
The effects of laminar mixing on reaction fronts and patterns 
 

I.  Introduction 

 

A wide variety of dynamical processes are influenced by some sort of reaction.  In its most general 

sense, a “reaction” is when some species A changes into some other species B during a process, possibly 

via an interaction with other species.  The most obvious example is a chemical reaction, when two or 

more reactants interact to form a third product, e.g., A + B  C or A + B   2A.  Combustion is an 

example of a chemical reaction, either in a controlled environment such as an engine or in an 

uncontrolled environment such as a forest fire.  But reaction dynamics are found in other fields of 

science and engineering.  In biology, for example, life cycle processes can be treated as reactions with 

different states when an animal is born, grows, and dies.  Contraction of a disease can be treated as a 

reaction with at least two distinct states (healthy and sick).  And various processes within living 

organisms can be treated as reactions; for example, waves of electrical activity in the heart are treated 

as reactions.  Other examples of reactions include phase transitions where, for example, a solid (state 

“A”) turns into a liquid (“B”). 

 

Reaction dynamics are heavily dependent on mixing in the system.  For a chemical reaction in a flask, if 

the reactants are well-mixed, it can often be assumed that the reaction occurs everywhere in the system 

simultaneously.  However, real systems are often spatially extended, and there are typically variations in 

concentration of the species in the system.  The reactants need to be brought into proximity with each 

other to undergo a reaction; furthermore, the products of the reaction can interact with the remaining 

reactants.   In the absence of any fluids flows, mixing is entirely via molecular diffusion.  If there are fluid 

flows in the system, mixing is significantly enhanced over that due to molecular diffusion alone; 

consequently, fluid flows typically have a significant effect on the behavior of the system.  If the flows 

are strongly turbulent, the mixing may be sufficiently strong such that the spatial extent of the system is 

not an issue (i.e., similar to a reaction in a well-stirred flask, the reaction occurs roughly simultaneously 

everywhere).  However, it is often not possible to get strong enough turbulent mixing.   

 

The strength of a fluid flow is typically characterized by the Reynolds number Re = UL/, where U and L 

are the characteristic velocity and length scale of the flow and   is the kinematic viscosity of the fluid.  

Turbulence requires a large Re, which is difficult for highly viscous flows or flows with a small 

characteristic length scale.  The latter condition is particularly relevant for cellular-scale processes in 

biological organisms and for microfluidic devices, both of which have length scales that are often smaller 

than a micron.  For small Re, the flow is laminar; in this situation, it is rarely the case that a reaction can 

be assumed to happen simultaneously throughout a system.  In this case, the evolving reaction forms 

spatial patterns that are dependent on the combination of local reaction dynamics and longer-range 

mixing between different parts of the system.   

 

The simplest type of spatially-extended, reacting systems are reaction-diffusion systems which, by 

definition, have no fluid flows.  Mixing is entirely due to molecular diffusion, a process which is 



inherently local in nature with each part of the fluid interacting only with the surrounding fluid.  

Reaction-diffusion systems have been studied extensively for several decades.  For oscillating reactions 

(e.g., the oscillating Belousov-Zhabotinsky chemical reaction or life-cycle processes for living organisms) 

or for “excitable” reactions (one time reactions that can reset, such as the excitable Belousov-

Zhabotinsky reaction, a disease from which someone can recover, electrical waves in the heart or brain, 

or a forest fire with trees that can re-grow), it is common for rotating spiral and expanding target 

patterns to form.   For “one-off” (“burn-type”) reactions that do not reset (e.g., combustion of a fuel, 

solidification of a cooling melt, or the propagation of a deadly disease), it is typical for fronts to develop 

which propagate across the system with a well-defined front velocity that depends on the molecular 

diffusivity and reaction rates of the interacting species. 

 

The addition of a fluid flow dramatically changes the pattern-formation and front propagation behavior1.  

This is relevant to a wide range of reacting systems, including ecosystems in oceanic flows, forest fires in 

the presence of wind, and chemical and biological processing systems that are subject to fluid flows.  

There has been a significant amount of previous research into the effects of turbulent flows on reaction 

dynamics (e.g., in turbines and in pre-mixed burners).  Surprisingly, however, there has not been much 

research until recently on the effects of laminar fluid flows on reaction dynamics.  Laminar flows are 

relevant for a wide range of reacting systems, including micro-fluidic reactors (so called “laboratories on 

a chip”) and biological processes in cellular and embryonic systems, all of which occur on small enough 

scales such that Reynolds numbers are too small to sustain turbulent flows. 

