
value, and therefore unappreciable) is, however, accounted for by
the model. The variability of the solar constant, and possible small
changes in the thermo-optical coefficients due to ageing and
temperature variations, are insignificant.

The question at what level can violations of general relativity be
expected, does not have a satisfactory answer yet. A long-range
scalar field is currently assumed to have a fundamental role in
primordial cosmology: although it decays with the expansion of the
Universe, its present remnant would entail not only violations of the
two main tests of general relativity, but also a lack of universality of
the constants of microphysics, as assumed in the equivalence
principle7,8. A claim, based on quasar absorption lines, that the
fine-structure constant a was weaker in the distant past has been
made recently, thereby violating the equivalence principle16–19. If
this claim is confirmed, and reconciled with other constraints on the
variation of fundamental constants20, such a finding would be the
first serious challenge to Einstein’s model. No detailed theory is
available about the expected amounts of these violations, but g 2 1
should be negative and, possibly, in the range 1025–1027. Therefore,
our result with accuracy not far from this range places an important
constraint on this cosmological scenario. A

Method
The dynamical model used in the orbital fit is particularly simple, thanks to the large
distance from the Sun, the location of the spacecraft in interplanetary space and the lack of
unknown gravitational perturbations by Solar System bodies. The Jet Propulsion
Laboratory’s Orbit Determination Program has been used in the integration of the
equations of motion and the orbital solution, based on planetary ephemerides and
ancillary data, such as station location and Earth orientation parameters. To speed up the
data processing, the observables have been compressed at t ¼ 300 s by differencing the
detected phases. Owing to the spectral characteristics of the noise (Supplementary Fig.
S2), the data compression does not in any way affect the final result. We have used up to 12
free ‘solve-for’ parameters: (1) the six components of the state vector at the start of the
experiment; (2) the three components of the non-gravitational acceleration due to the
RTGs in the spacecraft frame; (3) the specular and diffuse reflectivity of the high-gain
antenna, which determine the magnitude (and the direction) of the non-gravitational
acceleration owing to solar radiation pressure; (4) the relativistic parameter g. ‘Consider’
parameters (quantities not solved-for, but whose uncertainty is taken into account in the
solution) include the dry troposphere, the station location, polar motion and the Earth
Love numbers (which intervene in the solid tide model).

As discussed above, among the five parameters that control the non-gravitational
acceleration, three (the non-radial components of the thermal thrust from the RTGs and
one of the two optical coefficients of the high-gain antenna) are poorly determined. It is
therefore appropriate to investigate a solution including only the other two, namely the
radial acceleration due to the RTGs and the diffuse reflectivity of the antenna; by so doing,
most non-gravitational perturbations are accounted for at a level consistent with the
accuracy of the tracking data. The value of the other three parameters, the specular
reflectivity and the non-radial components of the RTGs acceleration, together with their
uncertainties have been taken from a separate fit carried out on the data from the Cassini
solar opposition experiment, as mentioned above. This is our main orbital fit, with only
nine parameters to be determined. The a priori uncertainty of the parameters that are not
estimated, but affect the solution (such as the station geocentric coordinates and those
derived from the gravitational wave experiment), has been included in the computation of
the covariance matrix.

The data are assumed to be independent, but for each passage they are weighted with
their own standard deviation. The variability of the results has been explored with different
assumptions, in particular: a change in the threshold for discarding the outliers; different
sampling time; and fitting separately the data before and after the conjunction. These trials
clarified several issues including the structure of the covariance matrix, but did not in any
way mar the final result.

The residuals of the orbital fit (Fig. 3) show a remarkably white spectrum (see
Supplementary Fig. S2), which corresponds to the , 1=

ffiffiffi
t
p

observed dependence of
both the root-mean-square (r.m.s.) deviation and the Allan deviation from the sampling
time t used in the orbital fit. After obvious outliers are removed (mostly introduced by
incorrect tropospheric calibrations), the statistical distribution of the data shows a clearly
gaussian behaviour.

