Resonant flights and transient superdiffusion
in a time-periodic, two-dimensional flow
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Abstract

Enhanced, passive transport is studied numerically in an oscillating vortex chain
with stress-free boundary conditions. The long-range transport is found to be dif-
fusive in the long-time limit with an effective diffusion coefficient D* that peaks
dramatically in the vicinity of a few, well-defined resonant frequencies. Superdif-
fusive transients are also observed for frequencies near these resonant frequencies,
with the duration of the transients diverging at the resonant frequencies. Standard
analytical techniques based on the Melnikov approximation and on lobe dynamics
fail to explain the behavior in the vicinity of these resonant peaks. An alternate
explanation is provided, based on flights that have power-law scaling up to a max-
imum length that also diverges at the resonant frequencies. The long flights for
frequencies near the resonant peaks occur because tracers in a lobe return (after an
integer number of oscillation periods) to almost precisely the same location in the
lobe of another vortex.
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1 Introduction

Theories of deterministic chaos have been shown to have significant applica-
tions in studies of fluid mixing. [1-4] Simple, laminar fluid flows can advect
passive tracers in surprisingly complicated trajectories that separate exponen-
tially in time (“sensitive dependence on initial conditions”). Lagrangian chaos
— as this process is called — has dramatic effects on the efficiency of mixing
in these flows. In fact, Lagrangian chaos has already found applications in
chemical mixing processes for viscous flows where turbulent mixing would be
too expensive energetically.

Studies of Lagrangian chaos have been extended to investigate long-range
transport — mixing of impurities over distances much longer than typical length
scales of the flow.[5-7] Chaotic motion of the tracers replaces Brownian motion
as the dominant mechanism for mixing, resulting in significant enhancements
in long-range transport beyond that due to molecular diffusion. Long-range
transport, is typically analyzed by studying the growth of the variance (z2) of
a distribution of passive tracers as a function of time. In the long-time limit,
the variance generally grows as a power law in time: (z?) ~ ¢7. If v = 1.0, the
process is referred to as normal, enhanced diffusion, whereas v < 1 or v > 1
correspond to what are called “sub-diffusion” or “superdiffusion,” respectively.

In cases where the transport is normal, enhanced diffusion, two standard theo-
retical approaches are typically used to predict enhanced diffusion coefficients
D*: Melnikov analysis and lobe dynamics. Both of these approaches are based
on a determination of the flux of tracers between adjacent vortices during one
oscillation period.

Recent theories indicate that super-diffusive transport is associated with trac-
ers whose trajectories can be characterized as “Lévy flights”, [8-10] where
tracers can jump very long distances (relative to typical length scales in the
flow) between regions in which they are temporarily confined. The connection
between super-diffusive transport and Lévy flights has been verified exper-
imentally in two-dimensional (2D), quasi-geostrophic (planetary-type) fluid
flows.[11,12]

Theories of deterministic chaos have been instrumental in understanding how
Lévy flights can arise in fluid mixing problems. Typically, a flow is divided into
ordered and chaotic regions, categorized by the trajectories of tracers moving
in the regions. The regions are separated by “KAM barriers” across which no
tracer can cross. Tracers in the chaotic regions can come arbitrarily close to a
KAM barrier, though, in which case they “stick” temporarily, mimicking the
behavior of ordered trajectories in the region bounded by that barrier.[13,14]
If some of the ordered regions correspond to unbounded motion in which



tracers travel long distances in short times, then sticking to the KAM barriers
surrounding these regions will result in long flights.[15]

In this article, we present a different mechanism for flights and superdiffusive
transport in a time-periodic, 2D flow consisting of an oscillating vortex chain.
Mixing in this flow is typically “normal” (y = 1.0) enhanced diffusion [16,17]
with an enhanced diffusion coefficient D* that depends linearly on oscillation
amplitude (if small) and non-trivially on the frequency. At certain precise
frequencies, though, the transport is superdiffusive, consistent with previous
theoretical studies of this system. [18] Near — but not at — these resonant
frequencies, we find that there is still a significant transient regime of super-
diffusive behavior, after which the system settles to normal diffusion with a
D* that is significantly enhanced by the transient superdiffusion. Standard
approaches based on Melnikov and lobe analyses fail to explain not only the
transient superdiffusion but also the long-term D* for frequencies near the
resonant peaks.