 

This chapter discusses recent research on the effects of laminar fluid mixing on reaction dynamics.  We 

review both theoretical and experimental studies, and discuss areas that are currently being studied and 

for which significant additional research is needed.   In Section II, we present background material on 

relevant issues in fluid mixing, along with previous results in reaction-diffusion systems.  Section III 

covers some of the basic principles common to advection-reaction-diffusion (ARD) systems, i.e., reacting 

systems with fluid mixing.  Section IV discusses recent studies that examine how laminar fluid mixing 

affects local pattern formation in ARD systems.  Section V discusses synchronization of processes in 

extended fluid systems and how laminar mixing relates to that synchronization.  Section VI discusses the 

issue of front propagation and how laminar mixing affects the process.  Section VII summarizes and 

discusses future areas of investigation. 

 

II.  Background 

 

A. Laminar mixing – the Advection-Diffusion Equation 

 

Mixing is governed by the interplay between advection of impurities along streamlines as they are 

carried by a fluid flow and diffusion of the impurities between streamlines in the flow.  Quantitatively, 

the process is governed by the advection-diffusion equation (also known as the convection-diffusion 

equation): 
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 is the concentration field for the impurity, ),( trv
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is the velocity field, and D is the 

molecular diffusion coefficient for the impurity in the background fluid.  Conceptually, the concentration 

of the impurity at a location changes either if the flow carries a region of lower or higher concentration 

to the point of interest, or if there is diffusion of impurity into our out of the point of interest from the 

neighboring regions.  In non-dimensional form, the advection-diffusion equation is written as  
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where all the quantities have been non-dimensionalized by the characteristic velocity U and length L 

scales of the flow, and the Peclet number is defined as Pe = UL/D.  Conceptually, the Peclet number 

characterizes the relative strength of the advection and diffusion terms.  Mixing with Pe ≫ 1 is 

dominated by advection, whereas Pe ≪ 1 corresponds to diffusion-dominated mixing. 

 

B. Short-range mixing 

 

Several techniques have been developed to characterize local mixing in fluid flows.  Many of these 

techniques involve quantification of the manner in which the flow stretches fluid elements.  

Quantitatively, stretching is characterized by a positive finite-time Lyapunov exponent (FTLE) λ(t) 

defined by: 
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where Δr(t) is the separation of two passive tracers after a time t, and Δr0 is the initial separation of 

those two tracers (assumed to be much smaller than typical length scales of the flow).  If mixing is 

chaotic, then a positive Lyapunov exponent can be found even in the infinite-time limit.  The FTLE can be 

represented as a field, showing visually the regions of maximal stretching in a flow. 

 

Stretching of fluid elements in itself is not the prime contributor to mixing; rather, compression of 

streaks of impurity is the key.  However, since most laminar flows are incompressible, significant 

stretching of fluid elements (and large positive Lyapunov exponents) is associated with significant 

compression of the same fluid elements in an orthogonal direction, characterized by large negative 

Lyapunov exponents.  Compression of fluid elements results in thinning of tendrils of impurity in the 

flow.  Ultimately, complete mixing occurs as a two-stage process:  advection of the impurity in the flow 

stretches (and thins) and folds the impurity repeatedly until the structures are thin enough so that 

molecular diffusion can finish the job.   

 



Recently, there has been a tremendous interest in what are referred to as Lagrangian Coherent 

Structures (LCS) as a method for identifying regions of significant mixing in a fluid flow.  These structures 

are equivalent to unstable manifolds of fixed points in a fluid flow, as shown in Figure 1.  The unstable 

manifold of a fixed point is defined as the future location of a swarm of tracer particles that start out 

infinitesimally close to the fixed point.  For a time-independent flow (Fig. 1a), the unstable manifold of a 

fixed point is usually a simple curve that separates different mixing regions in the flow; i.e., it is 

frequently equivalent to the separatrix.  If the flow is time-periodic (Fig. 1b), the manifold undulates, 

forming a pattern of folds that become increasingly complicated in time and distance from the fixed 

point.  A stable manifold can also be defined for a fixed point, either as the set of points that in the 

distant future will end up arbitrarily close to the fixed point, or as the set up points which would denote 

the unstable manifold of that fixed point of time were reversed. 

 

From a perspective of short-range mixing, the unstable manifold is the region of the flow where 

stretching is maximized; consequently, compression in the orthogonal direction is also maximized and 

mixing is strong and efficient.    These manifold techniques were pioneered a couple of decades ago for 
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Figure 1.  Stable and unstable manifolds of two hyperbolic fixed points in a flow.  (a)  Time-

independent flow; the unstable manifold of the lower fixed point is the same as the stable 

manifold of the upper fixed point.  (b) Time-periodic flow; the unstable manifold of the bottom 

fixed point undulates, as does the stable manifold of the upper fixed point. 

