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Abstract

Enhanced, passive transport is studied numerically in an oscillating vortex chain with stress-free boundary conditions.
The long-range transport is found to be diffusive in the long-time limit with an effective diffusion coefficient D∗ that peaks
dramatically in the vicinity of a few, well-defined resonant frequencies. Superdiffusive transients are also observed for
frequencies near these resonant frequencies, with the duration of the transients diverging at the resonant frequencies. Standard
analytical techniques based on the Melnikov approximation and on lobe dynamics fail to explain the behavior in the vicinity
of these resonant peaks. An alternate explanation is provided, based on flights that have power-law scaling up to a maximum
length that also diverges at the resonant frequencies. The long flights for frequencies near the resonant peaks occur because
tracers in a lobe return (after an integer number of oscillation periods) to almost precisely the same location in the lobe of
another vortex. These periodic orbits correspond to the formation — only at the resonant frequencies — of “tangle islands”
within the chaotic region. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 05.40.Fb; 47.52.+j; 94.10.Lf; 05.45.Pq
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1. Introduction

Theories of deterministic chaos have been shown to
have significant applications in studies of fluid mix-
ing [1–4]. Simple, laminar fluid flows can advect pas-
sive tracers in surprisingly complicated trajectories
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that separate exponentially in time (“sensitive depen-
dence on initial conditions”). Lagrangian chaos — as
this process is called — has dramatic effects on the ef-
ficiency of mixing in these flows. In fact, Lagrangian
chaos has already found applications in chemical mix-
ing processes for viscous flows where turbulent mix-
ing would be too expensive energetically.

Studies of Lagrangian chaos have been extended to
investigate long-range transport — mixing of impu-
rities over distances much longer than typical length
scales of the flow [5–7]. Chaotic motion of the trac-
ers replaces Brownian motion as the dominant mecha-
nism for mixing, resulting in significant enhancements
in long-range transport beyond that due to molecular
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diffusion. Long-range transport is typically analyzed
by studying the growth of the variance 〈x2〉 of a dis-
tribution of passive tracers as a function of time. If
the variance grows as a power law in time 〈x2〉 ∼ tγ
with γ = 1.0, then the process is referred to as nor-
mal, enhanced diffusion. On the other hand, transport
with γ < 1 or γ > 1 correspond to what are called
“sub-diffusion” or “superdiffusion,” respectively. In
the long-time limit, subdiffusion is not allowed for in-
compressible velocity fields in the absence of molec-
ular diffusion [8].

In cases where the transport is normal, enhanced
diffusion, two standard theoretical approaches are typ-
ically used to predict enhanced diffusion coefficients
D∗: Melnikov analysis and lobe dynamics. Both of
these approaches are based on a determination of the
flux of tracers between adjacent vortices during one
oscillation period.

Recent theories indicate that superdiffusive trans-
port is associated with tracers whose trajectories can
be characterized as “Lévy flights” [9–11], where trac-
ers can jump very long distances (relative to typical
length scales in the flow) between regions in which
they are temporarily confined. The connection be-
tween superdiffusive transport and Lévy flights has
been verified experimentally in two-dimensional (2D),
quasi-geostrophic (planetary-type) fluid flows [12,13].

Theories of deterministic chaos have been instru-
mental in understanding how Lévy flights can arise in
fluid mixing problems. Typically, a flow is divided into
ordered and chaotic regions, categorized by the trajec-
tories of tracers moving in the regions. The regions are
separated by “KAM barriers” across which no tracer
can cross. Tracers in the chaotic regions can come ar-
bitrarily close to a KAM barrier, though, in which case
they “stick” temporarily, mimicking the behavior of
ordered trajectories in the region bounded by that bar-
rier [14,15]. If some of the ordered regions correspond
to unbounded motion in which tracers travel long dis-
tances in short times, then sticking to the KAM barri-
ers surrounding these regions will result in long flights
[16].

In this paper, we present numerical studies of res-
onant superdiffusion in a time-periodic, 2D flow con-
sisting of an oscillating vortex chain. Mixing in this

flow is typically “normal” (γ = 1.0) enhanced dif-
fusion [17,18] with an enhanced diffusion coefficient
D∗ that depends linearly on oscillation amplitude (if
small) and non-trivially on the frequency. At certain
precise frequencies, though, the transport is superdif-
fusive, consistent with previous theoretical studies of
this system [19]. Near — but not at — these reso-
nant frequencies, we find that there is still a signifi-
cant transient regime of superdiffusive behavior, after
which the system settles to normal diffusion with a
D∗ that is significantly enhanced by the transient su-
perdiffusion. Standard approaches based on Melnikov
and lobe analyses fail to explain not only the transient
superdiffusion but also the long-term D∗ for frequen-
cies near the resonant peaks.

