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Abstract

Experiments compare the chaotic mixing of miscible and immiscible impuri-
ties in a two-dimensional flow composed of a chain of alternating vortices. Pe-
riodic time-dependence is imposed on the system by sloshing the fluid slowly
across the stationary vortices, mimicking the even oscillatory instability of
Rayleigh-Bénard convection. The transport of a miscible impurity is diffusive
with an enhanced diffusion coefficient D* that depends on the size of “lobes”
which are, in turn, dependent on the oscillation amplitude. The lobes play an
important role in the transport of immiscible impurities as well. In this case,
the impurity is broken into a distribution of droplets, whose areas determine
the nature of the transport. If the characteristic long-term droplet areas are
appreciably smaller than the lobe areas, then there is long-range transport
with D* equal to that for the miscible case with the same flow conditions. If
the droplet areas remain larger than the lobe areas, then there is no long-range

transport.
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I. INTRODUCTION

Passive tracers moving in time-dependent velocity fields often follow chaotic paths, in the
sense that nearby trajectories separate rougly exponentially in time (“sensitive dependence
on initial conditions”). This process, referred to as chaotic advection [1], can occur even if
the time dependence is periodic. Formally, for a two-dimensional fluid flow, the equations
integrated to determine the trajectories are Hamilton’s equations of motion, and the particle
paths can be described as phase space trajectories of a chaotic system [2]. As a result,
analytical tools developed to study Hamiltonian chaos can be applied simply to the study
of chaotic advection.

The mixing and transport of a blob of a miscible (soluble) impurity can be influenced
substantially by chaotic advection [3], since each molecule can be treated as an independent
tracer. If the tracer trajectories are chaotic, then sensitive dependence on initial conditions
can result in rapid spreading of the blob. Several previous studies have investigated the
signatures of Hamiltonian chaos in the mixing of miscible impurities [4,5], along with en-
hancements in long-range mixing due to chaotic advection [6]. Less is known about the
mixing of immiscible impurities (such as oil in water), due to the complicating effects of sur-
face tension, which results in length-dependent attractive forces between impurity molecules.
Clearly, the simple Hamiltonian formalism typically used to describe chaotic mixing has to
be modified for the mixing of immiscible impurities, since the phase space trajectories are
no longer independent of each other.

In this article, we describe experiments comparing and contrasting long-range, enhanced,
chaotic mixing of miscible and immiscible impurities in a two-dimensional, time-periodic
flow [7]. Magnetohydrodynamic forcing is used to generate a chain of alternating vortices
in a thin layer of water. Time dependence is imposed by oscillating the fluid slowly back
and forth across the cell. With this arrangement, which mimicks the “even” oscillatory
instability of Rayleigh-Bénard convection [6,8,9], independent control is achieved for the flow

velocities, oscillation amplitudes and oscillation frequencies. The result is an experimental



arrangement that allows for more precise measurements of mixing phenomena than were
achieved in previous experiments [6]. Experiments are performed with both a molecular dye
(uranine) and an oil that floats on the surface of the fluid.

For the mixing of a miscible impurity, the transport is governed by “lobes” [10,11] that
exchange impurity between one vortex and the next. For immiscible impurities, the process
is characterized by the break-up of oil droplets into a steady-state distribution. Long-range
transport is found to be inhibited if the long-term characteristic droplet area is larger than
the area of lobes for miscible mixing with the same flow conditions. On the other hand, if
the droplets are broken down to sizes appreciably smaller than the lobes, they behave as
individual passive tracers, and the transport rates from the miscible case are recovered.

In Section 1I, we discuss theories and previous experimental studies of chaotic mixing.
The experimental apparatus and techniques are explained in Section III. The results of the

experiments are presented in Section IV, and are summarized in Section V.

II. BACKGROUND

For a motionless fluid, transport of a miscible impurity is governed by molecular diffusion
[12], caused by random Brownian motion of individual impurity molecules. In the presence
of a fluid flow, the transport is modified by advection of the impurity with the flow. If the
advection is chaotic, then the trajectories of individual molecules can be similar to Brownian
motion on a macroscopic scale: even though the trajectories are deterministic, they undergo
what appears to be a “random walk.” It is therefore reasonable to analyze transport in a
fluid flow as an enhanced diffusion process.

Quantitatively, diffusion processes are analyzed by monitoring the growth of the variance
(z?) with time. Often, this growth can be described as a power law: (z?) ~ 7. If v # 1,
then the process is called anomalous diffusion [13,14]. If v = 1, then the process is referred
to as normal diffusion. Specifically, for normal diffusion, the variance (x?) = 2D*t, where

D* is the enhanced diffusion coefficient.