(a)                         (b) 

                                 
Figure 2.  Stable and unstable manifolds in more complicated flows.  (a) Manifolds from weakly 

turbulent magnetically-forced flow (from Greg Voth and Jerry Gollub; see Ref. 2).  (b) Manifolds 

and hyperbolic trajectory of Eddy Fourchon in the Gulf of Mexico (from Ref. 3).  



time independent and time-periodic flows.  Recently, research groups have successfully extended these 

ideas to enable the experimental identification of both stable unstable manifolds to turbulent fluid 

flows2 (Figure 2a).  These approaches have been used very successful to analyze mixing in flows in the 

oceans and in the Gulf of Mexico.3,4 

 

 

C. Long-range transport of impurities 

 

Stable and unstable manifolds can also be used to quantify long-range transport in extended fluid flows; 

specifically, over distances larger than characteristic length scales in the flow.  A paradigmatic flow for 

these studies is the alternating vortex chain (Figure 3), a flow that is common in nature, e.g., in flows 

with thermal convection, sheared flows, and cloud streets.  If we approximate the flow as two-

dimensional (2D) or consider a 2D cross-section of a 3D flow, each vortex is a separate mixing region, 

and long-range transport is achieved only if there is a mechanism for tracers to cross the separatrices 

between adjacent vortices.  For a time-independent flow, the separatrices are manifolds for the fixed 

points at the vortex corners, and transport between vortices occurs only via molecular diffusion of 

impurity across these separatrices.  If the flow is time-periodic, however, the folded stable and unstable 

manifolds intersect to form a pattern of lobes (Figure 4) that provides an advective mechanism that 

enables impurities to cross from one vortex to the next.  In Figure 4, impurities in the bottom filled-in 

lobe end up in the next lobe (above the first and to the left of the separatrix) one period later, then the 

  
Figure 3.  Sketch of alternating vortex chain.  In the studies presented in this chapter, the vortex 

chain can move laterally, either oscillating periodically with a maximum lateral speed vo, moving 

with a constant drift velocity vd, or moving with a combination of oscillatory and drifting motion.  

 

 

Figure 4:  Stable and unstable manifolds of the 

hyperbolic fixed points for the alternating 

vortex chain.  The straight vertical lines are the 

separatrices between adjacent vortices, and are 

also the manifolds for the time-independent 

case with no lateral oscillations.  The 

complicated (stretched and folded) manifolds 

correspond to time-periodic, lateral oscillations 

of the vortex chain.  Some of the lobes formed 

from the intersections of these manifolds are 

shaded in. 



next lobe (near the top) one period after that, etc.  Similarly, impurities in the bottom, clear lobe end up 

in the middle lobe (straddling the separatrix) one period later, then the top, clear lobe, etc.  This 

“turnstile” mechanism results in transport of impurities between adjacent vortices, with the amount 

being transported being determined by the area of the lobes. 

 

To first order, this lobe mechanism of transport results in long-range transport that is essentially 

diffusive with an impurity distribution whose variance grows linearly in time:  tDtx *2 2)(  , where 

D* is the effective (enhanced) diffusion coefficient.  Experiments have been done5,6 to test these ideas 

quantitatively; the results of the experiments verify this lobe picture of long-range transport, along with 

the typically-diffusive nature of the transport. 

 

Long-range transport in an advection-diffusion system is not necessarily diffusive.  More generally, the 

variance grows as a power law in time:  ttx ~)(2  .  If γ = 1, then the transport is diffusive.  If γ ≠ 1, 

then the transport is deemed “anomalous” with γ < 1 corresponding to subdiffusive transport and γ > 1 

corresponding to superdiffusive transport.  Superdiffusive transport is associated with trajectories called 

Lévy flights7,8,9 where tracers in the flow undergo sporadic “jumps” whose lengths follow a power-law 

probability distribution:  P(L) ∼ L-μ , where μ < 3.  This is a probability distribution whose second moment 

diverges:  <L2> = ∞.  Lévy flights and superdiffusion were first seen experimentally in a chain of time-

periodic co-rotating vortices10, but they can also be found in the time-periodic counter-rotating vortex 

chain if either the oscillation frequency is resonant with a typical circulation time11 or if a uniform wind 

is added to the flow12 with velocity magnitude W > vosc, where vosc is the maximum lateral oscillation 

velocity of the vortex chain. 