We show that at the resonant frequencies, tracer trajectories show flights with
scaling properties similar to a Lévy distribution for small length flights, but
decaying for longer flights. These flights dominate the transport statistics, ex-
plaining the failure of the Melnikov and lobe analyses, which consider behavior
only on time-scales of one oscillaton period and distances of one vortex width.
There are no unbounded ordered trajectories in this system (only bounded
ones); consequently, flights cannot be explained by sticking to the outsides
of ordered regions. We present an alternate mechanism based on a resonance
picture to explain these flights and the resulting transient superdiffusion.

In Section 2, we discuss theories of Lagrangian chaos and long-range transport,
and present the model flow. The results of numerical simulations of this flow
are presented in Section 3. Different approaches are used to explain the results
of the simulations in Section 4, and a summary is presented in Section 5.

2 Background and Model flow

2.1 Oscillating vortex chain flow

Whereas Lagrangian chaos can occur in three-dimensional (3D) time-independent
flows,[19,20] it is possible in two-dimensional (2D) flows only if the flow is
time-dependent. The flow studied in this paper is a particularly simple time-
dependent flow: a 2D, time-periodic flow composed of an oscillating vortex
chain which was first proposed [6,21] as a simple model of time-periodic
Rayleigh-Bénard (RB) convection.[22] The equations describing this flow are



as follows:
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In these equations, a is the maximum speed, d is the vortex height, A is the
wavelength of the vortex chain, and B is the amplitude of the lateral oscillation
of the vortex chain. The flow satisfies the incompressibility condition V-7 =0.
A plot of the velocity field at an instant in time is shown in Fig. 1. As the
flow evolves in time, the entire velocity field oscillates back and forth in the
horizontal (z) direction.

A simplification implicit in this model is the assumption of free-slip boundary
conditions, even though most real convective flows have no-slip (rigid) bound-
ary conditions. Despite this simplifying assumption, the model captures im-
portant features that are characteristic of Lagrangian chaos in a wide variety
of time-periodic, 2D flows. A follow-up to this paper will compare this model
to one with no-slip boundary conditions, and compare both with on-going
experimental studies.

The first experimental studies of transport in this system utilized time-periodic
RB convection.[6,21] Those studies first demonstrated the possibility for La-
grangian chaos in this system and showed the applicability of this model to
real flows. Furthermore, the experiments found that the transport could be
described as normal, enhanced diffusion where the variance (z?) of a distri-
bution of tracers grows as ¢7 with v = 1. Specifically, (z?) = 2D*t, where
D~ is the enhanced diffusion coefficient. It was found that D* grows linearly
with amplitude of oscillation (for small amplitudes), although quantitative
comparisons between the model and experimant were complicated by weak,
secondary, 3D flows and by the fact that the primary instability to periodic
time-dependence in RB convection is not necessarily a pure lateral oscilla-
tion (depending on the Prandtl number of the fluid).[22] Those experiments
were followed by theoretical studies that explained the linear dependence on
amplitude.[7]

More recent experiments utilized magnetohydrodynamically-forced vortex chains,
resulting in much more carefully-controlled experiments.[16,17] The results —
which still indicated normal, enhanced diffusion — were analyzed and explained
using a theory based on lobe (turnstile) dynamics,[5,23,24] which is described
in more detail in Section 4. Those experiments also extended the studies to
include transport of immiscible impurities.



Recent theoretical studies of this system [18] have begun to address the de-
pendence of the transport on the frequency of oscillation. The result is a very
complicated dependence of D* on f with sharp, upward peaks at various fre-
quencies. Also, infinitesimally thin windows of superdiffusive behavior were
found in those studies. One of the primary goals of the studies described in
this paper is to provide an explanation for these superdiffusive regimes.

2.2  Lévy flights and superdiffusion

A Lévy flight (sometimes called a “walk”) is defined as a trajectory with jumps
with a wide range of lengths L. The probability distribution function (PDF)
p(L) for a Lévy flight has infinite second moment: (L?) = [;° L?p(L)dL =
00.[8,9] This condition is satisfied if the PDF is a power law p(L) ~ L™, with
w < 3.