Earlier experiments measured enhanced diffusion for passive (miscible) transport in
quasi-two-dimensional, time-independent [15] and time-periodic [6,8] Rayleigh-Bénard (ther-
mal) convection. A picture of the (idealized) velocity field for this flow is shown in Fig. 1.
Although Rayleigh-Bénard convection is three-dimensional, a cross section of the flow shows
a two-dimensional velocity field composed of a chain of alternating vortices. If the Rayleigh
number R (dimensionless forcing, proportional to the imposed temperature difference) is
sufficiently small, the velocity field is time-independent. For larger R, the flow can be os-
cillatory, with the vortices oscillating back and forth periodically [16]. The streamfunction
for the flow in Fig. 1 is given by © = %sin(k:ﬂ)W(y), where A and k are the amplitude and
wavenumber, and W(y) is a function the accounts for the no-slip condition at the top and

bottom boundaries (see Ref. [17] for more details). The x- and y-components of the velocity

o

can be obtained from this streamfunction with Hamilton’s equations # = 2% and § = — e

dy

For the time-periodic flow, comparisons were made in the earlier experiments [6,8] be-
tween the experimental observations and numerical simulations of chaotic advection in a
model of the flow. Repeated stretching and folding of tendrils of the impurity were observed
in both cases, indicative that the transport in the system was, in fact, controlled by chaotic
advection. Measurements of the enhanced diffusion coefficients showed rough agreement
with the numerical model, although detailed comparisons were complicated by deviations of
the experimental flow from the ideal case.

The problem of enhanced diffusion in two-dimensional, time-periodic flows has been
addressed theoretically [9-11] by considering “lobes” formed from the intersection of stable
and unstable manifolds of the hyperbolic fixed points. These lobes form “turnstiles” [2] that
exchange fluid between neighboring vortices. Recent experiments [7] tested these theories
and demonstrated that enhanced diffusion coefficients are determined in these systems purely
by the geometry of the lobes.

As for immiscible fluids, most of the previous studies have investigated the stretching

and breakup of a single drop in low Reynolds number flows [18]. The break-up of immiscible

impurities due to chaotic advection was studied recently by Muzzio, Tjahjadi and Ottino
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[19] in an oscillatory, journal-bearing flow. These experiments found the steady-state droplet
size distributions to approach a self-similar relation. We are unaware of any previous studies

of long-range, chaotic transport of immiscible impurities.

I1I. EXPERIMENTAL APPARATUS AND TECHNIQUES

The apparatus for the experiment is shown in Fig. 2. A Plexiglas box is constructed with
a raised central portion, above which the vortex chain is generated. A salt water solution
fills the bottom of the box to a height of 0.20 cm above the central region. The flow for
these experiments is generated by a magnetohydrodynamic technique [20]: a 10 mA current
passing length-wise through the cell interacts with an alternating magnetic field, which is
produced by a linear array of 14 Nd-Fe-Bo magnets below the fluid layer (Fig. 2b). There
are no fluid flows generated by longitudinal electrical forces since the fluid is electrically
neutral. In terms of the electrical current ?, bulk motion of positive ions in the direction of
7 is balanced by opposite motion of negative ions. Magnetic forces, however, are significant,
since both positive and negative ions experience forcing in the same direction (perpendicular
fo both 7 and to the magnetic field B. [21] The Lorentz magnetic force between the current
and the alternating magnetic field (]_%mag — 7 x E) results in alternating horizontal forcing
of the fluid. The result is a chain of vortices with alternating signs. The magnets are each
1.91 em in diameter, and there is no space between adjacent magnets, so the center-to-center
vortex spacing is 1.91 cm.

Two Plexiglas sidewalls bound the vortex chain on either side, giving the region of interest
overall dimensions 3.8 ¢cm x 26.7 cm with a fluid thickness 0.20 cm. (The width of 3.8 ¢cm
is twice the magnet diameter and the center-to-center vortex spacing, giving the vortices an
aspect ratio of 2.) A double-step tab [22] is milled into the bottom of the side walls to pin
the interface properly (Fig. 2¢). Since the oil is floating on the surface of the water, it is
absolutely critical that the water-air interface be level in the region of interest. Furthermore,

the oil cannot touch the side walls, since it tends to adhere to Plexiglas. The fluid in the



central region is pinned to the corner of the upper step and slopes down slightly above the
bottom step. With this technique, the fluid is level in the central region of the apparatus,
where the vortex chain is. The upper step has a height of 0.05 cm, compared to 0.20 cm for
the lower step; consequently, the fluid layer is extremely thin above the lower step, inhibiting
any appreciable flow from penetrating into the step region.