 

Since the first experiments in the early 1990s that showed Lévy flights and superdiffusion, Lévy flights 

have been discussed for a wide range of systems, including the motion of people in society13 and the 

foraging patterns of various animals14,15.  Consequently, superdiffusion is most likely relevant to a range 

of real systems. 

 

D. Nonlinear reactions 

 

In the mid-1950s, Boris Belousov discovered a chemical reaction that approaches equilibrium in a long, 

cyclical process in which the pH of the solution oscillates for up to several hours.  When tagged with an 

indicator, the solution changes color, alternating between two different colors through the life of the 

reaction.  The same effect was rediscovered a few years later by Anatol Zhabotinsky.  The reaction and 

its variants – where are now referred to broadly as the Belousov-Zhabotinsky (BZ) reaction – has been 

studied extensively for the past few decades as a paradigm for nonlinear reactions16,17,18.   

 

Two different regimes are common for BZ and similar reactions, depending on the relative 

concentrations of the reactants:  (a) an oscillatory regime in which the pH spontaneously oscillates 

periodically (or almost periodically) for many oscillation periods before the reaction finally reaches 



equilibrium; and (b) an excitable regime in which the reaction requires some sort of trigger to change its 

pH (and its color if an indicator is used), but then returns to its initial pH and color.   

 

The BZ reaction has also been manipulated to produce chaotic time dependence, if configured in a 

continuously-stirred tank reactor (CSTR) where new chemical reactants are continuously fed into the 

system. 

 

E. Reaction-diffusion systems 

 

When nonlinear reactions are in an extended system, the interaction between local reaction dynamics 

and diffusive mixing results in a variety of spatial patterns and front-producing behavior.  In the absence 

of a fluid flow, these systems are referred to generally as reaction-diffusion (RD) systems, described 

generically by the reaction-diffusion equation: 
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Here, ci is the concentration of one of the species in the system, Di is the molecular diffusion coefficient 

for that species and fi is the reaction term, which depends not only on ci but also on the other species in 

the system.   

 

The behavior of fronts moving in a reaction-diffusion system has been well studied for reactions that are 

described19,20 by a complex function f(c) where f’’ < 0.  In this case, the front propagates with a speed vrd 

= rD /2  where D is the molecular diffusion coefficient for the relevant reactants and τr is the time 

scale for the reaction.   This theory – referred to as FKPP theory since it was developed separately by 

Fisher21 and by Kolmogorov, Petrovsky and Piskunov22  – is well-established, and applies to a wide range 

of reacting systems, not only chemical but biological and physical as well, as long as a diffusivity and 

reaction time scale can be identified. 

(a)              (b)   

 
Figure 5.  (a) Spiral and (b) target patterns in the excitable Belousov-Zhabotinsky chemical reaction 

in a Petri dish with no imposed fluid flow. 



 

Reaction-diffusion systems are also well-known for their ability to form patterns16.  The Belousov-

Zhabotinsky (BZ) reaction in its excitable regime readily forms patterns composed of target and spiral 

patterns, as shown in Figure 5.  Conceptually, these patterns – referred to as trigger waves – form due 

to the ability of a triggered excitable reaction to reset back to (roughly) its original state, after which it 

can be retriggered.  A rotating spiral is an example of a self-sustaining pattern for an excitable system.  

This kind of self-sustaining pattern formation behavior appears even if the reaction is oscillatory.  

Initially, the entire reaction oscillates together, but over time, the oscillations de-synchronize, forming 

regions of phase waves.  In some of these regions, seeds of trigger waves form, and these trigger waves 

grow in extent into the phase wave regions. 

 

Pattern formation in the BZ chemical reaction in the RD limit has been studied extensively, 

predominately because the behavior seen in this system is typical of pattern formation seen in a wide 

range of RD systems.  Examples – shown in Figure 6 – include waves of electrical activity in the heart23 

which are responsible for the heart’s pace-maker, spreading depression in the visual cortex24 which is 

responsible for the visual patterns seen in migraine headaches, and patterns formed in slime mold 

cultures25 (Dictyostelium discoideum). 

 

III.  Advection-Reaction-Diffusion:  General Principles 

 

When there is both a reaction and a fluid flow, the system can be described in general by the advection-

reaction-diffusion (ARD) equation: 

 

,...),,(/ 321

2 cccfcDcvtc iiiii 


, 

 

 

 

Figure 6:  Reaction-diffusion patterns in other 

systems.  Upper-left:  developing frog embryos 

(David Clapham, May Foundation).  Upper-right:  

spreading depression in the visual cortex (Stefan 

Muller, Univ. Magdeburg).  Lower-left:  slime 

mold cultures (Cornelis Weijer, Univ. Dundee).  

