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Lagrangian chaos and correlated Lévy flights in a non-Beltrami flow:
Transient versus long-term transport
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Long-range transport is studied numerically in a time-independent, three-dimensional~3D! fluid flow com-
posed of the superposition of two chains of alternating vortices, one horizontal and the other vertical. Tracers
in this flow follow chaotic trajectories composed of correlated Le´vy flights with varying velocities. Locations
of the chaotic regimes in the flow are compared with recent theories of chaos in non-Beltrami 3D flows.
Growth of the variance of a distribution of tracers is divided into transient and long-term regimes, each with
different growth exponents.
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It is well known that a simple, ordered fluid flow can ha
particle trajectories that arechaotic in the sense that nearb
trajectories separate exponentially in time@1#. For a three-
dimensional~3D! flow, chaotic trajectories are possible ev
if the flow is time independent, as was first explained by
Arnol’d in 1965 @2#. Arnold’s theory, however, applies onl

to inviscid flows that satisfy the Beltrami condition¹W 3uW

5luW , whereuW is the velocity field andl is a constant. The
theory of Lagrangian chaos in time-independent, 3D flo
has been extended recently to include flows that are no
viscid and that do not satisfy the Beltrami condition@3#. This
recent theory proposes that for a wide range of 3D, tim
independent flows, Lagrangian chaos will be most co
monly observed in regions of the flow where the diagnos
u¹W 3vW u2 is largest.

Lagrangian chaos leads to significant enhancement
long-range transport. The long-term behavior of the transp
has been studied extensively; specifically, in the long-ti
limit, the variance of a distribution of tracers typically grow
as a power law:̂ r 2&;tg. According to the Central Limit
Theorem, transport fort→` will be normally diffusive (g
51) if there are finite length and time scales to the motio
of the tracers. On the other hand, superdiffusive (g.1)
transport is possible if the trajectories are characterized
Lévy flights, which are long distance ‘‘jumps’’~between re-
gions with relatively little motion! with a wide range of
lengths and durations and no finite scale@4#. Theories relat-
ing the flight statistics to long-term transport assume t
flights are independent of each other~i.e., no correlations!;
furthermore, the short-time~transient! behavior of the trans-
port is often neglected.

In this Rapid Communication, we present a numeri
study of Lagrangian chaos and its effects on transient
long-term transport in a novel 3D, time-independent, n
Beltrami fluid flow. This flow is ideal for these studies du
both to its simplicity and to its rich transport propertie
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Simulations of motion in the flow reveal Le´vy flights and
superdiffusive long-range transport. The growth of the va
ance is typically described by two different values ofg for
different time regimes. The transient behavior is likely to
of significant importance for real systems, where issues
practical importance may occur over time scales far shor
those needed to achieve the long-time limit common in th
ries of anomalous diffusion. We propose that this short-ti
behavior can be explained by considering correlations
tween flights, which result in clusters that must be cons
ered when relating flight statistics to long-range transpor

The flow studied is the superposition of two chains
alternating vortices~Fig. 1!. The equations describing th
velocity field are

ẋ52a
l

2d
cosS 2p~x10.5!

l D sinS py

d D
2a2

l

2d2
cosS 2px

l D sinS pz

d2
D ,

ẏ5a sinS 2p~x10.5!

l D cosS py

d D , ~1!

ż5a2 sinS 2px

l D cosS pz

d2
D .

In these equations,a and a2 are the magnitudes of the tw
superposed vortex chains, andd and d2 are the width and
height ~respectively! of the fluid layer. Throughout the res
of the paper, all of the vortices are assumed to have u
aspect ratio:d5d251 and l52. Consequently, the vari
ablesx, y andz are all scaled by the vortex width. Furthe
more, times are scaled by a characteristic advective timed/a.
The relative magnitude of the two vortex chains is deno
by the amplitude ratioa/a2.

Particle trajectories are determined numerically by in
grating Eqs.~1! using a fourth-order Runge-Kutta techniqu
The results are shown in Figs. 2 and 3 fora/a255.0 and 1.0,
respectively.

Poincare´ sections are plotted in Figs. 2~a! and 3~a!. The
points in these plots show thex-y coordinates of a single

gi-
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FIG. 1. Diagram of fluid flow, consisting of
the superposition of a horizontal chain of alte
nating vortices with a vertical chain of alternatin
vortices.
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tracer each time it passes through the mid-height (z50) of
the system. Periodic boundary conditions have been use
x50.0 and 2.0. A single tracer in the chaotic region visits
entire region, resulting in an intricate stochastic web for b
amplitude ratios with empty ‘‘islands’’ corresponding to r
gions containing ordered trajectories. Figures 2~b! and 3~b!
show the diagnostic proposed by Yannacopouloset al., @3#
as applied to the flow in Eq.~1!. It is apparent from the
comparison between~a! and ~b! in both cases that the diag
nostic works quite well at identifying regions where L
grangian chaos is most likely to be found.