We show that near the resonant frequencies, tracer
trajectories show flights with scaling properties similar
to a Lévy distribution for small length flights. These
flights dominate the transport statistics, explaining the
failure of the Melnikov and lobe analyses, which con-
sider behavior only on timescales of one oscillation
period and distances of one vortex width. At the reso-
nant frequencies, periodic orbits are found within the
lobes — along with very small “tangle islands” [20]
— that explain the presence of flights at these frequen-
cies. These periodic orbits disappear for frequencies
away from the resonance peaks.

In Section 2, we discuss theories of Lagrangian
chaos and long-range transport, and present the model
flow. The results of numerical simulations of this flow
are presented in Section 3. Different approaches are
used to explain the results of the simulations in Sec-
tion 4, and a summary is presented in Section 5.

2. Background and model flow

2.1. Oscillating vortex chain flow

Whereas Lagrangian chaos can occur in three-
dimensional (3D) time-independent flows [21,22], it is
possible in 2D flows only if the flow is time-dependent.
The flow studied in this paper is a particularly simple
time-dependent flow: a 2D, time-periodic flow com-
posed of an oscillating vortex chain which was first
proposed [6,23] as a simple model of time-periodic
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Fig. 1. Velocity field for oscillating vortex chain.

Rayleigh–Bénard (RB) convection [24]. The equa-
tions describing this flow are as follows:
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2d
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In these equations, a is the maximum speed, d the
vortex height, λ the wavelength of the vortex chain,
and B the amplitude of the lateral oscillation of the
vortex chain. The flow satisfies the incompressibility
condition 	∇ · 	v = 0. A plot of the velocity field at an
instant in time is shown in Fig. 1. As the flow evolves
in time, the entire velocity field oscillates back and
forth in the horizontal (x) direction.

A simplification implicit in this model is the as-
sumption of free-slip boundary conditions, even
though most real convective flows have no-slip (rigid)
boundary conditions. Despite this simplifying as-
sumption, the model captures important features that
are characteristic of Lagrangian chaos in a wide va-
riety of time-periodic, 2D flows. A follow-up to this
paper will compare this model to one with no-slip
boundary conditions, and compare both with on-going
experimental studies.

The first experimental studies of transport in this
system utilized time-periodic RB convection [6,23].
Those studies first demonstrated the possibility for
Lagrangian chaos in this system and showed the ap-
plicability of this model to real flows. Furthermore,
the experiments found that the transport could be de-
scribed as normal, enhanced diffusion where the vari-
ance 〈x2〉 of a distribution of tracers grows as tγ

with γ = 1. Specifically, 〈x2〉 = 2D∗t , where D∗ is
the enhanced diffusion coefficient. It was found that

D∗ grows linearly with amplitude of oscillation (for
small amplitudes), although quantitative comparisons
between the model and experiment were complicated
by weak, secondary, 3D flows and by the fact that
the primary instability to periodic time-dependence in
RB convection is not necessarily a pure lateral oscil-
lation (depending on the Prandtl number of the fluid)
[24]. Those experiments were followed by theoretical
studies that explained the linear dependence on am-
plitude [7].

More recent experiments utilized magneto-hydro-
dynamically forced vortex chains, resulting in much
more carefully controlled experiments [17,18]. The re-
sults — which still indicated normal, enhanced diffu-
sion — were analyzed and explained using a theory
based on lobe (turnstile) dynamics [5,25,26], which is
described in more detail in Section 4. Those experi-
ments also extended the studies to include transport of
immiscible impurities.

Recent theoretical studies of this system [19] have
begun to address the dependence of the transport on
the frequency of oscillation. The result is a very com-
plicated dependence of D∗ on f with sharp, upward
peaks at various frequencies. Also, infinitesimally thin
windows of superdiffusive behavior were found in
those studies. One of the primary goals of the studies
described in this paper is to provide an explanation for
these superdiffusive regimes.

2.2. Lévy flights and superdiffusion

A Lévy flight (sometimes called a “walk”) is de-
fined as a trajectory with jumps with a wide range of
lengths L. The probability distribution function (PDF)
p(L) for a Lévy flight has infinite second moment:
〈L2〉 = ∫ ∞

0 L
2p(L) dL = ∞ [9,10]. This condition is
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satisfied if the PDF is a power law p(L) ∼ L−µ with
µ < 3.

The connection between Lévy flights and superdif-
fusive transport has been investigated by several the-
orists [11,27–30]. A comprehensive theory relates the
exponent γ for the growth of the variance to the statis-
tics of both the flights and the trapping events. We
limit our discussion here to the case where the trapping
events have durations T with finite second moment:
〈T 2〉 
= ∞. In this regime, if the flight PDFs can be
described as power-law relations, then γ is predicted
to depend on the decay exponent µ as follows:

γ =




2, µ < 2,

4 − µ, 2 < µ < 3,

1, µ > 3.