The connection between Lévy flights and superdiffusive transport has been
investigated by several theorists. [10,25-28] A comprehensive theory relates
the exponent v for the growth of the variance to the statistics of both the
flights and the trapping events. We limit our discussion here to the case where
the trapping events have durations 7 with finite second moment: (T?) # ooc.
In this regime, if the flight PDFs can be described as power law relations, then
~ depends on the the decay exponent pu as follows:

2,0 < 2
Y=94—p,2<p<3 (3)
1L,u>3

These theories all apply to the long-time limit, a limit that can be difficult
to achieve experimentally. Practically, almost every real system displays nor-
mal diffusion in the long-time limit, either because of the effects of molecular
diffusion (which are always present) or because the finite size of the system
limits the lengths that the flights can achieve. Sub- and super-diffusion are still
very relevant experimentally, though, as transient regimes can have durations
comparable to or even longer than the relevant time scales of many processes.
Transient sub-diffusion has been studied both theoretically [29] and experi-
mentally [30] in a time-independent, 2D vortex flow. Transient super-diffusive
transport has received less attention.



3 Numerical Results

The model equations (Eqn. 1 and 2) can be non-dimensionalized by scaling all
distances by the vortex width d, velocities by a, and time by the characteristic
advective time 7,4, = d/a; this is the time to traverse a single vortex at the
maximum velocity. (There is no single characteristic circulation time as tracers
at different distances from vortex centers take different times to complete a
full rotation.) Furthermore, in all of the simulations in this paper, the vortices
are assigned unit aspect ratio, so A = 2d. In non-dimensional form, Eqns. 1
and 2 can be re-written as

& = —cos(mw[x + bsinwt])sin(my), (4)

g = sin(mw[x + bsimwt])cos(my). (5)

The non-dimensional oscillation amplitude b = B/d is 0.12 for all the simula-
tions.

Equations 4 and 5 are integrated using a fourth-order Runge-Kutta technique.
Figure 2 shows simulations of the evolution of 10,000 particles (initially dis-
tributed within a single vortex) for frequencies f=0.095 and 0.106 (Figs. (a)
and (b) respectively). Qualitatively, the behavior seen in these simulations is
similar to that from previous experiments; see, e.g., Fig. 2 from Ref. [16] or
Fig. 3 from Ref. [17].

A Poincaré section is shown in Fig. 3. Trajectories are determined for five
tracers and plotted once every period of oscillation. The phase space (which
is real space here) is characterized by large “islands” in the vortex centers in
which tracers undergo regular, ordered trajectories. Surrounding these islands
is a chaotic web that wraps around and between the vortices. Whereas tracers
in the chaotic web are free to move between vortices (contributing to long-
range transport), those within the islands remained confined to their original
vortex. There are no ordered trajectories that move between vortices in this
system.

The variance (z?) of these distributions is plotted as a function of time in
Fig. 4. Typically, the variance grows linearly with time after a brief transient
(a few times the characteristic advection times 7,4, ); see, e.g., the lower two
curves in Fig. 4 (f = 0.120 and 0.095). For limited ranges of frequencies,
though, the variance grows superdiffusively for small times; see, e.g., the upper
dashed curve in Fig. 4 (f = 0.106). On occasion, a small sub-diffusive transient
regime will be apparent before the curve flattens out to diffusive behavior; see
the solid curve in Fig. 4 (f = 0.095).



The three curves in Fig. 4 are identical for times ¢ < 20; consequently, the
dramatic differences between the longer term transport properties for f =
0.095, 0.106 and 0.120 are not due simply to differences in the flux of impurities
between vortices during a single oscillation period. This conclusion is also
supported qualitatively by Fig. 2; comparing the behavior at f = 0.095 with
that for f = 0.106, there is not significant difference between the two, also
indicating that the differences are not explained by a simple flux analysis.
These points are discussed further in Section 4.1 and 4.2 below.

If the transport can be described as “normal” enhanced diffusion ({z?) ~ t7
with v = 1), then an enhanced diffusion constant D* can be determined from
slope of a plot of (z?) vs. t. If the transport is superdiffusive, though, D* is a
time-dependent function. As shown by Vulpiani et al,[18] the transport is not
superdiffusive in the long-time limit except at only certain, precise resonant
frequencies, so in general the slope of (z?) () can be determined at long times
to get an approximation of D*. Figure 5 shows D* (determined from the
variance plot for ¢ > 100) plotted as a function of oscillation frequency. Two
large resonant peaks are apparent, the first peak occuring at f = 0.106, and
corresponding to the top dashed curve curve in Fig. 4 and the simulation in
Fig. 2(b).

