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Abstract – We present theory and experiments on the dynamics of reaction fronts in two-
dimensional, vortex-dominated flows, for both time-independent and periodically driven cases.
We find that the front propagation process is controlled by one-sided barriers that are either
fixed in the laboratory frame (time-independent flows) or oscillate periodically (periodically
driven flows). We call these barriers burning invariant manifolds (BIMs), since their role in front
propagation is analogous to that of invariant manifolds in the transport and mixing of passive
impurities under advection. Theoretically, the BIMs emerge from a dynamical systems approach
when the advection-reaction-diffusion dynamics is recast as an ODE for front element dynamics.
Experimentally, we measure the location of BIMs for several laboratory flows and confirm their
role as barriers to front propagation.

Copyright c© EPLA, 2012

Many dynamical systems are characterized by the prop-
agation of fronts that separate distinct phases, including
chemical reactions [1], plankton blooms [2], plasmas [3],
epidemics [4], and flame fronts. Fronts propagating in non-
advecting reaction-diffusion (RD) systems, i.e., with no
fluid flow, have been the subject of much research. For
instance, front speeds in the RD regime are well described
by the existing Fisher-Kolmogorov-Petrovsky-Piskonuv
(FKPP) theory [5,6]. However, many real systems over
a broad range of length scales exhibit coherent fluid or
fluid-like motion that dramatically impacts front prop-
agation, e.g., plankton blooms in ocean currents [7], or
chemical reactions in microfluidic devices [8]. Despite
the importance of flows in front-producing systems, a
general framework for understanding their effect is lacking.
Notably, attempts to extend FKPP theory through the use
of an enhanced diffusivity have been shown inadequate
in describing front propagation in laminar advection-
reaction-diffusion (ARD) systems [9]. This suggests that
we approach the problem from a different perspective.
In this letter, through both theory and experiment,

we reveal fundamental geometric structures that govern
front propagation in two-dimensional (2D) flows. We draw
inspiration from the theory of chaotic advection, which
emphasizes the key role played by invariant manifolds
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Fig. 1: Exploded view of magnetohydrodynamic forcing.
Current interacts with alternating magnets to produce a flow
composed of a chain of alternating vortices. The fluid channel
measures 1.9 cm× 27 cm.

as barriers to passive transport [10,11]. The central idea
of this letter is that analogous manifolds —what we call
burning1 invariant manifolds (BIMs)— serve as one-sided
barriers to front propagation.
We shall first consider a chain of alternating quasi-2D

vortices (fig. 1), considering both a time-independent flow
and a time-periodic flow with vortices that oscillate later-
ally. Both of these experiments are complemented by qual-
itative theoretical models. Finally we shall demonstrate
the applicability of the proposed concepts in the more
general setting of a spatially disordered flow (fig. 8).
Vortex chains provide a suitable context to intro-

duce our geometric approach to front propagation, since
much is already known about passive transport in these
systems. Previous studies in both time-independent and

1We use the term “burning” generically for any front propagation,
such as the experimental chemical fronts here.
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time-periodic flows have found long-range passive trans-
port that is often diffusive with a variance that grows
linearly in time [12–14]. For the time-periodic flow, passive
transport has been successfully analyzed [13,14] in terms
of invariant manifolds and the lobes [11,15,16] formed by
their intersections. Reactive front propagation in this flow
has also been experimentally studied [9,17]. For the time-
periodic flow, fronts often mode-lock to the external forc-
ing [9,18], propagating an integer number of vortex pairs
in an integer number of drive periods. Importantly, this
result contradicts any FKPP-type analysis that predicts
front speeds that grow monotonically with enhanced diffu-
sivity.
The vortex chain is generated (fig. 1) using a magneto-