(3)

These predictions assume that the flights are statis-
tically independent, an assumption that is somewhat
controversial [31]. 3 The theories also apply only to
the long-time limit, a limit that can be difficult to
achieve experimentally. Practically, almost every real
system displays normal diffusion in the long-time
limit, either because of the effects of molecular dif-
fusion (which are always present) or because the
finite size of the system limits the lengths that the
flights can achieve. Sub- and superdiffusion are still
very relevant experimentally, though, as transient
regimes can have durations comparable to or even
longer than the relevant time scales of many pro-
cesses. Transient sub-diffusion has been studied both
theoretically [32,38] and experimentally [33,39] in a
time-independent, 2D vortex flow. Transient superdif-
fusive transport has received less attention.

3. Numerical results

The model equations (Eqs. (1) and (2)) can be
non-dimensionalized by scaling all distances by the
vortex width d , velocities by a, and time by the char-
acteristic advective time τadv = d/a; this is the time

3 For a discussion of integrating correlations within the framework
of Eq. (3), see [37].

to traverse a single vortex at the maximum velocity.
(There is no single characteristic circulation time
as tracers at different distances from vortex centers
take different times to complete a full rotation.) Fur-
thermore, in all of the simulations in this paper, the
vortices are assigned unit aspect ratio, so λ = 2d.
In non-dimensional form, Eqs. (1) and (2) can be
re-written as

ẋ = − cos(π [x + b sinωt]) sin(πy), (4)

ẏ = sin(π [x + b sinωt]) cos(πy). (5)

The non-dimensional oscillation amplitude b = B/d

is 0.12 for all the simulations.
Eqs. (4) and (5) are integrated using a fourth-order

Runge–Kutta technique. Fig. 2 shows simulations of
the evolution of 10,000 particles (initially distributed
within a single vortex) for frequencies f = 0.095 and
0.106 (parts a and b, respectively). Qualitatively, the
behavior seen in these simulations is similar to that
from previous experiments; see, e.g., Fig. 2 from Ref.
[17] or Fig. 3 from Ref. [18].

A Poincaré section is shown in Fig. 3. Trajectories
are determined for five tracers and plotted once every
period of oscillation. The phase space (which is real
space here) is characterized by large core regions in
the vortex centers in which tracers undergo regular,
ordered trajectories. Surrounding these core regions
is a chaotic web that wraps around and between the
vortices. Whereas tracers in the chaotic web are free
to move between vortices (contributing to long-range
transport), those within the ordered core regions re-
main confined to their original vortex.

The variance 〈x2〉 of tracer distributions is plotted
as a function of time in Fig. 4. Typically, the vari-
ance grows linearly with time after a brief transient (a
few times the characteristic advection times τadv); see,
e.g., the lower two curves in Fig. 4 (f = 0.115 and
0.095). For limited ranges of frequencies, though, the
variance grows superdiffusively for small times; see,
e.g., the upper dashed curve in Fig. 4 (f = 0.106). On
occasion, a brief sub-diffusive transient regime will
be apparent before the curve flattens out to diffusive
behavior; see the solid curve in Fig. 4 (f = 0.095).
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Fig. 2. Sequences showing the evolution of an ensemble of 10,000 tracers, initially distributed in the center vortex: (a) oscillation frequency
f = 0.095; (b) f = 0.106. From the top, times after beginning of simulation are t = 2, 4, 6, 8, 10 and 20 in non-dimensional units.

Clearly, the long-term transport is very different for
these three frequencies. On the other hand, though,
the three curves in Fig. 4 are identical for times t <
20; consequently, the dramatic differences between the
longer term transport properties for f = 0.095, 0.106
and 0.115 are not simply due to differences in the
flux of impurities between vortices during a single
oscillation period. This conclusion is also supported
qualitatively by Fig. 2; comparing the behavior at f =
0.095 with that for f = 0.106, there is no significant
difference between the two, also indicating that the
differences are not explained by a simple flux analysis.
These points are discussed further in Sections 4.1 and
4.2.

Fig. 3. Poincaré section for f = 0.095. The trajectories of five
tracers (only one of which is in the chaotic region) are determined
and plotted once every period of oscillation.

If the transport can be described as “normal” en-
hanced diffusion (〈x2〉 ∼ tγ with γ = 1), then an
enhanced diffusion constant D∗ can be determined
from the slope of a plot of 〈x2〉 versus t . If the trans-
port is superdiffusive, though, D∗ is a time-dependent
function. As shown by Vulpiani and coworkers [19]
the transport is not superdiffusive in the long-time
limit except at only certain, precise resonant frequen-
cies, so in general the slope of 〈x2〉(t) can be deter-
mined at long times to get an approximation of D∗.
Fig. 5 shows D∗ (determined from the variance plot
for t > 100) plotted as a function of oscillation fre-
quency. Two large resonant peaks are apparent, the
first peak occurring at f = 0.106, and corresponding

Fig. 4. Growth of variance 〈x2〉 of distribution versus non-
dimensional time t . Frequency of oscillation f = 0.095 (lower,
solid line), 0.106 (upper, dashed line) and 0.115 (middle,
long-dashed line).
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Fig. 5. Enhanced diffusion coefficient D∗ as a function of fre-
quency f of the oscillation. For all points, D∗ was determined by
taking the slope of the plot of 〈x2〉 versus t for t > 100.

to the top dashed curve in Fig. 4 and the simulation in
Fig. 2b.