Figure 6 shows logarithmic plots of the variance for frequencies close to the
first resonance peak at f = 0.106. Even though the transport is superdiffusive
in the long-time limit only precisely at the resonant frequency,[18] there are
transient superdiffusive regimes for frequencies near the resonant frequency,
with the duration of these transient regimes decreasing the farther f is from
the resonant frequency.[31] The transient superdiffusion is followed by normal
diffusion in these cases. For frequencies outside the peak regions in Fig. 5,
the superdiffusive transients disappear, and the transport is normal (y = 1)
throughout, with the exception of a few situations (such as at f = 0.095 —
light dashed curves in Fig. 6) where there is a transient sub-diffusive regime.

4 Analysis

The central questions are as follows: (1) What is the cause of the resonance
peaks in D* as a function of f (Fig. 5)? (2) Why is the transport superdiffusive
at short times in the vicinity of these peaks, and why is this superdiffusive
transport of limited duration in these cases?

Commonly, long-range chaotic transport is analyzed theoretically either by
looking at “lobes” (or “turnstiles”) that are responsible for interchange of
tracers between adjacent vortices, or by calculating the Melnikov function for
the system. We will examine both of these local approaches to transport in



the context of the results presented above.
4.1  Melnikov analysis

Transport in Hamiltonian systems (such as this one) is often analyzed by
computing the Melnikov function [32]

M= /‘[%(xoayo)a%(xo,yo)}dt (6)

where {f,g} = 0,f0,9 — 0,f0,g is the Poisson bracket of functions f and
g. The streamfunction is approximated to first order as ¥ (x,y) = ¥o(z,y) +
ey (z,y,t) where 1)y is the unperturbed (time-independent) portion of the
streamfunction and 1 is the first-order approximation to the time-periodic
perturbation:
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and

U (z,y) = asin(%)cos(%)sm(wt), (8)

where a and d are both 1, as before. In equation 6, xg and yq refer to coor-
dinates of a trajectory connecting the two fixed points along an unperturbed
separatrix (i.e., if € = 0).

The Melnikov integral M represents a first-order approximation of the vari-
ation Ay of the streamfunction encountered by a tracer as it moves in the
vicinity of the separatrix between adjacent vortices. It is related to the flux F’
of tracers during one oscillation period by the relation [32]

4
F=e=|M| (9)
o

For a normally-diffusive process, this flux can then be related to the enhanced
diffusion coefficient D* by Fick’s Law: F' = D*0¢/0x, where € is the coarse-
grained concentration field, smoothed to remove variations within a unit cell
of the flow. Consequently, |M| should be proportional to D*.

The absolute value of the Melnikov function for this system is plotted as
a function of oscillation frequency f in Fig. 7(a). Comparing this figure with



Fig. 5, it is clear that | M| does not capture the dominant frequency dependence
of D*. In particular, the two main resonance peaks from F'ig. 5 are completely
missing in the Melnikov analysis.

The Melnikov function does not incorporate tracer motion that occurs over
timescales longer than a single oscillation period. As was discussed in Section
3 in conjuction with Fig. 4, significant deviations in the transport occur only
after several periods of oscillation; consequently, it is not surprising that the
Melnikov analysis fails to capture the frequency dependence of the long-time
behavior of D*.

The Melnikov analysis, however, does capture the very short-term transport
properties, as shown inf Fig. 7(b), which shows the short-time limit of the
enhanced diffusion coefficient D}, which is D* calculated for ¢ < 5. This is
further evidence that the resonance behavior in Fig. 5 is due to tracer motion
that occurs over timescales much longer than a single oscillation period.

4.2 Lobes

Another approach commonly used to analyze transport involves characterizing
lobes,[7,23,24] which provide the mechanism for transport between vortices.
Whereas a simple analysis of “primary” lobes suffers from the same limitations
as the Melnikov analysis (i.e., capturing behavior over only the timescale of
a single oscillation), a generalization based on “secondary” intersections can
capture longer-term behavior.