For small currents, the velocity field is time-independent. Increasing the current results in
an instability to time-periodic vortex oscillations. This instability, however, is very sensitive
to small imperfections in the apparatus. Furthermore, with this particular instability, there
is no way to control the amplitude of the oscillations without changing the fluid velocities
as well. For these reasons, we use a different technique to impose time dependence on the
flow. We use a driving current I = 10 mA that leaves the flow comfortably within the time-
independent regime, with typical velocities ranging up to ~ 0.7 em/s. Time dependence is
imposed by oscillating the fluid across the stationary velocity field, mimicking the oscillatory
instability. A small plunger oscillates vertically in a fluid reservoir at one end of the cell.
The period of the oscillation (19 s) is chosen to be substantially longer than the viscous
diffusion time for a 0.20 cm thick water layer (~ 4 s), ensuring that the oscillations do not
perturb the time-independent velocity field.

For experiments on miscible transport, sodium fluorescein (uranine) dye is used as the
impurity, mixed with trace amounts of ethanol to make the dye neutrally-buoyant. Exper-
iments on immiscible mixing are conducted with a fluorescent oil (APD oil dye P/N 801)
with a viscosity 15 cp. An important property of the dye is its surface tension when in
contact with water and with air. This surface tension, which plays a significant role in the
droplet breakup process, depends critically on the level of contamination in the system (e.g.,
residual soap, grease, etc). In these experiments we take advantage of this property to vary
the surface tension from run to run. Specifically, the surface tension is controlled by the
addition of small traces of RBS soap solution (which is also used to clean the cell between
runs).

Characterization of the surface tension is achieved indirectly by measuring the resiliency



of droplets. Specifically, the time for a droplet with area 5 cm? to relax from an aspect
ratio of 4 to an aspect ratio of 2 is measured. Studies by Tjahadi, Ottino and Stone [23]
have shown that for suspended droplets in a three-dimensional system, this relaxation time
is correlated very well with the surface tension, although the problem is still being studied
for the two-dimensional case with oil floating on water [24]. In the experiments reported in
this article, three different resiliencies are used with relaxation times 7 = 3, 1.5 and 0.5 s
(small, medium and large resiliency, respectively).

Both uranine and the APD oil are fluorescent, so the transport is visualized with black
light illumination. The intensity of the fluorescing light is proportional to the impurity
concentration, assuming the concentration isn’t too high. (For large uranine concentrations,
the signal saturates.)

Each experimental run is prepared by injecting the impurity into the central vortex in
the absence of any plunger oscillations. For miscible studies, the dye is allowed to spread to
cover the complete vortex, at which time the plunger is turned on. In all the experiments
shown here, time ¢t = 0 corresponds to the moment at which the oscillations are initiated.
For runs with oil, the oil is allowed to spread roughly to its full extent before the plunger is
turned on. For this reason, many of the oil runs begin with oil in several vortices.

The fluid flow is not rigorously two-dimensional in these studies. There is a very small,
secondary, three-dimensional flow within the vortices [15] which is due to Ekman pumping
[25]. This flow is an order of magnitude weaker than the primary vortex flow, and circulates
between the edges and centers of the vortices. As a result, mixing within the vortices
is enhanced, and Kolmogorov-Arnold-Moser (KAM) invariant surfaces are ineffective at
blocking mixing over long time-scales. However, the secondary flow does not contribute to

transport from one vortex to another, which is governed predominately by chaotic advection.



IV. RESULTS
A. Miscible impurities

The transport of uranine dye is measured for three different oscillation amplitudes
b = 0.06, 0.12 and 0.24, where b is the dimensionless amplitude b = (oscillation ampli-
tude)/(vortex width). A sequence showing the transport behavior for b = 0.12 is shown
in Fig. 3. Three lobes are visible in the second image, two carrying dye from the central
vortex to its neighbors, and one carrying clear fluid back into the central vortex. As time
progresses, the lobes are stretched into long tendrils and folded back on themselves repeat-
edly, a classic signature of chaotic phenomena. KAM barriers are visible early in the run
as “holes” in the middle of the vortices, although those holes fill in after a few minutes due
to a combination of Ekman pumping (described in Section II) and molecular diffusion. The
secondary Ekman flow can be seen in Fig. 3 by the fact that a hole opens up in the center
vortex, due to the secondary flow which carries clear fluid up through the center.