Fig. 6 shows logarithmic plots of the variance for
frequencies close to the first resonance peak at f =
0.106. Even though the transport is superdiffusive in
the long-time limit only precisely at the resonant fre-
quency [19], there are transient superdiffusive regimes
for frequencies near the resonant frequency, with the
duration of these transient regimes decreasing the

Fig. 6. Growth of variance 〈x2〉 versus time t ; from top, f = 0.106
(solid curve), f = 0.105 (long-dashed curve), f = 0.103 (dashed
curve), and f = 0.095 (dotted curve): (a) logarithmic plot; (b)
slope of plots from (a), revealing growth exponent γ versus time.

farther f is from the resonant frequency. 4 The tran-
sient superdiffusion is followed by normal diffusion in
these cases. For frequencies outside the peak regions
in Fig. 5, the superdiffusive transients disappear, and
the transport is normal (γ = 1) throughout, with the
exception of a few situations (such as at f = 0.095,
bottom dotted curves in Fig. 6), where there is a
transient sub-diffusive regime.

Numerical inaccuracy could affect interpretation of
the results from Fig. 6. Conceptually, numerical errors
have a similar effect on the numerical results as the
molecular diffusion has on the experimental results. In
particular, the addition of either numerical or Brown-
ian noise limits the timescale for superdiffusive growth
of the variance, resulting in normal diffusion at long
times. We minimize these effects by choosing a time
step in the simulations that is small enough such that
the results are insensitive to changes in that step. A
better indication of the effects of numerical noise on
the results can be seen from the data in Fig. 6 itself.
Since the superdiffusive regime at the resonance peak
(f = 0.106) is maintained up until at least t = 200
(log(t) = 2.3), it can be seen that the drop-off in γ
at earlier times for other frequencies is not due to nu-
merical noise.

4. Analysis

The central questions are as follows: (1) What is
the cause of the resonance peaks in D∗ as a function
of f (Fig. 5)? (2) Why is the transport superdiffusive
at short times in the vicinity of these peaks, and why
is this superdiffusive transport of limited duration in
these cases?

Commonly, long-range chaotic transport is ana-
lyzed theoretically either by looking at “lobes” (or
“turnstiles”) that are responsible for interchange of
tracers between adjacent vortices, or by calculating
the Melnikov function for the system. We will exam-
ine both of these local approaches to transport in the
context of the results presented above.

4 Calculation of D∗ in the long-time limit is less accurate near
the peaks of the resonance curve, since the duration of the transient
superdiffusive regime diverges at the resonances.
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4.1. Melnikov analysis

Transport in Hamiltonian systems (such as this one)
is often analyzed by computing the Melnikov function
[34]

M =
∫ ∞

0
{ψ0(x0, y0), ψ1(x0, y0)} dt, (6)

where {f, g} = ∂xf ∂yg − ∂yf ∂xg is the Poisson
bracket of functions f and g. The streamfunc-
tion is approximated to first order as ψ(x, y) =
ψ0(x, y)+ εψ1(x, y, t), where ψ0 is the unperturbed
(time-independent) portion of the streamfunction and
ψ1 is the first-order approximation to the time-periodic
perturbation:

ψ0(x, y) = −ad

π
cos

(πx
d

)
cos

(πy
d

)
, (7)

ψ1(x, y) = a sin
(πx
d

)
cos

(πy
d

)
sin(ωt), (8)

where a and d are both 1, as before. In Eq. (6), x0 and
y0 refer to coordinates of a trajectory connecting the
two fixed points along an unperturbed separatrix (i.e.,
if ε = 0).

The Melnikov integral M represents a first-order
approximation of the variation  ψ0 of the stream-
function encountered by a tracer as it moves in the
vicinity of the separatrix between adjacent vortices.
It is related to the flux F of tracers during one oscil-
lation period by the relation [34]

F = ε 4

π
|M|. (9)

For a normally diffusive process, this flux can then
be related to the enhanced diffusion coefficient
D∗ by Fick’s law: F = D∗∂c̄/∂x, where c̄ is the
coarse-grained concentration field, smoothed to re-
move variations within a unit cell of the flow. Conse-
quently, |M| should be proportional to D∗.

The absolute value of the Melnikov function for this
system is plotted as a function of oscillation frequency
f in Fig. 7a. Comparing this figure with Fig. 5, it
is clear that |M| does not capture the dominant fre-
quency dependence of D∗. In particular, the two main
resonance peaks from Fig. 5 are completely missing
in the Melnikov analysis.