A cartoon illustrating lobe analysis is shown in Fig. 8. Two hyperbolic fixed
points are shown as open circles, along with the unstable manifold of the top
one (solid curve) and the stable manifold of the bottom one (dashed curve). If
the 2D flow is time-independent (Fig. 8a), the two manifolds coincide and form
a separatrix dividing two regions of the flow. In this case, transport can occur
past this unperturbed separatrix only via molecular diffusion. If the flow is
time-periodic (Figs. 8b and c), though, the manifolds do not coincide; rather,
they become very complex structures that intersect at numerous locations
between the two fixed points.

The regions bounded by the manifolds (identified by numbers — 1, 2, 3, 4 —
and letters — a, b, ¢ — in Fig. 8) are the lobes. Any tracers that are contained in
lobe #1 at one instant will end up in lobe #2 one period later, then #3, etc.
Similarly, tracers in lobe a will move to lobe b after one period, then lobe ¢, etc.
The result is that tracers to the left of the unperturbed (time-independent)
separatrix — i.e., those in lobe a — cross over to the right of the unperturbed
separatrix and vice-versa.



This is the primary advective mechanism for mixing between vortices and for
long-range transport. Since the flow is incompressible, the flux of tracers from
one vortex to the next is determined by the area of the primary lobe. (This is
the area of any of the numbered or lettered lobes in Fig. 8 — they must have
the same area.)

The lobe picture is more complicated for a spatially-periodic system, such as
the oscillating vortex flow studied here (Fig. 9), particularly if the oscilla-
tion period is longer than the advective timescale 7,4,, in which case there is
typically significant stretching and folding of the lobes after only a couple of
oscillation periods. Nevertheless, the same mechanism applies for mixing of
tracers between adjacent vortices.

Previous experiments [16,17] demonstrated that an analysis of the areas of the
lobes (such as lobe b in Fig. 9b) can successfully predict long-range transport
properties of the system. Specifically, the flux determined from these lobe
areas were used successfully to predict the enhanced diffusion coefficient D*.
However, this clearly is not the entire picture. As outlined above in Section
4.1, any analysis that depends only on the flux between vortices during one
period cannot fully explain the frequency-dependence of D*, nor can it explain
the transient superdiffusion observed in the vicinity of the resonance peaks. It
is clear, then, that the previous experiments were at a frequency away from
resonance peaks.

The lobe analysis can be extended to account for behavior that occurs over
timescales longer than a single oscillation period. Theoretical studies [33] have
indicated that secondary lobe intersections can have a significant effect on the
transport properties of the system. The basic idea is illustrated in Figs. 8c and
9c. If there is overlap between different lobes, then the flux between vortices
can be different from that inferred only from the area of the primary lobes.
In Fig. 8c, for instance, tracers that start in lobe #1 move into lobe #2 one
period later, then cross over the unperturbed separatrix into lobe #3 and then
lobe #4 in successive periods. But part of lobe #4 overlaps with lobe a, and
that portion will cross back over the unperturbed separatrix to the right into
lobe b in the following period. The net result is a reduction in the long-term
flux of tracers from the right to the left.

In a periodic system — such as the one studied here — secondary intersections
can result in enhancements in the flux beyond those determined from the
primary lobe areas. In Fig. 9c, tracers that are in lobe a cross a separatrix
into lobe b after one period. After the next oscillation period, these tracers are
in lobe ¢, which can stretch across another vortex separatrix since the velocity
field repeats after two vortices. (Figure 9 is displayed with periodic boundary
conditions.) As drawn in Fig. 9¢, a portion of lobe ¢ overlaps with lobe a;
tracers in that overlap region will cross over another unperturbed separatrix
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during the next oscillation period, enhancing the transport.

[lustrating the effects of secondary lobe intersections for this system is prob-
lematic. First, for the frequencies studied here, the lobes are extremely com-
plicated. An idea of this complicated structure can be inferred from Fig. 2. In
both of the parts of this figure, the second image from the bottom shows the
tracer locations after one oscillation period, and the bottom after two oscilla-
tion periods. Although not rigorously a plot of the manifolds, the manifolds
have the same complexity as the tracer patterns outside the center vortex. As
discussed above, it is necessary to look at behavior over timescales of more
than a few oscillation periods. The manifolds after two periods are hopelessly
complex; in fact, so much stretching and folding occurs in a few periods that
there are dozens of different intersections.