Lower-right:  electrical waves in heart 

(Qu, Weiss and Garfinkel ) 

 

 

 



which combines the advection-diffusion and reaction-diffusion equations.  Conceptually, this equation 

states simply that the concentration of a species at a location changes due to, respectively, advection of 

that species from other locations due to a fluid flow ( icv 


), diffusion to and from neighboring 

regions ( ii cD 2 ) and reaction of ci with other species that can change the concentration locally  

( ,...),,( 321 cccfi ).   Written in non-dimensional form26, the ARD equation becomes: 
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where we have introduced the Damkohler number Da = L/Uτr.  The Damkohler number can be written as 

the ratio of the advective time scale τa to the reaction time scale τr:  Da = τa/τr; consequently, a large Da 

corresponds to an ARD system in which the flow doesn’t move the reactive species very far during a 

typical reaction time, whereas a small Da corresponds to an ARD system in which the reactive species 

are mixed significantly during typical reaction times.   

 

The Damkohler number does not, however, take into account the role of diffusion in the ARD process, 

and the Peclet number (which weighs the relative strengths of advection and diffusion) does not 

account for the reaction.  Another dimensionless number27 that is appropriate for front behavior in ARD 

systems can be defined by the ratio of the characteristic advective velocity U to the speed vrd at which a 

front propagates in the reaction-diffusion limit (i.e., U  0):  μ = U/vrd.   

 

There have been numerous studies of ARD systems with turbulent flows; in particular, the problem of 

turbulent combustion has received a lot of attention due to its clear applications in various fields of 

engineering.  However, the behavior of ARD systems in laminar flows has only recently received 

attention, most of which is theoretical. 

 

IV.  Local Behavior of ARD Systems 

 

The tools used to describe chaotic mixing have been used successfully to characterize the patterns that 

form in ARD systems.  Locally, chemical patterns tend to follow the mixing structures in the flow.  

Experiments in the early 1990s28 measured regions of maximum chemical activity in one-time reactions 

and found that these regions matched up well with the regions of maximum stretching of impurities in 

the flow.  More recent experiments in magnetically-driven vortex flows29 also used stretching fields to 

characterize regions of significant chemical activity in one-time reactions.   

 

The use of stretching fields to characterize chemical activity makes sense, considering that the regions 

where fluid elements are most significantly stretched are also regions of maximal compression in 

orthogonal directions and are therefore regions where molecular diffusion can mix impurities most 

efficiently.  Note that this is effectively equivalent to using fields of finite time Lyapunov exponents, 

which is effectively the logarithm of the stretching field, normalized by the time span. 



 

Theoretical studies1  during the first decade in the 2000’s described this phenomenon in terms of 

unstable manifolds of fixed points in the flow.  Theory and modeling have been done for burn-type 

reactions in a blinking vortex flow (Figure 7) with source and sink terms.  Mixing in this flow is chaotic, 

similar to that in Hassan Aref’s original blinking vortex flow model of 1984, but the addition of a source 

and sink makes this an “open” flow in which the reactants are replenished.  So, instead of the region of 

“burned” reactants growing indefinitely until it covers the entire system, there is ultimately a balance 

condition and a steady-state pattern forms around the unstable manifolds of the flow (Figure 8).  

 

Similar behavior is observed for “closed” flows with oscillating reactions30.  Since the reaction oscillates 

rather than burning across the entire system, it isn’t necessary to replenish the reactants to avoid having 

the burned front growing in area indefinitely.  Experiments were done in a blinking vortex flow (without 

sources and sinks) and the patterns that formed in these experiments agreed very well with patterns 

obtained from mixing fields of the flow which are basically stretching fields but chosen with a timescale 

equal to the time for the BZ pattern to decorrelate in the absence of any fluid flows.    Examples from 

these experiments are shown in Figure 9. 

 

 

Figure 7:  Blinking vortex flow.  The flow has 

periodic time-dependence.  During half of the 

period, fluid circulates around the left point 

vortex; during the other half of the period, fluid 

circulates around the right point vortex.  The 

flow continues to “blink” periodically between 

these two vortices.  The source-sink version of 

this flow has sources and sinks of fluid at the 

vortex centers. 

 
Figure 8:  Numerical unstable manifold (left) and pattern for autocatalytic reaction (right) for 

blinking vortex-sink system.  (T. Tél et al, Ref. 1) 



Finally, the behavior discussed in this section for chemical reactions in both open and closed flows 

applies to other, non-chemical systems.  In particular, several studies31,32 have investigated “blooms” of 

algae and phytoplankton in the oceans and Gulf of Mexico, using the same analytical techniques 

involving manifolds for mixing in these bodies of water.  