Fig. 7. Melnikov analysis: (a) plot of absolute value of Melnikov
function |M| versus frequency; (b) initial value of enhanced dif-
fusion coefficient D∗

0 , determined from the slope of 〈x2〉 versus t
for t < 5 for numerical data in Figs. 4–6.

The Melnikov function does not incorporate tracer
motion that occurs over timescales longer than a sin-
gle oscillation period. As was discussed in Section 3
in conjuction with Fig. 4, significant deviations in the
transport occur only after several periods of oscilla-
tion; consequently, it is not surprising that the Mel-
nikov analysis fails to capture the frequency depen-
dence of the long-time behavior of D∗.

The results of these studies indicate that care must
be taken when using Melnikov analysis to study
transport; specifically, the presence of flights will de-
stroy the ability of the Melnikov technique to capture
long-term behavior. The Melnikov analysis, however,
does capture the very short-term transport properties,
as shown in Fig. 7b, which shows the short-time limit
of the enhanced diffusion coefficient D∗

0 , which is
D∗ calculated for t < 5 from the same data used
to generate Fig. 5. This is further evidence that the
resonance behavior in Fig. 5 is due to tracer motion
that occurs over timescales much longer than a single
oscillation period.
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4.2. Lobes

Another approach commonly used to analyze trans-
port involves characterizing lobes [7,25,26] which
provide the mechanism for transport between vortices.
Whereas a simple analysis of “primary” lobes suffers
from the same limitations as the Melnikov analy-
sis (i.e., capturing behavior over only the timescale
of a single oscillation), a generalization based on
“secondary” intersections can capture longer term
behavior.

A cartoon illustrating lobe analysis is shown in
Fig. 8. Two hyperbolic fixed points are shown as
open circles, along with the unstable manifold of
the top one (solid curve) and the stable manifold
of the bottom one (dashed curve). If the 2D flow is
time-independent (Fig. 8a), the two manifolds coin-
cide and form a separatrix dividing two regions of
the flow. In this case, transport can occur past this
unperturbed separatrix only via molecular diffusion.
If the flow is time-periodic (Fig. 8b and c), though,
the manifolds do not coincide; rather, they become
very complex structures that intersect at numerous
locations between the two fixed points.

The regions bounded by the manifolds (identified
by numbers — 1, 2, 3, 4 — and letters — a, b, c —
in Fig. 8) are the lobes. Any tracers that are contained
in lobe #1 at one instant will end up in lobe #2 one

Fig. 8. Cartoon sketch of lobe analysis. The solid (dashed) curve
represents the unstable (stable) manifold of the upper (lower)
fixed point. The intersections of these manifolds are the lobes.
(a) Unperturbed (time-independent) case. The unstable manifold
of the upper fixed point coincides with the stable manifold of
the lower fixed point. (b), (c) Perturbed (time-periodic) case; (b)
shows only the primary lobes, whereas (c) shows a secondary
intersection as well.

period later, then #3, etc. Similarly, tracers in lobe a
will move to lobe b after one period, then lobe c, etc.
The result is that tracers to the left of the unperturbed
(time-independent) separatrix — i.e., those in lobe a
— cross over to the right of the unperturbed separatrix
and vice versa.

This is the primary advective mechanism for mixing
between vortices and for long-range transport. Since
the flow is incompressible, the flux of tracers from
one vortex to the next is determined by the area of the
primary lobe. (This is the area of any of the numbered
or lettered lobes in Fig. 8 — they must have the same
area.)

The lobe picture is more complicated for a spa-
tially periodic system, such as the oscillating vortex
flow studied here (Fig. 9), particularly if the oscilla-
tion period is longer than the advective timescale τadv,

Fig. 9. Simplified sketch of lobe analysis for oscillating vor-
tex chain. The solid (dashed) curve represents the unstable (sta-
ble) manifold of the upper (lower) fixed point. (a) Unperturbed
(time-independent) case. The unstable manifolds of the upper fixed
points coincide with the stable manifolds of the lower fixed points
and form the separatrices between adjacent vortices. (b), (c) Per-
turbed (time-periodic) case; (b) shows the primary lobes responsi-
ble for the flux of impurities across a vortex boundary; (c) shows
a secondary intersection (near the lower left).
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in which case there is typically significant stretching
and folding of the lobes after only a couple of oscil-
lation periods. Nevertheless, the same mechanism ap-
plies for mixing of tracers between adjacent vortices.

Previous experiments [17,18] demonstrated that an
analysis of the areas of the lobes (such as lobe b in
Fig. 9b) can successfully predict long-range transport
properties of the system. Specifically, the flux deter-
mined from these lobe areas were used successfully to
predict the enhanced diffusion coefficient D∗. How-
ever, this clearly is not the entire picture. As outlined
in Section 4.1, any analysis that depends only on the
flux between vortices during one period cannot fully
explain the frequency-dependence of D∗, nor can it
explain the transient superdiffusion observed in the
vicinity of the resonance peaks. It is clear, then, that
the previous experiments were at a frequency away
from resonance peaks.