As discussed in a previous paper [7], measurement of the areas of the lobes from these
images can be used to predict the enhanced diffusion coefficients D*. Alternately, D* can be
determined directly by measuring the variance (z?) of the dye distribution and plotting (z?)
as a function of time. Each dye image (after the background is subtracted) is summed ver-
tically to obtain a one-dimensional concentration profile C(z). The profile is then smoothed
horizontally (boxcar averaging) to reduce variations caused by tendril structure within the
vortices (Fig. 4) [26]. The smoothed concentration profiles are then fitted to Gaussians,
from which (2?) can be determined.

A plot of (z*(¢)) for the b = 0.12 data from Fig. 4 is shown in Fig. 5, along with plots
from experiments with b = 0.06 and 0.24. The solid lines show the growth in (z?) expected
from the lobe analysis. (For reference, the lobes are measured to have areas [ = 0.28 cm?
0.58 cm? and 1.09 cm? for b = 0.06, 0.12 and 0.24, respectively.) The enhanced diffusion

coefficient D* is one-half the slope of these plots: D* = 0.007 cm?/s, 0.015 ¢cm?/s and 0.029



ecm?/s (£ 0.001 cm?/s) for b = 0.06, 0.12 and 0.24, respectively. (A clear scaling region is
not observed for the b = 0.24 case; however, the behavior is consistent with the prediction

based on the lobe analysis.)

B. Immiscible mixing, b = 0.12

Transport of an immiscible impurity is characterized in the short term by the formation
(or partial formation) of lobes at the corners of the inner vortex (Fig. 6). In contrast to the
miscible case, though, surface tension significantly affects the stretching of these lobes into
tendrils. If the drop resiliency is large (Fig. 6¢), the lobes are often pulled back by surface
tension into the central vortex, inhibiting long-range transport. Small resiliency droplets
are stretched into tendrils (Fig. 6a), but unlike those for miscible impurites, these tendrils
cannot be stretched indefinitely. Rather, a capillary instablity causes the tendril to break,
as seen in the the top 3 images of Fig. 6(a).

After the short-term break-up of the oil droplets, long-range transport is (or is not)
achieved by the advection (or lack thereof) of the droplets as individual tracers. In Fig. 6(a),
the small droplets undergo the same seemingly “random walk” between vortices as seen in
earlier simulations [6,8] and experiments [14] of passive tracer transport. The result is a
spreading of the overall impurity distribution.

Quantitatively, transport for the immiscible case is analyzed in the same manner as for
miscible experiments, as described in the previous section. Each image of the fluorescing oil
is summed vertically to obtain a concentration profile, which is then smoothed and fit to a
Gaussian (Fig. 7). The concentration profiles for the oil are substantially more choppy than
those for the miscible case, due to the discrete nature of the oil droplets. Furthermore, the
advection of an individual droplet off the edge of the viewable area (or back in) can cause a
jump in the variance. Consequently, plots of (z*(¢)) for oil runs are somewhat noisy (Fig. 8).
Nevertheless, the overall trends are still clear.

In Fig. 8, (z2(t)) is plotted for the oil runs shown in Figs. 6(a) and (b), along with (z*(¢))



for the miscible experiment from Fig. 3 (also with b = 0.12). Transport for oil with small
resiliency (7 =3.0 s), denoted by the squares, is characterized by the same effective diffusion
coefficient D* as for the miscible case, seen by the fact that (z?(¢)) grows with the same slope
for the two cases. Transport is more restricted for oil with intermediate resilience (7 =1.5
s), denoted by the triangles, as indicated by the slower growth in the variance. Experiments
with large droplet resiliency (7 = 0.5 s, Fig. 6¢) are not shown on this graph. These runs
are characterized by a variance that remains constant, indicative of no long-range transport
(D*=0) [27].

There are currently no theories that address completely the chaotic transport of im-
miscible impurities. We interpret the results in these experiments here with a simplified,
phenomenological approach that considers the size distributions for the oil droplets. The
experiments with small resiliency (large 7) are characterized by the breakup of the oil into
very small droplets. Theoretically, if the droplets are small enough, they should behave as
ideal, passive tracers [28]. In this regime, which we will refer to as the tracer regime, the
transport should proceed with an enhanced diffusion coefficient D* equal to that for the
miscible case. On the other hand, if the flow is unable to break down the droplets small
enough, due either to large drop resiliency (small 7) or to a weak flow, then surface tension
effects should inhibit long-range transport (blob regime). The question then becomes: how
small is small enough? Considering the importance of lobes in the transport process, it is
natural to compare the droplet sizes to the lobe size. In the following discussion, the droplet
areas are scaled by the area of lobes measured for miscible transport with the same flow
conditions; the non-dimensional area is then given by I' = A/l, where A is the droplet area
and [ is the lobe area.