hydrodynamic forcing technique [14]: an electric current
passing through a thin (2mm) conducting fluid interacts
with a field produced by an alternating pattern of 1.9 cm
diameter magnets below the fluid. Two strips of plastic
define the fluid channel. The result is a chain of 14 vortices,
each with width and height of D= 1.9 cm. The flow can
be made time-periodic by oscillating the magnets laterally,
causing the vortices to oscillate likewise. The timescale of
magnet oscillation is much longer than the viscous diffu-
sion time (∼ 4 s), which is a characteristic relaxation time
for velocity fluctuations in the fluid layer. The spatially
disordered flow (fig. 8a)) is similarly generated, except the
plastic strips are removed and the magnets are replaced by
a disordered 2D configuration of smaller (0.6 cm) magnets.
The fluid for all experiments is composed of the

chemicals for the excitable, ferroin-catalyzed, Belousov-
Zhabotinsky (BZ) reaction [19]. The fluid is initially
orange; insertion of a silver wire triggers a green reaction
that propagates through the fluid. The reacting fluid is
imaged from above with a CCD video camera. The front
propagation speed is V0 = 0.007 cm/s in the absence of
a flow. In the theory, we assume the sharp front limit
(consistent with the experiments), meaning the reaction
proceeds rapidly compared to diffusion. We also assume
that the chemical reaction has negligible feedback on the
fluid flow.
We accompany these vortex chain experiments with

theoretical computations using the following 2D fluid
velocity field [12],

ux(x, y, t) =+ sin(π[x+ b sin(ωt)]) cos(πy),

uy(x, y, t) =− cos(π[x+ b sin(ωt)]) sin(πy),
(1)

where 0≤ y≤ 1, and b≡B/D, and ω≡ΩD/U are dimen-
sionless parameters with U , Ω, and B the (dimensional)
maximum fluid speed, driving frequency, and driving
amplitude, respectively (b=B = 0 for a time-independent
flow). This model has free-slip boundary conditions (BCs).
While the experimental flow has no-slip BCs, it attains
velocities comparable to the free-slip model within 1mm
of the wall. Also, Ekman pumping [20] in our experi-
ments produces a weak 3D secondary flow that is not
included in the model. Nevertheless, this model captures

θ
v0n̂

n̂⊥
u dr

dt

r ṙ = u + v0n̂
˙̂n = −n̂⊥[n̂ · (∇u)n̂⊥]

Fig. 2: Each reaction front element independently propagates
forward under advection (u) and burning (v0n̂). These 4D
vector equations reduce to the 3D ODE eq. (2).

the basic features of the experimental flow and, in fact, has
been successfully used to model both passive transport
and mode-locking of reaction fronts for previous exper-
iments [9,12,13,18]. Previous theoretical studies of ARD
in a vortex chain [18,21] utilized an Eulerian-grid-based
computation. In contrast, we directly model the dynam-
ics of the front between reactant and product using the
following 3D ODE2 (fig. 2),

ẋ= ux+ v0 sin θ, ẏ= uy − v0 cos θ, (2a)

θ̇=−2ux,x sin θ cos θ−ux,y sin2 θ+uy,x cos2 θ, (2b)

where r= (x, y) is the position of an infinitesimal front
element, θ is the local orientation of the front, defined
with respect to the x-axis, u(x, y, t) is the prescribed
incompressible fluid velocity field, and v0 ≡ V0/U is the
dimensionless burning speed. The 3D ODE can also be
expressed in vector form, as shown in fig. 2. These ODEs
assume that the front propagation speed is constant
in the local fluid frame and does not depend on the
local curvature of the front [23]. We investigate four
physical regimes (fig. 3), the first two of which review
existing theory, while the latter two introduce BIMs, their
measurement, and their function.
Time-independent fluid flow, passive mixing (fig. 3a)):

Advection in a regular (integrable) flow is the base case.
Here, the streamlines are closed, forming invariant tori.
The stable and unstable invariant manifolds, anchored
to hyperbolic fixed points on the top and bottom of
the channel, are degenerate with one another and form
separatrices, dividing the channel into isolated vortex cells.
Time-periodic fluid flow, passive mixing (fig. 3b)):