The lobe analysis can be extended to account for
behavior that occurs over timescales longer than a sin-
gle oscillation period. Theoretical studies [35] have
indicated that secondary lobe intersections can have a
significant effect on the transport properties of the sys-
tem. The basic idea is illustrated in Figs. 8c and 9c. If
there is overlap between different lobes, then the flux
between vortices can be different from that inferred
only from the area of the primary lobes. In Fig. 8c, for
instance, tracers that start in lobe #1 move into lobe
#2 one period later, then cross over the unperturbed
separatrix into lobe #3 and then lobe #4 in successive
periods. But part of lobe #4 overlaps with lobe a, and
that portion will cross back over the unperturbed sep-
aratrix to the right into lobe b in the following period.
The net result is a reduction in the long-term flux of
tracers from the right to the left.

In a periodic system — such as the one studied here
— secondary intersections can result in enhancements
in the flux beyond those determined from the primary
lobe areas. In Fig. 9c, tracers that are in lobe a cross a
separatrix into lobe b after one period. After the next
oscillation period, these tracers are in lobe c, which
can stretch across another vortex separatrix since the
velocity field repeats after two vortices. (Fig. 9 is dis-
played with periodic boundary conditions.) As drawn
in Fig. 9c, a portion of lobe c overlaps with lobe a;

tracers in that overlap region will cross over another
unperturbed separatrix during the next oscillation pe-
riod, enhancing the transport.

Illustrating the effects of secondary lobe intersec-
tions for this system is problematic. First, for the
frequencies studied here, the lobes are extremely com-
plicated. An idea of this complicated structure can be
inferred from Fig. 2. In both of the parts of this figure,
the second image from the bottom shows the tracer
locations after one oscillation period, and the bottom
after two oscillation periods. Although, not rigorously
a plot of the manifolds, the manifolds have the same
complexity as the tracer patterns outside the center
vortex. As discussed above, it is necessary to look at
behavior over timescales of more than a few oscilla-
tion periods (tens of periods, in fact). The manifolds
after two periods are hopelessly complex; in fact, so
much stretching and folding occurs in a few periods
that there are dozens of different intersections.

Attempts at characterizing differences in the sec-
ondary intersections in this system near the resonance
peaks have been unsuccessful due to the complexity
of the manifolds for this system and to the long time
scales required.

4.3. Resonant Lévy flights and periodic orbits

When confronted with superdiffusive transport, it is
natural to ask if the trajectories can be described as
Lévy flights. Qualitative evidence of flights is shown in
Fig. 10, which shows plots of horizontal position ver-
sus time. The bottom curve corresponds to a frequency
f = 0.095, just outside the peak region of Fig. 5,

Fig. 10. Horizontal position of tracer particles versus time;
f = 0.106 (upper, dashed curve), f = 0.095 (lower, solid curve).
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Fig. 11. Flight length PDFs; f = 0.095 (open circles), f = 0.103
(open squares), f = 0.105 (open diamonds in (b) only), f = 0.106
(filled triangles). (a) Logarithmic plots. (b) Negative of the
(smoothed) slopes of the plots from (a), revealing the exponent µ
as a function of length. The horizontal line corresponds to µ = 2.6.

whereas the top curve corresponds to f = 0.106, close
to the resonance peak. Jumps can be seen in the tra-
jectory for f = 0.106 (some over a hundred vortex
widths), reminiscent of Lévy flights. PDFs p(L) of
these flights are plotted in Fig. 11. At the resonant fre-
quency (f = 0.106, filled triangles), there is a signifi-
cant scaling region where p(L) ∼ L−µ with µ = 2.6
up to L = 40 (log(L) = 1.6), 5 although p(L) decays
more rapidly for jumps longer than 40 vortex widths.
Technically, these are not Lévy flights, since the en-
hanced decay of p(L) at large L gives the flights a
finite second moment. However, the power-law scal-
ing for smaller L explains the transient superdiffusive
growth of the variance observed at and near this fre-
quency. Despite concerns about the use of Eq. (3) for
predicting transient behavior, this short-length value
of µ is consistent with the prediction from Eq. (3)
and Fig. 6 for the scaling growth of the variance: γ =
4 − µ.

5 The slopes in Fig. 11a have been smoothed to obtain the graph
of µ in Fig. 11b; consequently, the scaling region appears to be
slightly smaller when plotted in Fig. 11b.