 

Another issue involving local pattern formation in ARD systems is that of extinction; i.e., when the 

mixing is strong enough so that the reaction is terminated (like a flame being blown out).  In fact, some 

reactions are bistable where the reaction either spreads and eventually covers the entire system (space-

filling) or is completely extinguished by the flow.33 

 

V.  Synchronization of Oscillating Reactions 

 

In a fluid system, mixing is the key to understanding when time-varying processes synchronize.  In the 

studies of pattern formation for oscillating reactions discussed in the previous section, the thickness of 

the oscillating structures increase with the mixing efficiency of the flow.  In the limit of perfect mixing, 

the thickness of the structures diverges to the length of the entire system; in this limit, the reaction is 

synchronized throughout the system. 

 

A few studies have investigated how mixing contributes to synchronization in fluid networks, where 

individual nodes can be identified and where the mixing between these nodes is controlled.  In one 

series of studies34, the chaotic mixing in the system is analyzed theoretically as a global coupling 

between the different oscillators.  Regimes of complete synchronization are found, as well as regimes of 

“oscillator death” when the coupling due to mixing ends the reaction entirely (similar to extinction, 

discussed in the previous section).   

(a)                                               (b) 

                      
Figure 9:  (a)  Mixing field for blinking vortex flow.  (b)  Pattern formed by oscillating Belousov-

Zhabotinsky reaction in blinking vortex flow (Ref. 30) 



 

Experiments have been done on coupling of individual oscillators.  In one study35, an array of up to 64 Ni 

electrodes was immersed in an electrochemical apparatus.  Coupling in this experiment is achieved 

electronically, however, rather than via fluid mixing.  These experiments demonstrated that sufficient 

coupling could lead to global synchronization or oscillator death, depending on the circumstances. 

 

In an extended system, the type of long-range transport affects the manner in which different parts of 

the system are coupled.  As discussed in Section II.C., diffusive transport is associated with fluid 

elements that undergo random-like walks between neighboring regions in the flow, whereas 

superdiffusive transport is associated with Lévy flight trajectories where fluid elements can travel large 

distances in a short period of time.  From a network perspective, a system with diffusive transport is 

akin to a network with nearest-neighbor coupling (Figure 10a) whereas a system with superdiffusive 

transport is analogous to a network with long-range connections (Figure 10c).  This is reminiscent of the 

studies done at the end of the 1990’s on network models and, in particular, on the small-world network 

models36 that use long-range “short-cut” connections to enhance dramatically the connectivity of a 

network.   

 

Two experimental programs have studied the effects of different types of long-range transport on the 

behavior of a network of chemical oscillators.  In one study37, instead of using a fluid flow, the long-

range “transport” is simulated experimentally by using a photo-sensitive (Ruthenium-catalyzed) version 

of the BZ reaction and a feedback mechanism using imaging and an LCD projector.  Long-distance 

coupling is achieved by measuring fluctuations in the reaction at a particular location and then adjusting 

the projector intensity at another location in response to that fluctuation.  If the long-range feedback is 

implemented with a power-law relation (i.e., describing coupling amplitude versus distance, similar to 

Lévy flights) then long-range synchronization of the reaction dynamics is found. 

(a)                                (b)                                  (c) 

                             
Figure 10:  Different models for connected networks.  (a) Nearest-neighbor model where each 

node of the network is connected with its two nearest neighbords.  (b) Random model where 

nodes are connected in a random pattern.  (c) “Small-World” network which is predominately a 

nearest-neighbor model, but with a few, long-distance “short-cut” connections. 



 

Another concurrent study12 studied the effects of fluid mixing on long-range synchronization more 

directly.  The flow studied was the oscillating/drifting vortex chain described in Section II.C and shown in 

Figure 3.  The fluid is composed of the chemicals for the BZ reaction, and each vortex acts as an 

individual chemical oscillator that is coupled to other nodes in the network via fluid mixing.  In the 

absence of any oscillation or drift of the vortices, each vortex is essentially isolated from its neighbors 

except via molecular diffusion; consequently, the BZ oscillations occurring within the vortices become 

complete desynchronized.  If there is lateral motion of the vortices and if the drift velocity (equivalent to 

the speed of an imposed wind in a co-drifting reference frame) vd is less than the maximum lateral 

oscillation speed vo of the vortices, then the transport is diffusive and the coupling is effectively nearest-

neighbor.  In this situation, the system spontaneously forms traveling phase waves with a complicated 

(possibly chaotic) time evolution (Figure 11a).  On the other hand, if vd > vo, the transport is 

superdiffusive (with Lévy flights) and there is significant long-range coupling between the reactions 

oscillating within the vortices (Figure 11b and c).  In this situation, the oscillations within the vortices 

rapidly synchronize globally.  The result is clear:  the type of long-range fluid mixing has a significant 

effect on collective behavior of a fluid network of oscillating reactions. 