We have also explored the full 12-parameter orbital fit and obtained similar results,
with g ¼ 1 þ (1.35 ^ 2.47) £ 1025, and no appreciable variation of the r.m.s. value of the
residuals. Reassuringly, the non-gravitational accelerations so obtained are also fully
consistent with the value obtained from the previous opposition experiment and with a
long arc orbital solution generated by the Cassini Navigation Team using a data set
spanning almost two years. In another trial, in addition to the spacecraft state vector we
used just two free parameters—g and a single, radial non-gravitational acceleration—and
obtained the result g ¼ 1 þ (0.21 ^ 2.43) £ 1025, with a small increase in the r.m.s. value
of the residuals. The understanding of the physics involved and the number of different
checks that have been performed have increased our confidence in the results.
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Laminar flows can produce particle trajectories that are chao-
tic1,2, with nearby tracers separating exponentially in time. For
time-periodic, two-dimensional flows and steady three-dimen-
sional (3D) flows, enhancements in mixing due to chaotic advec-
tion are typically limited by impenetrable transport barriers that
form at the boundaries between ordered and chaotic mixing
regions. However, for time-dependent 3D flows, it has been
proposed theoretically3–5 that completely uniform mixing is
possible through a resonant mechanism5 called singularity-

letters to nature

NATURE | VOL 425 | 25 SEPTEMBER 2003 | www.nature.com/nature376



induced diffusion; this is thought to be the case even if the time-
dependent and 3D perturbations are infinitesimally small. It is
important to establish the conditions for which uniform mixing
is possible and whether or not those conditions are met in flows
that typically occur in nature. Here we report experimental and
numerical studies of mixing in a laminar vortex flow that is
weakly 3D and weakly time-periodic. The system is an oscillating
horizontal vortex chain (produced by a magnetohydrodynamic
technique) with a weak vertical secondary flow that is forced
spontaneously by Ekman pumping—a mechanism common in
vortical flows with rigid boundaries, occurring in many geo-
physical, industrial and biophysical flows. We observe
completely uniform mixing, as predicted3–5 by singularity-
induced diffusion, but only for oscillation periods close to typical
circulation times.

Most previous studies of chaotic advection have focused on two-
dimensional (2D), time-periodic flows. Transport barriers are
prevalent in those flows6; in fact, chaotic transport barriers have
been proposed as mechanisms for chemical isolation in geophysical
flows7,8, such as the Antarctic circumpolar region (the ozone hole)
and Jupiter’s Great Red Spot. Recent studies have further proposed
that chaotic advection may have a pivotal role in the expanding field
of microfluidic devices9 and may also be important for many

biophysical processes10,11. The possibility of chaotic motion of
tracers in 3D flows was first suggested in 1966 (ref. 12) and was
pursued numerically by another study13. However, systematic
investigations of chaotic mixing in laminar 3D flows have only
begun to appear in the literature during the past decade3,4,14–24.
Further studies3,4 extended the original work to show that uniform,
barrier-free transport is possible through a mechanism called
‘singularity-induced diffusion’ (SID), even if the 3D and time-
dependent perturbations are both infinitesimally small. A recent
study5 showed that a resonance mechanism is responsible for SID.
When typical circulation frequencies are resonant with the driving
frequency, saddle foci-type orbits enable tracers to spiral off one
adiabatic surface and onto a different one, producing global mixing.
An implication of this resonance picture, however, is that mixing
will not be uniform if there are regions in the flow where the
resonance condition is not met.

(Note that as SID—which applies to volume-preserving, time-
dependent 3D flows—is enabled by spiral-node fixed points, it
differs from another mechanism for global transport called ‘Arnol’d
diffusion’, occurring in hamiltonian systems with more than 2
degrees of freedom.)