Mixing in the time-periodic flow is typically chaotic
[12–14]; consequently, the dynamics are now best studied
by a Poincaré map which advects a given (x, y) position
forward over one driving period. The separatrices from
the time-independent case split into separate stable
and unstable invariant manifolds, each attached to one
hyperbolic fixed point on the channel wall. Lobes formed
from the intersections of these complicated curves govern
passive transport between neighboring vortices in the
flow [11,13–16].
Time-independent fluid flow, reactive front propagation

(fig. 3c)): The addition of burning (v0 �= 0) results in a few
2Equation (2) can also be derived from the G-eqn, cf. [22].
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Fig. 3: Schematics showing the geometric structures that
govern passive transport and front propagation. Black arrows
indicate fluid velocity. Blue/red denote stable/unstable mani-
folds. Black dots denote fixed points of 2D fluid flow. Red dots
denote burning fixed points of eq. (2). Arrows tangent to unsta-
ble manifolds show unstable direction; normal wedge shapes
show the “burning” direction n̂ of BIMs.

critical changes, central to this letter. First, each advective
hyperbolic fixed point in fig. 3a) splits into two burning
fixed points (fixed points of eq. (2)), one on either side.
Each burning fixed point lives in xyθ-space, and so is
endowed with a burning direction. These occur where the
fluid velocity is exactly balanced by the burning velocity
of the front. In our model, these points lie on the channel
wall, while in our experiments, they lie roughly 1mm away
due to the no-slip BC. Each of these burning fixed points
has one unstable and two stable directions, generating one-
dimensional unstable manifolds —the burning invariant
manifolds (BIMs) shown in fig. 3c). It is critical to
recognize that each BIM has a burning direction, denoted
by wedge shapes. In other words, the addition of burning
splits each manifold into a left- and right-burning BIM3.
Note that the curves in fig. 3c) are 2D projections of BIMs
in 3D, causing the appearance of intersections and cusps.
Cusps have the semi-cubic y2 = x3 normal form found in
ray optics.
Figure 4a) shows simulations that illustrate the bound-

ing property of BIMs. A reaction front is catalyzed at the
advective fixed point, to each side of which lies a burn-
ing fixed point and its attached BIM. The evolution of
this front is repeatedly plotted as it propagates away from
the wall, using a computation based on eq. (2). Note that
as the front evolves, it converges upon the independently
computed4 BIMs, with the BIMs acting as barriers to front
propagation. The convergence behavior is due to the fact
that the BIMs are attracting in their transverse direc-
tions. The BIMs are one-sided barriers, blocking those
fronts propagating in the same direction; a front burning
in the opposite direction as a BIM can pass right through,

3A pair of stable BIMs for the top, middle fixed point also exists
in fig. 3c), related to the unstable BIMs by reflection about the
horizontal. Additional stable and unstable BIMs exist for the other
fixed points as well.
4Numerical computation of invariant manifolds similar to [24].

(a) (b)

(c) (d)

Fig. 4: Time-independent flow with reaction fronts (v0 = 0.16).
a) BIMs (red) calculated directly from eqs. (1) and (2).
Simulation shows reaction front evolving over time (blue to
green), converging on the BIMs. b) Experiment shows evolving
reaction front (green, images 5 s apart) and experimentally
determined bounding BIMs (red). Each front is extracted
from a single reaction image, one of which is shown in white.
c) Simulation shows fronts wrapping around the BIM cusp and
filling in the vortex centers. Oppositely oriented fronts (green)
collide in the image center. d) A neighboring pair of BIMs
exists to the right of the original pair. As the front evolves
right around the original BIM it encounters the second pair of
BIMs, though it is only bounded by the BIM burning in the
same direction as the front.