Attempts at characterizing differences in the secondary intersections in this
system near the resonance peaks have been unsuccessful due to the complexity
of the manifolds for this system and to the long time scales required.

4.8 Resonant Lévy flights and translated return maps

When confronted with superdiffusive transport, it is natural to ask if the tra-
jectories can be described as Lévy flights. Qualitative evidence of flights is
shown in Fig. 10, which shows plots of horizontal position versus time. The
solid curve corresponds to a frequency f = 0.095, just outside the peak region
of Fig. 5, whereas the dashed curve corresponds to f = 0.106, close to the
resonance peak. Jumps can be seen in the trajectory for f = 0.106 (some over
a hundred vortex widths), reminiscent of Lévy flights. Probability distribution
functions (PDFs) of these flights are plotted in Fig. 11. For frequencies out-
side the resonant peak (circles and triangles), the PDF has exponential tails,
consistent with the fact that transport is diffusive at these frequencies. [34]
Very close to the resonant peak (squares), the PDF has power law behavior,
although it appears to decay at large jump lengths. Technically, these are not
Lévy flights, since the decay of p(L) at large L gives the flights a finite sec-
ond moment. However, the power-law scaling for smaller L is consistent with
the transient superdiffusive growth of the variance observed at and near this
frequency.

The fact that the tracers undergo flights with Lévy scaling for small-to-
moderate lengths explains why the flux-based analyses of the previous two
sections fail for this system. As is common in transport with flights, a small
number of tracers undergoing very long flights can dominate the variance cal-
culations. In general, any analysis that depends on calculation of flux for one
oscillation period will fail in a system where long flights are significant (i.e.,
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with PDFs with significant power law regimes).

An important question remains: what is the cause (origin) of the flights? The
flights are clearly not due to sticking to KAM surfaces, since there are no
ordered regions in the Poincaré section (Fig. 3) corresponding to large scale
motion; the ordered regions all correspond to tracers trapped within a single
vortex.

An explanation of the origin of the flights can be obtained by extending the
lobe analysis, looking not just at secondary intersections, but at where the
intersections occur. A secondary lobe intersection — such as that sketched in
Fig. 9¢ — is a necessary condition, but not sufficient for long flights; such
an intersection guarantees only that the tracer will cross into one additional
vortex before its forward progress ends. For a tracer to undergo a long flight
(orders of magnitude longer than a vortex width), the tracer must return to
almost the exact same location in the new lobe (some number of vortices
down the chain) as it was in the original lobe. Ideally, if a tracer returned
(after one oscillation period) to ezactly the same location shifted by either nA
or by —nA, then the tracer will always find itself in a lobe to be carried across
a vortex separatrix and will undergo an infinite flight. This ideal situation is
never encountered; however, it is possible to get close to a resonant condition
and achieve very long flights.

This approach can be quantified by calculating a translated return map, as
is explained schematically in Fig. 12. The position of a tracer initially at
location 77 is integrated numerically for j periods of oscillation, after which
the tracer’s location 77 ; is compared to a horizontal translation of the original
coordinate: 7iqns; = 71 + 4dZ, where d is the vortex width and 4 is a non-zero
integer (either positive or negative). In Fig. 12, 7,4ns 2 is identified by an open
circle. A distance A;; = |Firans; — T144| is defined to quantify how close the
tracer returns in j periods to its original position, translated horizontally by
1 vortices.

Fig. 13a shows a map of horizontal displacement x, .5 — z, for the resonant
frequency f = 0.106. This map displays how far in the horizontal direction
tracers have moved after 2 periods of oscillation. Most of the tracers remain
within the original vortex (grey regions), but some of the tracers move as
far as four vortices in the negative direction (black U-shaped band around the
bottom and sides) and some move four vortices in the positive direction (white
section near the bottom). These dark and light regions indicate the lobes.