The flow studied here (Fig. 1) is dominated by a horizontal chain
of alternating vortices with a secondary flow due to Ekman pump-

Figure 1 Sketch of a portion of the flow. The primary flow (blue) is a chain of alternating horizontal vortices; a weak secondary flow (red) is generated naturally by Ekman pumping, which

draws fluid inward along the bottom of the vortices and up the vortex centres.

Figure 2 Numerical simulations of equations (1)–(3). a, Poincaré section for 2D, time-

periodic case (e ¼ 0, b ¼ 0.01, q ¼ 2.5), determined by plotting locations of five

tracers once each period, initially located on the x axis at x ¼ 0.49, 0.4, 0.3, 0.2 and 0.1.

b, Trajectory of tracer in 3D, time-independent flow (e ¼ 0.005, b ¼ 0). c, Poincaré

section for a tracer near a periodic orbit for 3D, time-periodic case (e ¼ 0.0001,

b ¼ 0.001, q ¼ 2.5), showing the tracer spiralling off one adiabatic surface (the spiral is

very tightly wound and may be difficult to resolve) and onto a different one. d, Horizontal

slice (20.1 , z , 0.1) of Poincaré section of a single tracer for 3D, time-periodic case

(e ¼ 0.005, b ¼ 0.01, q ¼ 2.5); the tracer is initially located at (x,y,z ) ¼ (0.49,0,0),

and the forcing frequency is almost resonant with tracers circulating in the central torus.

e, Horizontal slice of Poincaré section for a non-resonant forcing frequency (e ¼ 0.005,

b ¼ 0.01, q ¼ 4.0). f, Width L of the excluded region (as a fraction of the vortex width d )

versus non-dimensional driving frequency (e ¼ 0.005, b ¼ 0.01). Uniform mixing is

achieved for the frequencies where the width goes to zero.
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ing, a process that occurs whenever a vortical flow is bounded by a
solid surface. Radial pressure gradients due to the no-slip boundary
condition push the fluid inward just above the solid boundary and
up through the vortex centres. This is a common 3D flow pertur-
bation; we therefore expect the internal mixing properties observed
with this flow to be generic to a wide variety of vortical flows:
basically, laminar vortex flows in the presence of a rigid boundary.

Time dependence takes the form of lateral oscillations of the
vortex chain, similar to the oscillatory instability of Rayleigh–
Bénard convection25. We have developed a model that captures
the essential features of this flow:

nx ¼ dx=dt ¼2cosðpxsðtÞÞsinðpyÞþ esinð2pxsðtÞÞsinðpzÞ ð1Þ

ny ¼ dy=dt ¼ sinðpxsðtÞÞcosðpyÞ þ esinð2pyÞsinðpzÞ ð2Þ

nz ¼ dz=dt ¼ 2ecosðpzÞ½cosð2pxsðtÞÞþ cosð2pyÞ� ð3Þ

Distances are scaled by the vortex width d, and time is scaled
by the advective time d/U, where U is the maximum flow velocity.
The lateral oscillation is accounted for by a shifted x-coordinate
x s(t) ¼ x þ bsinqt, where b and q are the non-dimensionalized
oscillation amplitude and frequency. The strength of the secondary
(3D) component of the flow is characterized by e. This model is not
intended to be a rigorous description of the flow in our experiments;
rather, it is the simplest phenomenological model that captures the
essential features of an alternating vortex flow with weak Ekman
pumping. In particular, the model equations assume free-slip
boundary conditions—a model with no-slip boundary conditions
would have significantly more complicated y- and z-depen-
dence26,27. Nevertheless, this simplified model successfully captures
the dominant features of mixing in the experiments, as is shown
below.