 

The issue of the effects of fluid mixing on synchronization is still a very open issue with many 

unanswered questions.  Theoretical modeling of the drifting/oscillating vortex chain experiments has 

not been done yet.  There are differences between the simple Watt/Strogatz small-world network 

model36 and the coupling due to superdiffusion and Lévy flights in an extended fluid system.  First, 

coupling due to superdiffusion isn’t only between random vortices; rather, every vortex is coupled to 

every other vortex in the system with a coupling strength that decays as a power law with distance.  

Second, the duration of the flights has to be taken into account; fluid elements in a flight take a finite 

time to complete the excursion, and if that time exceeds typical correlation times for the reaction, that 

could affect the ability of superdiffusion to synchronize an extended fluid network. 

 

Figure 11:  Sequences of images of oscillating BZ 

reaction in an annular chain of 

oscillating/drifting vortices.  The annulus has 

been “de-curled” to show the vortices in a strip.  

(a) Periodic lateral oscillations.    Traveling 

waves form that propagate around the annulus 

in an unpredictable manner.  (b) Periodic lateral 

oscillations with a superposed DC drift; mixing is 

superdiffusive, coupling every second vortex.  

Oscillations of the BZ reaction in the vortices 

synchronize in alternating (odd or even) 

vortices.  (c) Oscillating/drifting time 

dependence with superdiffusive mixing that 

connects all the vortices.  The BZ oscillations are 

globally synchronized.  (From Ref. 12) 



 

Another open question is how applicable these ideas are to a range of oscillating systems occurring 

either in fluid flows or as part of a “flowing” system.  For instance, networks of people in a moving 

population may be considered – for a sufficiently large number of people – as a flow, in which case it 

might be instructive to model dynamical processes affecting moving populations as a continuous 

advection-reaction-diffusion system. 

 

 

 

VI.  Front Propagation in Advection-Reaction-Diffusion Systems 

 

There have been very few theoretical studies of how front propagation is affected by the presence of a 

fluid flow.  In the case where the enhanced transport is diffusive, the problem for front propagation 

seems almost obvious:  simply take the FKPP prediction vrd = rD /2  and replace the molecular 

diffusion coefficient with the enhanced diffusivity D* describing transport in the flow.  However, as we 

discuss below, there are experiments for which this approach clearly does not work.  There have been 

several theoretical studies that extend FKPP theory to cases with superdiffusive transport38, most using 

techniques derived from fractional calculus, which is a mathematical language that is well-suited for 

incorporating long-distance interactions produced by Lévy flights.  However, the fact that an FKPP 

approach does not adequately describe front propagation in ARD systems with enhanced diffusion 

raises questions about whether a modified version of FKPP theory will work for superdiffusive cases.  

(Experimental data for the superdiffusive case is still lacking.) 

 

The main issue when dealing with front propagation in ARD systems appears to be the role of coherent 

flow structures on the front propagation phenomena.  In particular, vortices play a significant role in the 

process beyond the role expected simply by their effect on the enhanced diffusivity.  The first 

indications of difficulties with an FKPP approach to front propagation in ARD systems was provided by a 

series of numerical studies19,20 and experimental studies39 that studied front propagation in the 

oscillating vortex chain flow discussed in Section II.C (Figure 3).  Numerical and experimental sequences 

of images of a front in this flow are shown in Figure 12.  The fronts are observed to mode-lock to the 

external, time-periodic, lateral oscillations of the vortex chain, moving an integer number N of unit cells 

λ of the flow (where one unit cell λ is two vortex widths) in an integer number M of oscillation periods.  

Figure 12(a) and (b) show an example of (N,M) = (1,1) mode-locking where the front moves 1 unit cell 

(two vortex widths) each drive period, and Figure 12 (c) and (d) shows an example with (1,2) mode-

locking where the front moves 1 unit cell in 2 drive periods (and 1 vortex every period, although the 

front flips each period).   

 

The front velocity when mode-locked depends on the combination (N,M), the vortex width and the drive 

period T or frequency f:  vf = (Nλ)/(MT) = (N/M)λf.  The (enhanced) diffusivity of the chemical species 

and the reaction time scales do not directly affect the front propagation speed.  A plot of experimental 

front speeds is shown in Figure 13, along with the predictions for mode-locked fronts.  There are no 



fitted parameters in this figure – the experimental data agree almost perfectly with the mode-locking 

predictions.   