The analysis proceeds as follows: each image is binarized with an intensity threshold
chosen such that only the pixels in the image occupied by oil have intensities exceeding the
threshold. Blob analysis is then done to identify the separate clusters of pixels and determine
their areas [29]. Histograms of these areas are quite choppy, since there are typically less

than a couple hundred droplets, even after the break-up process is complete. Furthermore, a
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histogram itself is not very informative, since it is not the number of droplets of a particular
size that is critical for transport but rather what fraction of oil is contained in drops with
certain sizes.

To determine a characteristic droplet size, the histograms are weighted by the droplet
areas and integrated to determine fraction distributions f(T') = < J3 T'p(I")dT" where p(T)
is the probability distribution function for droplets with non-dimensional size I' and the
normalization constant is given by N = [;7"p(T")dI". The fraction distribution f(I") is
a measure of the fraction of the oil in the system that is contained in droplets with non-
dimensional area less than I'. A plot of f(I') is shown in Fig. 9 for the experiment of
Fig. 6(a) (small resiliency, 7 = 3.0 s). The characteristic droplet size I, is defined such that
f(I'.) = 0.5, i.e., half of the oil is contained in droplets with non-dimensional area less than
I'.. A plot of I'.(¢) is shown in Fig. 10 for the experiments shown in Fig. 6.

Comparing plots of the characteristic droplet size I'.(¢) (Fig. 10) and the variance (z?(t))
(Fig. 8) give an indication of how small the droplets need to be to behave as passive tracers
from a mixing perspective. For the large resiliency case (7 = 0.5s, Fig. 10b), I': — 2.0
in the long time limit, clearly too large for any appreciable long-range transport. On the
other hand, I'. approaches 0.17 in experiments with resiliency time 7 = 3.0 s, which display
long-range transport equivalent to the miscible case (see Figs. 6(a) and 8). A cross-over
between the tracer and blob regimes can be seen in the data of Fig. 6(b) with 7 = 1.5 s.
This run displays long-range transport, but with a significantly reduced D*. For this case,
I'. approaches 0.31 in the long time limit.

The data here seem to indicate that, for dimensionless oscillation amplitude b = 0.12, the
droplets need to be broken down to a characteristic area less than approximately a quarter
of the lobe area to behave as passive tracers and recover the enhanced transport of the
miscible case. The following sections explore these ideas further with different oscillation

amplitudes to see if this behavior is independent of the flow conditions.
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C. Immiscible mixing, 6 = 0.24 and 0.06

In general, increasing the oscillation amplitude b results in more significant oil breakup
and smaller resulting droplet areas A. Furthermore, the lobe area [ is larger for larger
b. The result is substantially smaller non-dimensional droplet sizes I' = A/l for large b.
Consequently, if the interpretation of the results from the previous section is valid, the
tracer regime should be easily achieved for b = 0.24, and should be very difficult to achieve
for b = 0.06.

A sequence showing the transport of small resiliency oil (7 = 3.0 s) for b = 0.24 is shown
in Fig. 11(a). In this case, the droplets are absolutely shattered, as can be seen in Fig. 12(a),
with the characteristic droplet size I'. dropping to 0.06 in the first minute. As expected, the
variance (z?) for this sequence (Fig. 12(b), triangles) grows almost identically to that for a
miscible dye in the same flow (upper, solid curve).

An oil with large resiliency (7 = 0.5 s) also displays good long-range transport for b =
0.24, although it takes longer for the transport to get going. As can be seen in Fig. 11(b), the
oil doesn’t start to break up appreciably until 180 s after initiation of the time dependence.
Quantitatively, it takes approximately 200 s for the characteristic droplet area I'. to drop
below 1, and 400 s for T, to drop below 1/3 (Fig. 12a). This is reflected in the variance (z?),
which does not grow appreciably until after 200 s. After this point, however, (z?) grows
with a slope equal to that for the miscible case. The long-term T'. for this experiment is
approximately 0.22, consistent with the results from the previous section that indicate that
the tracer regime is achieved if ', < 1/4.