Numerical trajectories for the model are determined by integrat-

ing equations (1)–(3) using a fourth-order Runge–Kutta technique.
The results are shown in Fig. 2. The 2D case (e ¼ 0) is shown in
Fig. 2a; trajectories are ordered in most of the flow, except for a
chaotic band around and between the vortices. A tracer within the
chaotic region never crosses into the ordered region in the vortex
middle. A tracer trajectory for a 3D, time-independent flow is
shown in Fig. 2b. An impurity near a vortex edge spirals upward,
inward and then down through the centre and back out again.
During this motion, the tracer visits different slices of the base 2D
flow at different radii with different circulation times.

The mechanism for SID discussed in ref. 5 is seen numerically in
Fig. 2c for a flow with weak time dependence and weak three-
dimensionality. Near a resonance, a tracer spirals off what would
have been an adiabatic surface (in the absence of SID) and onto a
different surface. The result is nearly uniform mixing, as seen in
Fig. 2d. But this mechanism works only if the frequency of
oscillation is such that every tracer eventually reaches a radius
with circulation frequency resonant with this driving frequency.
Practically, this means that the oscillation frequency must be
resonant with the circulation frequency for tracers in the lightened
region in Fig. 2d. If forced at a different frequency, a toroidal region
forms into and out of which there is zero or little mixing (Fig. 2e).

This resonant behaviour is plotted versus frequency in Fig. 2f; the
frequencies where the width of the excluded region vanishes are
those where uniform mixing should be expected. Practically, the
frequency range for uniform mixing is slightly wider than shown in
Fig. 2f, as molecular diffusion can mix impurities into the excluded
region if the width is small. These results indicate a signature that
should be seen in the experiments; namely, transport should be
uniform or nearly uniform if forced at a frequency within or near
these resonant bands, but should be characterized by toroidal
regions of weak mixing if forced at different frequencies.

Experimentally, the flow in Fig. 1 is generated by a magneto-

Figure 3 Experimental images of mixing for time-independent flow (b ¼ 0). The same

enhancement is used for all the images in this sequence. The images are saturated at

large concentration values; consequently, decreases in the concentration of the injection

vortices may not be noticeable in this figure or in Figs 4 and 5. For the time-independent

case shown here, mixing is very slow both within and between the vortices. Concentration

profiles for the centre vortex are available as Supplementary Information.

Figure 4 Experimental images of mixing for time-periodic flow forced near resonance

(b ¼ 0.02, 0.10 Hz oscillation frequency, corresponding to a non-dimensional

angular frequency q ¼ 2.5). The concentration becomes homogenized within the

vortices. Concentration profiles for the centre vortex are available as Supplementary

Information.
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hydrodynamic technique28,29 in which an electric current passes
through a thin (2 mm) layer of dilute (0.006 M) H2SO4 with a free
surface. The region of interest has horizontal dimensions
2.2 £ 22 cm. The current interacts with an alternating magnetic
field produced by magnets below the fluid; the result is a chain of
vortices with a maximum velocity of approximately 7 mm s21.
Ekman pumping is generated spontaneously, owing to a glass plate
below the vortices. For the impurity, we use fluorescent latex micro-
spheres (0.103-mm diameter) with a diffusion coefficient 4.5 £ 1028

cm2 s21, based on the Stokes–Einstein relation30, small enough to
minimize diffusive mixing. The flow is illuminated with black light,
and the fluorescing microspheres are imaged by a CCD video camera.

When viewed from the side, the impurity can be seen moving
inward slowly along the bottom and up through the centres of the
vortices; from observations, it takes approximately ten horizontal
circulation times (as measured for tracers circling in the outer
portions of the vortices) for the impurity to circulate appreciably in
the vertical direction owing to Ekman pumping. Images of mixing
from above for a time-independent, 3D flow are shown in Fig. 3. In
each experiment, we inject the impurity into two different vortices.
During the injection process, some of the impurity slips out of these
two vortices and into the edges of the neighbouring vortices. Left
undisturbed (and with no time dependence) for 20 min, Ekman
pumping carries some of the impurity into the centres of the
vortices. The result is the ‘t ¼ 0 min’ case in which most vortices
have a thin line of impurity around the edges and spots in the centre.
For Fig. 3, we leave the system undisturbed after this initial
condition. The result for this time-independent case is very slow
internal mixing.