Translated return maps are shown in Figs. 13b and c, again for the resonant
frequency f = 0.106. (Only the boxed region from Fig. 13a is plotted.) Figure
13b shows a plot of Ay, i.e., how far tracers are — after two oscillation periods
— from the same initial location shifted horizontally in the positive direction by
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4 vortex widths. Figure 13c shows a plot of A_,, — similar to Fig. 13b, except
that the horizontal shift is in the negative x-direction. In both Figs. 13b and c,
the low points (with small A) correspond to tracers that have not only moved
4.0 vortex widths, but are also well-positioned to continue their motion (and
in the same direction), since they find themselves (relative to the new vortex)
at almost the same location that they started. These are the tracers that are
well-positioned to undergo flights; the smaller the value of A, the more periods
the tracers will remain in a primary lobe and the longer the flight will be.

Since long-range flights are associated with A — 0, it is convenient to plot
1/A for frequencies near the resonances. The tendency of the mixing to be
dominated by long flights would then be expected to be revealed as upward
peaks in the quantity 1/A. Figure 14(b) shows the maximum of 1/A,, and
1/A_4,, effectively combining the results from Figs. 13b and c. A ridge can
be seen in Fig. 14b, with a large, sharp peak indicating the location of the
tracers that return within 0.001 of their initial location in a different vortex.
A similar plot of the minimum 1/A,,, is shown in Figs. 14(a) and (c) for
f =0.095 and 0.120, respectively, with the same vertical scaling as Fig. 14b.
The absence of any prominent peak indicates that none of the tracers return
as close to their initial location (in a different vortex) at those frequencies.

The results are summarized in Fig. 15, which shows a plot of of the inverse of
the minimum return distances 1/A 4 (open squares) and 1/A 455 (filled cir-
cles), corresponding to shifts of either 4 or 2 vortex widths, respectively. There
is significant scatter in the data, since the minimum distance determined nu-
merically is very sensitive to the initial placement of the tracers. Nevertheless,
it is clear that there is a strong correlation between this diagnostic and the
peaks observed in the plot of D* vs. f (Fig. 5).

Note that the velocity of the flights at f = 0.106 is roughly twice the velocity
of the flights at f = 0.183. This is apparent from the fact that the peak at
f =0.183 in Fig. 15 corresponds to tracers that translate by 2 vortex widths
in 2 oscillation periods (filled circles), whereas the the peak at f = 0.106
corresponds to tracers that translate by 4 vortex widths in the same time.

5 Summary

In this article, we have demonstrated a resonant mechanism by which flights
can occur in a simple, 2D, time-periodic, oscillating vortex flow with stress-
free boundary conditions. Unlike Lévy flights studied in other systems, these
flights are characterized by power-law PDFs only in the vicinity of certain well-
defined resonant frequencies, and only the smaller length flights satisfy the
Lévy (power law) scaling, with the upper cut-off decaying as the frequency of
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oscillation moves away from the resonant frequencies. The result is transport
that is superdiffusive in the long-time limit only precisely at the resonant
frequencies, as shown in previous studies.[18] Near these resonant frequencies,
there is still a superdiffusive transient regime, and the long-term effective
diffusion coefficient D* is greatly enhanced.

The flights are explained by considering translated return maps for the system.
Specifically, long flights and long superdiffusive transients are characterized by
tracers which, when initially in a lobe, return to almost the exact same location
in a lobe of a different vortex after a finite number of oscillation periods.

The current work illustrates some of the limitations of the traditional tech-
niques for analyzing transport in Hamiltonian systems — Melnikov analysis
and lobe dynamics. Although these techniques work well for transport where
the motion can be described on a fixed, periodic time scale, they fail to capture
the (potentially dramatic) effects on transport of long-range flights,

We are currently extending this work to investigate mixing in an oscillating
vortex chain with rigid (no-slip) boundary conditions. Experiments are also
being conducted on the frequency dependence of enhanced diffusion coeffi-
cients. The results from these simulations and experiments will be presented
in a future article.
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Fig. 1. Velocity field for oscillating vortex chain.

Fig. 2. Sequences showing the evolution of an ensemble of 10,000 tracers, initially
distributed in the center vortex. (a) Oscillation frequency f = 0.095; (b) f = 0.106.
From the top, times after beginning of simulation are ¢t = 2,4,6,8,10 and 20 in
non-dimensional units.
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Fig. 3. Poincare section for f = 0.106. The trajectories of five tracers (only one
of which is in the chaotic region) are determined and plotted once every period of
oscillation.