For frequencies very close to the resonant frequency
(f = 0.105, open diamonds in Fig. 11b), p(L) still
scales as a power with an exponent µ = 2.6, although
p(L) deviates from this relation at a smaller length
L than for the resonant frequency. As the frequency
deviates more and more from the resonant frequency
(f = 0.103 and 0.095, open squares and circles, re-
spectively), the deviation from a power law with Lévy
scaling occurs at smaller and smaller flight lengths un-
til (outside the resonance hump) there is no apprecia-
ble power-law scaling region at all. This is consistent
with the observations of transient superdiffusion with
smaller and smaller duration as the frequency deviates
from the resonant frequency (Fig. 6).

The fact that the tracers undergo flights with Lévy
scaling for small-to-moderate lengths explains why
the flux-based analyses of the previous two sections
fail for this system. As is common in transport with
flights, a small number of tracers undergoing very long
flights can dominate the variance calculations. In gen-
eral, any analysis that depends on calculation of flux
for one oscillation period will fail in a system where
long flights are significant (i.e., with PDFs with sig-
nificant power-law regimes).

An explanation of the origin of the flights can be
obtained by extending the lobe analysis, looking not
just at secondary intersections, but at where the inter-
sections occur. A secondary lobe intersection — such
as that sketched in Fig. 9c — is a necessary condition,
but not sufficient for long flights; such an intersection
guarantees only that the tracer will cross into one ad-
ditional vortex before its forward progress ends. For
a tracer to undergo a long flight (orders of magnitude
longer than a vortex width), the tracer must return to
almost the exact same location in the new lobe (some
number of vortices down the chain) as it was in the
original lobe. In other words, there has to be a peri-
odic orbit (modulo 2n vortex widths) within the lobe.
Ideally, if a tracer returned (after one oscillation pe-
riod) to exactly the same location shifted by either nλ
or by −nλ, then the tracer will always find itself in a
lobe to be carried across a vortex separatrix and will
undergo an infinite flight. This ideal situation is never
encountered; however, it is possible to get close to a
resonant condition and achieve very long flights.
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Fig. 12. Sketch illustrating calculation of translated return map. The
distance ∆i,j = |	rtrans,i − 	r1+j | is the separation after j iterations
of a tracer from its original position, translated horizontally by i
vortices. In the figure, i is −2 (i.e., translated 2 vortex widths in
the negative direction).

This approach can be quantified by calculating a
translated return map, as is explained schematically in
Fig. 12. The position of a tracer initially at location
	r1 is integrated numerically for j periods of oscilla-
tion, after which the tracer’s location 	r1+j is compared
to a horizontal translation of the original coordinate:
	rtrans,i = 	r1 + idx̂, where d is the vortex width and i
is a non-zero integer (either positive or negative). In
Fig. 12, 	rtrans,2 is identified by an open circle. A dis-
tance∆i,j = |	rtrans,i−	r1+j | is defined to quantify how
close the tracer returns in j periods to its original po-
sition, translated horizontally by i vortices. If ∆ = 0
for any point within a lobe, then there is a periodic
orbit that can give rise to arbitrarily long flights.

Fig. 13. Translated return maps; f = 0.106. (a) Map of distance ∆4,2. The darkest regions correspond to ∆ → 0; the brightest regions
correspond to ∆→ 8. (b) Contour plot of 1/∆4,2; five equally spaced levels are shown, although they are difficult to distinguish because
the peaks — located at the center near the bottom — are so sharp. The sharp peaks (especially the one just right and above the center
bottom) correspond to the locations of the periodic orbits.

Fig. 13a shows a map of ∆4,2 for the reso-
nant frequency f = 0.106. The darkest regions —
where ∆4,2 → 0 — correspond to locations where
a tracer will travel 4 vortex widths in two periods
of oscillation, returning almost to the same loca-
tion in the translated vortex. The brightest regions
correspond to ∆4,2 → 8, i.e., tracers that moved
four vortices in the other direction. Together, the
light and dark structures in this map indicate the
lobes.

Since long-range flights are associated with ∆ →
0, it is convenient to plot 1/∆ for frequencies near the
resonances. The tendency of the mixing to be domi-
nated by long flights would then be expected to be re-
vealed as upward peaks in the quantity 1/∆. Fig. 13b
shows a contour plot of 1/∆4,2 (basically, the inverse
of the data in Fig. 13a). The contour plot is almost
completely empty, except for a couple of very narrow
and very tall peaks near the bottom and center. The one
closest to the middle is the highest peak, and indicates
the location of a periodic orbit where a tracer will
return within 0.001 of its initial location in a different
vortex. Similar plots for frequencies sufficiently far
from the resonances do not reveal significant peaks,
indicating that none of the tracers return as close to
their initial location (in a different vortex) at those
frequencies.
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Fig. 14. Inverse of the minimum shifted distance ∆i,j for tracers
after j = 2 complete periods of oscillation. A large value on this
plot means that a tracer has returned to almost its exact initial
condition, but shifted by either i = 2 vortex widths (filled circles)
or by i = 4 vortex widths (open squares).