Figure 4 shows mixing for the case with weak time-periodic
forcing with a frequency resonant with the typical circulation
frequencies. Within about 25 min (approximately 150 oscillation
periods), the impurity concentration is almost completely uniform
within the vortices. The mixing is different in a subtle but important

way if the frequency of the time dependence is in a non-resonant
band (Fig. 5). There is still significant mixing within the vortices.
However, there are toroidal regions into which impurity does not
mix readily: these regions appear in Fig. 5 as darkened annuli, and
they persist for over an hour. These darkened annuli are the
excluded toroidal regions seen in the simulations (compare Fig. 5
with Fig. 2e).

For the run shown in Fig. 5, mixing of the impurity out of the two
injection vortices is also retarded by the transport barriers. For later
times (not shown), higher concentrations persist in the tori in these
two vortices; in fact, a brightened torus is still clear after 2 h in the
left-most vortex. At this point, we change the oscillation frequency
back to the original resonant value, and the brightened region
quickly dissipates (in 5–10 min), further evidence of the resonant
nature of this internal mixing. (See Supplementary Information for
a video of this, along with videos of the sequences of Figs 4 and 5.)

We find that mixing in a weakly 3D, weakly time-periodic flow is
nearly uniform, but only if forced at a period resonant with the
typical circulation times; specifically, circulation times at radii
corresponding to the centres of what would otherwise be the
excluded tori. This restriction might seem to limit the applicability
of SID as a mechanism for uniform mixing in real flows; however, in
nature, flows often choose precisely this circulation frequency for
time-periodic instabilities. In fact, in the experiments presented
here, it is experimentally challenging to avoid internal mixing
because even very slight time-dependent perturbations due to
aggregation of the latex microspheres or due to any advected
floating scum in the system results in significantly enhanced internal
mixing. Both of these mechanisms result in time dependence with
frequencies determined by circulation frequencies, so the resonant
condition is satisfied automatically. As time-dependent pertur-
bations are often linked to circulation, we expect uniform mixing
to be common in many natural vortex flows with Ekman
pumping. A
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The recent discovery that a spin-polarized electrical current can
apply a large torque to a ferromagnet, through direct transfer of
spin angular momentum, offers the possibility of manipulating
magnetic-device elements without applying cumbersome mag-
netic fields1–16. However, a central question remains unresolved:
what type of magnetic motions can be generated by this torque?
Theory predicts that spin transfer may be able to drive a nano-
magnet into types of oscillatory magnetic modes not attainable
with magnetic fields alone1–3, but existing measurement tech-
niques have provided only indirect evidence for dynamical
states4,6–8,12,14–16. The nature of the possible motions has not
been determined. Here we demonstrate a technique that allows
direct electrical measurements of microwave-frequency
dynamics in individual nanomagnets, propelled by a d.c. spin-
polarized current. We show that spin transfer can produce several
different types of magnetic excitation. Although there is no
mechanical motion, a simple magnetic-multilayer structure
acts like a nanoscale motor; it converts energy from a d.c.
electrical current into high-frequency magnetic rotations that
might be applied in new devices including microwave sources
and resonators.

We examine samples made by sputtering a multilayer of compo-
sition 80 nm Cu/40 nm Co/10 nm Cu/3 nm Co/2 nm Cu/30 nm Pt
onto an oxidized silicon wafer and then milling through part of
the multilayer (Fig. 1a) to form a pillar with an elliptical cross-
section of lithographic dimensions 130 nm £ 70 nm (ref. 17). Top