as discussed below. As the front reaches the projection
singularity of the BIM (the cusp), it will spiral around
the singular point until the front collides with the previ-
ously burned region, as shown in fig. 4c), thereby filling
in the center of the vortex5. Furthermore, as the front
evolves to the right, into the neighboring vortex (fig. 4d)),
it encounters a second pair of BIMs. It passes through the
first one (oriented opposite the front) and is blocked by
the second (aligned with the front). Thus, BIMs are local
barriers, since fronts can burn around a BIM segment,
but not through a BIM segment having the same burning
direction.
The BIMs can be determined experimentally through

a sequence of evolving fronts (fig. 4b)). These fronts are
extracted from images of a reaction, initially triggered
at the bottom fixed point. The fronts approach a pair
of curves (red), which we identify as the experimentally
measured BIMs. Analysis of image data confirms a drop in
front speed to an order of magnitude below V0 as the front
approaches the BIM, indicating that the BIMs function as
barriers. In experiments, the BIMs are not perfect barriers
due to Ekman pumping and slight noise in the velocity
field. Experimentally, we can not determine the BIM
beyond the cusp singularity (witnessed in the theory),
since the converging front spirals around the singularity
and burns through that part of the BIM beyond the
singularity.

5Two fronts that represent reactions colliding head-on have
distinct θ-values, and so have well separated trajectories under the
3D ODE eq. (2). Furthermore, front element trajectories that reach
the channel wall simply end, as the vector field is not defined outside
the channel.
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∆t = 0.1T 0.42T

0.45T 0.55T

0.87T 1.10T

1.60T

2.10T

Cusp

Fig. 5: Fronts in time-periodic flow. a) Theoretical model; a
front sequence converging onto the BIMs. b)–h) Experimental
images of reaction regions (white) and extracted BIMs (red).
h) BIMs from the adjacent fixed points are shown in blue. For
all panels, U = 0.09 cm/s, V0 = 0.007 cm/s, B = 0.57 cm, Ω=
0.16 rad/s. Advanced times for trigger are given as multiples of
the oscillation period T = 40 s.

Time-periodic fluid flow, reactive front propagation
(fig. 3d)): As is the case for the time-independent flow
(figs. 3a), c)), the addition of reactive burning to the
time-periodic flow results in the splitting of each fixed
point and their invariant manifolds (figs. 3b), d)). The
Poincaré map in fig. 3d) shows left- and right-burning
fixed points, along with left- and right-burning BIMs.
The technique for the extraction of BIMs in the time-

periodic case is slightly more complex than in the time-
independent case. Each curve in fig. 5a) is a snapshot of a
simulated evolving front, each of which was catalyzed at
a different time in the past but recorded at the common
time t= 0. Thus, although the initial triggering occurs at
different phases of the driving, all fronts are imaged at the
same phase. This sequence of fronts again converges upon
the BIMs (red) which act as local barriers.
Figures 5b)–h) show an experimental realization of this

protocol. In a series of separate experiments the reaction is
triggered at different times (t < 0), and therefore different
phases of the driving. For each case, the reaction is

(a) (b)

(c) (d)

(e) (f)

0.0T 0.2T

0.4T 0.6T

0.8T 1.0T

Fig. 6: a) A front (gray) begins to the right of the BIM (bold
red) in a periodically driven vortex chain flow. A series of
snapshots shows the evolution of this particular reaction over
one forcing period. The front remains bounded by the evolving
BIM at each time. Notice that in (a) the left BIM spans the
channel. This sequence shows how the front is able to move
beyond the spanning BIM. The original BIM segment is bold
in the last frame. Note the good qualitative correspondence of
fig. 6a), f) with fig. 5d), g).

triggered in a region along the boundary that is mostly
between the BIMs, though since the BIMs are close
together, the triggered region sometimes overlaps the
BIMs. Each reaction is allowed to evolve until it is imaged
at t= 0. The red curves again show the experimentally
extracted BIMs6. Although eq. (1) is an idealization of
the experimental flow, the BIM geometry in the model
and experiment is remarkably similar.
As seen in the time-independent flow, the BIMs form