2
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Fig. 4. Growth of variance <a:2> of distribution versus non-dimensional time ¢. Fre-
quency of oscillation f = 0.095 (lower, solid line), 0.106 (upper, dashed line) and
0.120 (middle, long-dashed line).

18



020 —
0.15 ]

‘N 0.10 ..

0.05 s ‘N .,..’ . -
OOO 7’ -p-/‘*‘.-w"“""" V‘\‘\‘,. )

0.05 0.10 0.15 0.20

Fig. 5. Enhanced diffusion coefficient D* as a function of frequency f of the oscilla-
tion. For all points, D* was determined by taking the slope of the plot of <x2> VS.
t for ¢ > 100.
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Fig. 6. Growth of variance <:c2> versus time ¢; from top, f = 0.106 (solid curve),
f = 0.105 (long-dashed curve), f = 0.103 (dashed curve), and f = 0.095 (light
dashed curve). (a) Logarithmic plot; (b) slope of plots from (a), revealing growth
exponent 7y versus time.
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Fig. 7. Melnikov analysis. (a) Plot of absolute value of Melnikov function | M| versus
frequency; (b) Initial value of enhanced diffusion coefficient Dj, determined from
the slope of < x2 > vs. t for t < 5.
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O

Fig. 8. Cartoon sketch of lobe analysis. The solid (dashed) curve represents the
unstable (stable) manifold of the upper (lower) fixed point. The intersections of these
manifolds are the lobes. (a) Unperturbed (time-independent) case. The unstable
manifold of the upper fixed point coincides with the stable manifold of the lower
fixed point. (b) and (c) Perturbed (time-periodic) case. Fig. (b) shows only the
primary lobes, whereas (c) shows a secondary intersection as well.
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Fig. 9. Simplified sketch of lobe analysis for oscillating vortex chain. The solid
(dashed) curve represents the unstable (stable) manifold of the upper (lower) fixed
point. (a) Unperturbed (time-independent) case. The unstable manifolds of the up-
per fixed points coincide with the stable manifolds of the lower fixed points and form
the separatrices between adjacent vortices. (b) and (c) Perturbed (time-periodic)
case. Figure (b) shows the primary lobes responsible for the flux of impurities across
a vortex boundary. Figure (c) shows a secondary intersection (near the lower left).
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Fig. 10. Horizontal position of tracer particles versus time; f = 0.106 (upper, dashed
curve), f = 0.095 (lower, solid curve).
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Fig. 11. Flight length probability distribution functions (PDFs); f = 0.095 (circles),
f = 0.106 (squares), f = 0.120 (triangles). (a) Semi-logarithmic plots. A linear
relation on this plot indicates exponential decay. (b) Log-log plots. A linear relation
on this plot indicates power-law decay.
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Fig. 12. Sketch illustrating calculation of translated return map. The distance
Aij = |Firans,i —T1+;| is the separation after j iterations of a tracer from its original
position, translated horizontally by 7 vortices. In the figure, 7 is -2 (i.e., translated

It

——

rans,i

2 vortex widths in the negative direction).
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Fig. 13. Map determined from iterating 10,000 tracers through two periods of oscil-
lation; f=0.106. (&) T2 — x,; the darkest regions correspond to zy, o — z, = —4.5,
and the brightest regions correspond to zp42 — z, = +4.5. (b) Surface plot of Ay
showing how close (after 2 periods) each tracer comes to its initial location, shifted
by +4.0 vortex widths. (c) Surface plot of A 49 showing how close each tracer
comes to its initial location, shifted by -4.0. Both (b) and (c) show enlargements of
the region in (a) enclosed by the dashed rectangle.
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Fig. 14. Plot of the maximum of 1/A449, i.e., inverse of distance of tracer from
initial location shifted by 4 vortices in either direction after two oscillation periods.
A peak in this plot indicates that the tracer has shifted by almost exactly +4 or -4
horizontally, returning to almost the exact same location but in a different vortex.
(a) £ =0.095, (b) f = 0.106, (c) f = 0.120.
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Fig. 15. Inverse of the minimum shifted distance A; ; for tracers after j = 2 complete
periods of oscillation. A large value on this plot means that a tracer has returned
to almost its exact initial condition, but shifted by either ¢ = 2 vortex widths (filled
circles) or by i = 4 vortex widths (open squares).
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