contact is made with a Cu electrode. Transmission or reflection of
electrons from the thicker ‘fixed’ Co layer produces a spin-polarized
current that can apply a torque to the thinner ‘free’ Co layer.
Subsequent oscillations of the free-layer magnetization relative to
the fixed layer change the device resistance18 so, under conditions of
d.c. current bias, magnetic dynamics produce a time-varying
voltage (with typical frequencies in the microwave range). If the
oscillations were exactly symmetric relative to the direction of the
fixed-layer moment, voltage signals would occur only at multiples of
twice the fundamental oscillation frequency, f. To produce
signal strength at f, we apply static magnetic fields (H) in the sample
plane a few degrees away from the magnetically easy axis of the free
layer. All data are taken at room temperature, and by convention
positive current I denotes electron flow from the free to the fixed
layer.

In characterization measurements done at frequencies ,1 kHz,
the samples exhibit the same spin-transfer-driven changes in
resistance reported in previous experiments7,9 (Fig. 1b). For H
smaller than the coercive field of the free layer (H c < 600 Oe), an
applied current produces hysteretic switching of the magnetic layers
between the low-resistance parallel (P) and high-resistance anti-
parallel (AP) states. Sweeping H can also drive switching between
the P and AP states (Fig. 1b, inset). For H larger than 600 Oe, the
current produces peaks in the differential resistance dV/dI that have
been assumed previously to be associated with dynamical magnetic
excitations4,6–8. The resistance values displayed in Fig. 1b include a
lead resistance of ,6 Q from high-frequency (50 GHz) probes and a
top-contact resistance of ,9 Q.

We measure the spectra of microwave power that result from
magnetic motions by using a heterodyne mixer circuit19 (Fig. 1a).
This circuit differs from the only previous experiment to probe
spin-transfer-driven magnetic oscillations8 in that the sample is not
exposed to a large high-frequency magnetic field that would alter its
dynamics. The filter on the output of our mixer passes 25–100 MHz,
giving a frequency resolution of ,200 MHz. We calibrate the circuit
by measuring temperature-dependent Johnson noise from test
resistors. When we state values of emitted power, they will corre-
spond to the power available to a load matched to the sample
resistance, R. To convert to the power delivered to a 50-Q line, one
should divide our values by the power transmission coefficient
1 2 G2 ¼ 1 2 [(R 2 50 Q)/(R þ 50 Q)]2.

We first consider the microwave spectrum from sample 1 for
H ¼ 2 kOe. For both negative I and small positive I we measure only
frequency-independent Johnson noise. We will subtract this back-
ground from all the spectra we display. At I ¼ 2.0 mA, we begin to
resolve a microwave signal at 16.0 GHz (Fig. 1c, d). A second-
harmonic peak is also present (Fig. 1c, inset). As I is increased, these
initial signals grow until I < 2.4 mA, beyond which the dynamics
change to a different regime (Fig. 1d). In Fig. 1e, we compare the
H-dependence of the measured frequency for the initial signals to
the formula for small-angle elliptical precession of a thin-film
ferromagnet20:

f ¼
g

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHþHanþHdÞðHþHanþHdþ 4pMeff Þ

p
ð1Þ

Here g is the gyromagnetic ratio, Han accounts for a uniaxial easy-
axis anisotropy, H d models the coupling from the fixed
layer, and 4pM eff ¼ 4pM s 2 2Ku/M s, with M s the saturation
magnetization and Ku a uniaxial perpendicular anisotropy21.
The fit is excellent and gives the values 4pMeff ¼ 6.8 ^ 0.1 kOe
and Han þ H d ¼ 1.18 ^ 0.04 kOe. The value for 4pMeff is less
than 4pM s for bulk Co (16 kOe) as expected due to significant
perpendicular anisotropy in Co/Cu(111) films (see Fig. 3 in ref. 22).
Similar fits for other samples yield 4pMeff in the range 6.7–12 kOe.
Superconducting quantum interference device (SQUID) measure-
ments on test samples containing many 3-nm Co layers give
4pMeff ¼ 10 ^ 1 kOe.
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