The results are summarized in Fig. 14, which shows
a plot of the inverse of the minimum return distances
1/∆±4,2 (open squares) and 1/∆±2,2 (filled circles),
corresponding to shifts of either 4 or 2 vortex widths,
respectively, after two oscillation periods. There is sig-
nificant scatter in the data, since the minimum distance

Fig. 15. Poincaré sections showing the formation of tangle islands at the resonant frequency. (a) f = 0.103; no islands are visible. (b)
f = 0.105; very small islands are just forming near the center/bottom and along the separatrices. (c) f = 0.106; the islands, although still
small, are more developed. (d) Magnification of tangle islands from (c).

determined numerically is very sensitive to the initial
placement of the tracers. Nevertheless, it is clear that
there is a strong correlation between this diagnostic
and the peaks observed in the plot of D∗ versus f
(Fig. 5).

Note that the velocity of the flights at f = 0.106 is
roughly twice the velocity of the flights at f = 0.183.
This is apparent from the fact that the peak at f =
0.183 in Fig. 14 corresponds to tracers that translate
by 2 vortex widths in two oscillation periods (filled
circles), whereas the peak at f = 0.106 corresponds
to tracers that translate by 4 vortex widths in the same
time.

The peaks seen in Fig. 14 at the resonant frequen-
cies are associated with formation of periodic orbits
and (when stable) their associated islands, as seen in
Fig. 15. In Fig. 15c, two small islands can be seen in
the lower lobe regions (see Fig. 13 for the locations of
the lobes), along with small thin islands along the sep-
aratrices at the sides (outside the lobes). The islands
in the lobe are magnified in Fig. 15d. The islands in
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the lobes are present only for frequencies very close
to the resonant frequency: at f = 0.105 (Fig. 15b),
the islands have almost disappeared, and they are gone
completely for f = 0.103 (Fig. 15a). The islands in
the lobes disappear for frequencies only slightly higher
than the resonant frequency as well, although the is-
lands along the separatrices (not in the lobes) persist
for slightly larger frequencies (beyond f = 0.110).

The formation of periodic orbits and islands only
at certain frequencies is clearly due to resonances
between a circulation time for tracers near the sepa-
ratrix and the oscillation period. The presence of the
“tangle islands” [20] (islands within lobes — related
to accelerator modes [36]) explains the superdiffusive
behavior at the resonance frequencies. But even at
frequencies where the tangle islands are gone (e.g.,
at f = 0.103), there are still truncated flights (with
finite 〈L2〉) and transient superdiffusion. This is not
surprising, since at frequencies just below or just
above those with islands there are still ghosts of the
islands — periodic or near-periodic orbits that are just
slightly unstable. The fact that these orbits are almost
neutrally stable explains why a tracer could stay in
the vicinity of these ghosts long enough to undergo
a significant flight, but not long enough to allow for
Lévy scaling for arbitrarily large flight lengths. Even
though the superdiffusion is transient, these slightly
unstable orbits can still result in significant enhance-
ments in the long-term effective diffusion coefficient.

5. Summary

In this paper, we have demonstrated a resonant
mechanism by which flights can occur in a sim-
ple, 2D, time-periodic, oscillating vortex flow with
stress-free boundary conditions. Unlike Lévy flights
studied in other systems, these flights are charac-
terized by power-law PDFs only in the vicinity of
certain well-defined resonant frequencies, and only
the smaller length flights satisfy the Lévy (power law)
scaling, with the upper cut-off decaying as the fre-
quency of oscillation moves away from the resonant
frequencies. The result is transport that is superdif-
fusive in the long-time limit only precisely at the

resonant frequencies, as shown in previous studies
[19]. Near these resonant frequencies, there is still
a superdiffusive transient regime, and the long-term
effective diffusion coefficient D∗ is greatly enhanced.

The flights are explained by considering translated
return maps for the system. Specifically, long flights
and long superdiffusive transients are characterized by
tracers which, when initially in a lobe, return to almost
the exact same location in a lobe of a different vor-
tex after a finite number of oscillation periods. These
periodic orbits are associated with the formation of
tangle islands (islands within the lobes) at the reso-
nant frequencies. Ghosts of these islands which are
only slightly unstable at nearby frequencies result in
the transient superdiffusion.

The current work illustrates some of the limitations
of the traditional techniques for analyzing transport in
Hamiltonian systems — Melnikov analysis and lobe
dynamics. Although, these techniques work well for
transport where the motion can be described on a fixed,
periodic time scale, they fail to capture the (potentially
dramatic) effects on transport of long-range flights.

We are currently extending this work to investi-
gate mixing in an oscillating vortex chain with rigid
(no-slip) boundary conditions. Experiments are also
being conducted on the frequency dependence of en-
hanced diffusion coefficients. The results from these
simulations and experiments will be presented in a fu-
ture paper.
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