. 3. After a front is triggered, a few
drops of 0.25M NaBr are added directly in front of part
of the advancing reaction, breaking the reaction pulse
and allowing it to curl back on itself. If a small portion
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Fig. 5: Self-sustaining trigger wave patterns; f = 0.050Hz, in
the regime with (1,2) mode-locking. (a) Spiral-pair generator.
A movie of this sequence is available on-line (fig5a movie.avi,
2.0MB). (b) Single spiral.

of the middle of the pulse is broken (fig. 5a), a spiral-
pair generator is formed (near the left of fig. 5a). Similar
to the spiral-pair generator in the RD case (fig. 1b),
the generator in fig. 5a produces a series of fronts that
propagate away from the generator. It is also possible
to produce a single spiral, as shown in fig. 5b. Square-
shaped, outwardly propagating target patterns have also
been found in this ARD system, similar to those in fig. 1a,
but with a much larger average wavelength.
Since propagating fronts are mode-locked at the

frequency for figs. 5a and b, the self-sustaining trigger
wave patterns for the ARD case – which are composed of
a series of propagating pulses – show strong anisotropic
behavior, lining up with the underlying vortex array.
The increased length scale of these patterns is due to
the significant enhancements in front velocity due to
fluid advection. Assuming roughly the same refractory
time for recovery of the reactants as for the RD case,
the average wavelength should increase proportionally
to the propagation speed. Note also that even a 40× 40
array of vortices is limited in size with respect to these
patterns. Presumably, the fronts in fig. 5a would be part
of a pattern of outward-propagating squared pulses.
The pattern formation process seen here is inherently

two dimensional. Earlier experiments [21,22] with the
excitable BZ reaction in an annular chain of oscillating
vortices revealed mode-locking behavior, but large-scale
pattern formation was absent in that effectively 1D
geometry. The self-sustaining patterns seen here also
require chaotic mixing in this system. In the absence of
lateral oscillations responsible for chaotic mixing between
vortices, there are no large-scale patterns at all, as seen
in fig. 3a.
Summarizing, for reactions in a 2D vortex array, we

find front propagation and trigger wave patterns similar
in some respects to those in a reaction-diffusion system
with no flows. However, the underlying vortex structure
imposes significant anisotropy on the fronts and on
the pattern formation process, particularly when the
fronts are mode-locked to external perturbations. We are
currently conducting experiments to extend theses results

to spatially random vortex flows and to flows with more
complicated time dependence, including weakly turbulent
flows. The goal is to determine how dependent the large-
scale pattern formation is on the specific flow used and
how general the phenomena is. Ultimately, this work has
the potential for long-term applications to microfluidic
reactors, many of which involve chaotic mixing in small-
scale periodic lattices. The effect of small-scale cellular
structures on large-scale patterns may also be relevant to
understanding the effects of discrete cells and nerves on
waves of electrical activity in the heart and brain. Finally,
ARD studies such as this may shed light on pattern forma-
tion in ecosystems in fluid flows, e.g., phytoplankton and
algae blooms in the Atlantic Ocean and Gulf of Mexico.
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