For experiments with oscillation amplitude b = 0.06, the decrease in the lobe size (due
to the small oscillation amplitude), coupled with the larger steady state droplet areas makes
it difficult to get a situation with I'. < 1/4. Runs with 7 = 1.5 and 0.5 s all have I'. > 1
in the long time limit, and there is no long-range transport, consistent with identification
of these runs as being in the blob regime. Even with small drop resiliency (7 = 3.0 s), the

transport is significantly reduced as compared with the miscible case, as seen in Fig. 13.
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The variance (after a brief transient period) is constant up through 1000 s, after which it
increases very slowly (Fig. 13b). This is consistent with the fact that the droplet breakup
process (Fig. 13c) is extremely slow in this case, with I'. > 1 for the first 500 s and levelling
off at 0.64 after 1300 s.

To test further the idea that the droplet sizes are the primary factor in determining the
transport behavior, another experiment was done with small oscillation amplitude b = 0.06
and droplet resiliency 7 = 3.0 s, but this time, the oil was broken up manually by stirring
it violently with a small dowel rod (Fig. 14). The resulting characteristic droplet size I'. is
0.16. Consistent with the previous analysis, the variance (z?) grows with a slope equal to
that for the miscible case with b = 0.06 (Fig. 14b), indicating tracer-like transport. (The
large initial value for (z?) is due to the fact that the oil was sprayed over several vortices
during the manual break-up process.) It is also noteworthy here that I'. increases in the
long-time limit as small droplets congeal to form larger ones. This aggregation process is

not significant, though, until there has already been appreciable long-range transport.

V. DISCUSSION AND SUMMARY

Despite the substantial complication introduced by surface tension effects, we have shown
that chaotic mixing of immiscible impurities can still be interpreted using the standard,
Hamiltonian tools of chaotic advection. The process is characterized by the break-up of
the impurities into smaller droplets whose sizes determine the nature of the transport. A
characteristic non-dimensional droplet area I'. (normalized by the lobe area) is defined as
a parameter to denote the different mixing regimes, independent of the flow conditions and
the impurity surface tensions.

A tracer regime has been identified in which transport of immiscible impurities proceeds
with the same enhanced diffusion coefficient D* as for the miscible case. The condition for
this tracer regime appears to be that the droplet areas be appreciably smaller than the lobes

(determined from experiments with miscible impurities). Specifically, tracer-like transport
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is observed in all cases where the non-dimensional characteristic droplet area I', is less than
1/4. On the other hand, a blob regime is found if the flow is not able to break up the drops
small enough. In this case, where the characteristic droplet areas are larger than lobe areas
(I'. > 1) in the long-time limit, there is no appreciable long-range transport at all. An
intermediate regime has been observed for I'. ranging from approximately 0.3 to 0.7. In this
case, there is long-range transport, but with a reduced D*.

Experiments are currently in progress to address the droplet breakup process itself in
more detail, along with the aggregation phenomena seen in the bottom image of Fig. 14(a).
Presumably, different flows should result in different steady-state droplet distributions, and
a understanding of these distributions is needed for a complete theoretical description of the
process.

It is our hope that these experiments will stimulate more complete theoretical studies of
transport phenonema for immiscible impurities. In particular, more studies are needed to
understand the break-up process better and to relate this process to long-range transport.
Furthermore, the role of surface tension has to be incorporated in more detail into any

complete model of immiscible transport.
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FIGURE CAPTIONS

FIG. 1. Velocity field for a two-dimensional flow composed of a chain of alternating
vortices, analogous either to Rayleigh-Bénard convection or to the vortex flow studied in
these experiments. The equations used to generate this field assume fixed, no-slip boundary
conditions at the top and bottom boundaries.

FIG. 2. Diagram of experimental apparatus. (a) Side view. (b) Exploded view of mag-
netohydrodynamic forcing. A current passing through the thin layer of salt water interacts
with an alternating magnetic field to produce a chain of vortices. (c¢) Exaggerated view of
side-walls, emphasizing the double-step tabs used to control the meniscus. The bottom step
is 0.20 cm high, and the upper step i1s 0.05 cm above the bottom step. The fluid is almost
perfectly horizontal in the region of interest.

FIG. 3. Sequence of images showing transport of uranine dye (miscible) with oscillation
amplitude b = 0.12; time (from the top): 0's, 18 s, 39 s, 75 s and 189 s, corresponding to 0,
1, 2, 4 and 10 periods of oscillation.

FIG. 4. Smoothed concentration profiles (dotted lines) with Gaussian fits (solid lines)
for sequence shown in Fig. 3; miscible impurity, b = 0.12; times 0 s (narrow curve), 600 s
(medium), and 1200 s (broad).