a channel which bounds the sequence of fronts. Upon
reaching a cusp singularity in the BIM (fig. 5f)), the front
sequence wraps around similar to the behavior in the time-
independent flow (fig. 4). We note that in the model, the
cusp is rounded in the opposite orientation (fig. 5a)). By
perturbing the model parameters, it is possible to alter this
orientation. In the next frame (fig. 5g)) the reaction moves
significantly left of the BIM segment shown. We discuss
the details of this mechanism below. After burning beyond
the finite BIM segments shown in fig. 5b)–g), the reaction
front subsequently presses against the neighboring BIMs
in fig. 5h) (blue) related to the red curves by the flip-shift
symmetry of the vortex chain. Their bounding effect on
the front propagation is apparent.
As the left BIM in fig. 5f) spans the entire channel, it

requires some additional explanation to understand how
the reaction moves left of this span, since there is no cusp
singularity to spiral around, as in fig. 4. The simulation
in fig. 6 demonstrates the coevolution of a single reaction
front and the left BIM during the course of one complete
forcing period. The BIM itself stretches and folds in time,

6BIM extraction from experiments: Each reaction image is
smoothed, after which a high-pass filter is applied, resulting in
an edge-enhanced image. The sequence of edge-enhanced images is
summed, and the BIMs appear as ridges in this summed image.
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(a) (b)

Fig. 7: Fronts triggered at generic points to the left a) and
right b) of a pair of BIMs. These images illustrate the one-
sided nature of the BIMs as barriers.

(b)

(d)(c)

(a)

Fig. 8: Experiments with 3.55 cm square window of disordered
flow. a) Experimental fluid flow measured by particle tracking.
Color shows vorticity. b) As in fig. 4b), stimulating between
oppositely oriented BIMs produces fronts that approach and
are bounded by BIMs. (c), d)) Generic stimulations on either
side burn through one BIM but not the other.

generating a complicated structure that moves both to
the left and right. Upon completion of the cycle (fig. 6f)),
the BIM maps onto itself (original segment in bold). The
reaction does not penetrate the BIM (in the burning
direction) at any point during this process. Rather, it is the
extension of the BIM which allows the reaction to proceed
leftward. In fact, the left BIM not only bounds the reacted
region, but also draws it along beyond the initial span,
and onward down the channel. This process is akin to the
canonical turnstile mechanism of passive transport [11].
As noted already for time-independent flows, the BIMs

are one-sided barriers; reactions propagating in a direction
opposite the BIM’s burning direction pass through unim-
peded. Figure 7a) shows a front evolving from a generic
stimulation point left of the displayed BIMs. The front has
burned to the right, through the left-burning BIM, but is
bounded by the right-burning BIM. Similarly, a leftward-
propagating front passes through a right-burning BIM but
is blocked by the left-burning BIM (fig. 7b)).

The concepts developed above are robust, since eq. (2)
is valid for any 2D incompressible flow, and BIMs are
generic features of this ODE. We have observed the
presence and influence of BIMs, both experimentally
and computationally, for a variety of parameters in the
vortex chain. Furthermore, we have demonstrated their
existence and function using a spatially disordered, time-
independent flow (fig. 8a)). As was illustrated for the
vortex chain, a reaction triggered near a fixed point in the
disordered flow approaches a pair of BIMs, one on either
side (fig. 8b)). The one-sided nature of the BIMs is also
seen in figs. 8c), d); fronts triggered outside the displayed
pair of BIMs pass through the BIM encountered first, but
stop at the second. Other BIMs observed in this flow share
these behaviors.
Summarizing, we have introduced burning invariant

manifolds (BIMs) as geometric objects that govern the
propagation of reaction fronts in laminar fluid flows. We
have shown that BIMs arise naturally from a three-
dimensional ODE for reaction front elements, and we have
identified BIMs in several experimental flows and have
shown that they act as one-sided barriers to front propaga-
tion. Currently, we are using BIMs to extend the concept
of lobe dynamics [11,15,16] to ARD systems. We are inves-
tigating the implications of BIM topology for front propa-
gation speeds, providing a necessary alternative to FKPP
approaches. We are also developing a method for extract-
ing BIMs in time-aperiodic contexts; this work parallels
recent studies of passive transport in which Lagrangian
coherent structures [25] were used to extend invariant
manifold theory to aperiodic flows.
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