 

The horizontal line in Fig. 13 shows the front speed in the absence of any lateral oscillations of the 

vortex chain.  The fact that some of the front speeds with the time-periodic oscillations are actually 

slower than the front speed for the time-independent flow is the clearest evidence of the inapplicability 

of an enhanced-FKPP approach, since the effective diffusivity for any time-periodic flow (with lateral 

oscillations of the vortex chain) is significantly larger than that for the time-independent case (no lateral 

oscillations), so a larger front speed would be expected from an FKPP approach based on the enhanced 

diffusivity. 

 

The key appears to be the behavior of a reaction front when it encounters a vortex in the flow, 

especially if the vortex is moving.  Experimental studies27 have demonstrated that moving vortices pin 

and drag reaction fronts.  Alternately, in a reference frame that is co-moving with the vortices, the 

reaction front is “frozen” in the leading vortex in the face of an imposed wind, as shown in Figure 14.  

This behavior is seen not just for an ordered chain of vortices but also for random, vortex-dominated 

flows.  Recent studies of the behavior of phytoplankton blooms in oceanic vortex flows40 have also 

demonstrated the ability of moving vortices to pin and drag reacting species. 

         

                 
 

Figure 12:  Mode-locking for front propagation in an oscillating chain of vortices.  (a) Simulation and (b) 

experiments showing (1,1) mode-locking where the front moves 1 wavelength (2 vortices) each drive 

period.  (c) Simulation and (d) experiments showing (1,2) mode-locking where the front moves 1 

wavelength in 2 drive periods (or 1 vortex every period). 

 

 

 

 

(a) (b) 

(c) (d) 



 

Ultimately, a general theory of front propagation in ARD systems is needed in which the role of coherent 

flow structures is taken into accounted.  Studies are on-going about the possibility of a general approach 

based on pinning of fronts on vortices.  Another approach being pursued is to try to extend the 

approaches used to describe chaotic fluid mixing to account for front propagation phenomena.  In 

particular, it might be possible to extend manifold/lobe approach discussed in Sections II.B and C – that 

describes the motion of passive impurities in a flow – to account for the motion of a front in a flow, 

which moves by a combination of advection and reactive spreading. 

Figure 13:  Experimentally-determined 

reaction front velocities in oscillating vortex 

chain.  The front velocities ξ are non-

dimensionalized by the maximum flow 

velocity U, and the frequency ν of 

oscillation is non-dimensionalized by U and 

by the vortex width d = λ/2.  The diagonal 

lines are the front speeds predicted for 

mode-locking (From Ref. 39) 

 

      
 

Figure 14:  Reaction fronts in the presence of a leftward-directed wind imposed on the vortex 

chain.  Time increases going upward in these sequences.  If the wind speed W is smaller than the 

reaction-diffusion front speed vrd (left sequence), then the front propagates to the right against 

the wind.  For moderate wind speeds (vrd < W, but W can be several times – and more than an 

order of magnitude – greater than vrd), as in the middle dequence, the front remains “frozen” to 

the leading vortex, propagating neither forward nor backward.  For large enough wind speeds 

(right sequence), the front is blown backwards against the wind.  (From Ref Error! Bookmark not 

defined.) 



 

The bottom line:  a general theory to describe front propagation in advection-reaction-diffusion systems 

is still needed. 

 

VII.  Additional Comments 

 

The field of advection-reaction-diffusion for laminar fluid flows is still in its infancy.  This is a field with a 

significant range of applications over a wide range of fields in science and engineering.  At the smallest 

scales, laminar ARD behavior is relevant for micro-fluidic devices for which large Reynolds numbers are 

unachievable.  Similarly, biological processes on a cellular or embryonic scale can be cast as ARD systems 

with laminar fluid flows.  At everyday scales, an ARD analysis might shed light on plasma processes and 

might help in the development of safe nuclear fusion technologies.  At larger scales, ARD phenomena 

have already been observed and explained for ecosystems in oceanic-scale flows.  It has even been 

proposed that the motion of ignition fronts within a star during a supernova explosion might be 

modeled as an ARD phenomenon. 

 

Finally, it is possible that even discrete systems can be modeled as ARD systems in the continuum limit.  

For example, instead of modeling the motion of a disease in a moving population using discrete network 

models, it might be more profitable to model the population as a flow and treat the spreading disease as 

a front that is propagating in this flow. 
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