FIG. 5. Variance {(z%(¢)) for transport of miscible impurities; b = 0.06 (triangles, lower
curve), 0.12 (circles, middle curve), and 0.24 (squares, upper curve). The solid lines show
the predicted growth of (z%(¢)), based on the size of the lobes (see Ref. 7).

FIG. 6. Sequence of images showing transport of oil (immiscible) with b = 0.12. (a)
Small resiliency; 7 = 3.0 s. (b) Medium resiliency; 7 = 1.5 s. (c¢) Large resiliency; 7 = 0.5 s.
For each case, the time (from the top) is: 18 s, 39 s, 75 s, 189 s, and 1890 s, corresponding
to 1, 2, 4, 10, and 99 periods of oscillation.

FIG. 7. Smoothed concentration profiles (dotted lines) with Gaussian fits (solid lines)
for sequence shown in Fig. 6a; immiscible impurity, b = 0.12, resiliency 7 = 3.0 s. Time: 0

s (narrow curve), 600 s (medium), and 1200 s (broad curve).
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FIG. 8. Variance (z%(t)) for sequences in Figs. 6a and b. The squares correspond to the
small resiliency (7 = 3.0 s) case, shown in Fig. 6a. The triangles correspond to the medium
resiliency case (7 = 1.5 s), shown in Fig. 6b. The variance (z*(¢)) for miscible transport
under the same conditions is shown as the top solid curve for reference.

FIG. 9. Drop size analysis for immiscible transport run of Fig. 6a; b = 0.12, 7 = 3.0 s.
The non-dimensional droplet area is I' = A/l, where A and [ are the droplet and lobe areas,
respectively. The fraction distribution f represents the fraction of all the oil in the system
contained in droplets with non-dimensional area less than I". The four curves correspond to
(from the bottom): 30 s, 60 s, 120 s and 1500 s after initiation of the oscillation.

FIG. 10. Characteristic non-dimensional droplet area I'.(¢) for immiscible experiments
from Fig. 6; b = 0.12. (a) Runs from Figs. 6a and b, corresponding to 7 = 3.0 s (bottom,
solid curve) and 1.5 s (upper, dotted curve). (b) Run from Fig. 6¢, with 7 =0.5 s.

FIG. 11. Sequence of images showing transport of oil (immiscible) with b = 0.24. (a)
Small resiliency; 7 = 3.0 s. (b) Large resiliency; 7 = 0.5 s. For each case, the time (from
the top) is: 18 s, 39 s, 75 s, 189 s, and 1890 s, corresponding to

FIG. 12. Analysis of data from experiments shown in Fig. 11; b = 0.24. (a) Characteristic
non-dimensional droplet area I'.(¢); 7 = 3.0 s (solid, lower curve); 7 = 0.5 s (dotted, upper
curve). (b) Variance (z%(¢)); 7 = 3.0 s (triangles, upper curve); 7 = 0.5 s (circles, lower
curve). The data from the run with miscible dye is also included on this graph for reference
(upper solid curve).

FIG. 13. Immiscible transport, b = 0.06, small droplet resiliency (7 = 3.0 s). (a)
Sequence of images, corresponding to (from top): 18 s, 39 s, 75 s, 189 s and 1889 s (1, 2,
4, 10 and 99 periods of oscillation, respectively). (b) Variance (x?(¢)) (circles), along with
results from miscible case (solid curve). (¢) Characteristic droplet size I'.(¢).

FIG. 14. Immiscible transport with oil artificially broken up; b = 0.06, 7 = 3.0 s. (a)
Sequence of images, corresponding to (from top): 18 s, 39 s, 75 s, 189 s and 1903 s (1, 2,
4,10 and 100 periods of oscillation). (b) Variance (z*(¢)) (circles), along with results from

miscible case (solid curve).
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FIG. 1. Velocity field for a two-dimensional flow composed of a chain of alternating vortices,
analogous either to Rayleigh-Bénard convection or to the vortex flow studied in these experiments.
The equations used to generate this field assume fixed, no-slip boundary conditions at the top and

bottom boundaries.
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FIG. 2. Diagram of experimental apparatus. (a) Side view. (b) Exploded view of magneto-
hydrodynamic forcing. A current passing through the thin layer of salt water interacts with an
alternating magnetic field to produce a chain of vortices. (c) Exaggerated view of side-walls, em-
phasizing the double-step tabs used to control the meniscus. The bottom step is 0.20 cm high, and
the upper step is 0.05 cm above the bottom step. The fluid is almost perfectly horizontal in the

region of interest.
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FIG. 3. Sequence of images showing transport of uranine dye (miscible) with oscillation ampli-
tude b = 0.12; time (from the top): 0s, 18 s, 39 s, 75 s and 189 s, corresponding to 0, 1, 2, 4 and

10 periods of oscillation.
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FIG. 4. Smoothed concentration profiles (dotted lines) with Gaussian fits (solid lines) for se-

quence shown in Fig. 3; miscible impurity, b = 0.12; times 0 s (narrow curve), 600 s (medium), and

1200 s (broad).
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FIG. 5. Variance (z%(t)) for transport of miscible impurities; b = 0.06 (triangles, lower curve),
0.12 (circles, middle curve), and 0.24 (squares, upper curve). The solid lines show the predicted

growth of (z?(t)), based on the size of the lobes (see Ref. 7).
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FIG. 6. Sequence of images showing transport of oil (immiscible) with & = 0.12. (a) Small
resiliency; 7 = 3.0 s. (b) Medium resiliency; 7 = 1.5 s. (c) Large resiliency; 7 = 0.5 s. For each
case, the time (from the top) is: 18 s, 39 s, 75 s, 189 s, and 1890 s, corresponding to 1, 2, 4, 10,

and 99 periods of oscillation.
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FIG. 7. Smoothed concentration profiles (dotted lines) with Gaussian fits (solid lines) for se-
quence shown in Fig. 6a; immiscible impurity, b = 0.12, resiliency 7 = 3.0 s. Time: 0 s (narrow

curve), 600 s (medium), and 1200 s (broad curve).
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FIG. 8. Variance (z2(t)) for sequences in Figs. 6a and b. The squares correspond to the small
resiliency (7 = 3.0 s) case, shown in Fig. 6a. The triangles correspond to the medium resiliency
case (1 = 1.5 s), shown in Fig. 6b. The variance (z*(¢)) for miscible transport under the same

conditions is shown as the top solid curve for reference.
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FIG. 9. Drop size analysis for immiscible transport run of Fig. 6a; b = 0.12, 7 = 3.0 s. The
non-dimensional droplet areais I' = A/l, where A and [ are the droplet and lobe areas, respectively.
The fraction distribution f represents the fraction of all the oil in the system contained in droplets
with non-dimensional area less than I'. The four curves correspond to (from the bottom): 30 s, 60

s, 120 s and 1500 s after initiation of the oscillation.
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FIG. 10. Characteristic non-dimensional droplet area I'.(¢) for immiscible experiments from

Fig. 6; b = 0.12. (a) Runs from Figs. 6a and b, corresponding to 7 = 3.0 s (bottom, solid curve)

and 1.5 s (upper, dotted curve). (b) Run from Fig. 6¢, with 7 =0.5 s.

30



(@)

(b)

FIG. 11. Sequence of images showing transport of oil (immiscible) with b = 0.24. (a) Small
resiliency; 7 = 3.0 s. (b) Large resiliency; 7 = 0.5 s. For each case, the time (from the top) is: 18

s, 398, 75 s, 189 s, and 1890 s, corresponding to 1, 2, 4, 10, and 99 periods of oscillation.
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FIG. 12. Analysis of data from experiments shown in Fig. 11; b = 0.24. (a) Characteristic
non-dimensional droplet area I'.(t); 7 = 3.0 s (solid, lower curve); 7 = 0.5 s (dotted, upper curve).
(b) Variance (z%(t)); 7 = 3.0 s (triangles, upper curve); 7 = 0.5 s (circles, lower curve). The data

from the run with miscible dye is also included on this graph for reference (upper solid curve).
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FIG. 13. Immiscible transport, b = 0.06, small droplet resiliency (7 = 3.0 s). (a) Sequence of
images, corresponding to (from top): 18 s, 39 s, 75 s, 189 s and 1889 s (1, 2, 4, 10 and 99 periods
of oscillation, respectively). (b) Variance (z%(t)) (circles), along with results from miscible case

(solid curve). (c) Characteristic droplet size I'.(t).
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FIG. 14. Immiscible transport with oil artificially broken up; & = 0.06, 7 = 3.0 s. (a) Sequence
of images, corresponding to (from top): 18 s, 39 s, 75 s, 189 s and 1903 s (1, 2, 4, 10 and 100

periods of oscillation). (b) Variance (z%(f)) (circles), along with results from miscible case (solid

curve).
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