The x coordinate of the particle trajectories@plotted in
Figs. 2~c!–2~f! for a/a255.0] is the one most relevant t
discussions of long-range transport. Figures 2~c! and 2~d!
show ordered trajectories for tracers confined to
appropriately-labeled islands in Fig. 2~a!. The oscillatory be-
havior is due to figure-8 motion between adjacent horizon
vortices, with increasing number of loops for islands near
centers fora/a255.0.

Of particular importance are the unbounded trajector
such as those plotted in Fig. 2~d!. Tracers undergoing thes
trajectories snake their way around and between the vorti
traveling very long distances~at least several times longe
than a vortex width! in short periods of time, with the aver
agex velocity determined by the number of loops execu
in each vortex before crossing to the next. Tracers in
stochastic region@Figs. 2~e! and 2~f!# temporarily stick to the
outsides of the islands@5#, mimicking the behavior of the
corresponding ordered trajectory while stuck. The stick
process results in flights with a wide range of lengths a
durations for the chaotic trajectories. It is striking that fligh
of these lengths are possible in this flow, even though th
are no jet regions. Several different flight velocities are p
sible, depending on which island the tracer is sticking dur
the flights. Similar behavior is observed fora/a251.0 @Figs.
3~c! and 3~d!#, although trapping is not as significant as f
the case witha/a255.0.

The variance of a spreading ensemble of tracers is plo
in Figs. 4~a! and 4~b! for amplitude ratios 5.0 and 1.0, re
spectively. In both cases, there is a transient regime follow
by a longer-term regime. Fora/a255.0 @Fig. 4~a!#, the tran-
sient behavior is approximately diffusive (g50.8560.20),
while the long-term behavior is superdiffusive (g51.6
60.2). Fora/a251.0 @Fig. 4~b!#, the transient behavior is
almost ballistic (g51.860.2), followed by a superdiffusive
regime withg51.560.2.

To explain the transport behavior shown in Fig. 4, it
necessary to determine the statistics of the flights and t
ping events. Theories@6# have been developed that demo
strate that superdiffusion can occur if a tracer underg
flights whose lengths have diverging second moment:^L2&
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→`. This condition, which defines Le´vy flights, is met if the
probability distribution function~PDF! for flight lengths has
a power law tailp(L);L2m with m,3. If the trapping time
PDF has afinite second moment and if the flights all have th
same constant speed, then the variance is predicted@6# to
grow as

g5H 2, m,2

42m, 2,m,3

1, m.3
J . ~2!

Since there are no jet regions in this flow, a tracer me
ders around and between the vortices during a flight. T
fastest flights correspond to tracers that enter a vortex at
corner, circle halfway around, and exit at the opposite corn
Slower flights occur either if the tracer undergoes additio
rotations within each vortex before continuing onward, or
the trajectory includes a pattern of figure-8s between a

FIG. 2. Results of simulations fora/a255.0; x andy are scaled
by the vortex widthd, andt is scaled by the advective timed/a. ~a!

Poincare´ section atz50.0. ~b! Diagnosticu¹W 3vW u2. The white re-

gions correspond to large values ofu¹W 3vW u2, where the theory pre-
dicts chaotic regions.~c! Sample trapped trajectories from ordere
regions. Each curve is labeled with a roman numeral correspon
to an island in~a!. ~d! Sample untrapped trajectories from order
regions. The differing velocities is apparent from the slopes of th
curves.~e! and ~f! Sample trajectories from the chaotic region.
1-2
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cent vortices. Identification of flights is facilitated by plottin
the x and t coordinates only when the tracer crosses a se
ratrix between horizontal vortices, i.e., when it crossesx
50.0,1.0,2.0, . . . . Flights also revealed either as a contin
ally increasing ~or decreasing! sequence ~e.g., x
52,3,4,5,6, . . .! if there are no figure-8s or as a no
reversing pattern~e.g.,x52,3,3,3,4,4,4,5,5,5, . . . ) if the tra-
jectory contains figure-8s. Each flight is associated with
direction and a speed~distance traveled per unit time!. A
flight is considered to have ended if either~a! the direction of
motion changes; or~b! the number of figure-8s at each sep
ratrix crossing changes.

Logarithmic plots of the PDFs for flight length are show
in Fig. 5 ~closed circles!. The PDFs for both amplitude ratio
have algebraic tails with decay exponents consistent with
definition of a Lévy flight: m52.3 and 2.660.2 for a/a2
55.0 and 1.0, respectively. Trapping duration PDFs~not
shown! also have algebraic tails, but with exponentsn53.5
and 4.2 (60.2) for amplitude ratios of 5.0 and 1.0, respe
tively. These exponents are both greater than 3; con

FIG. 3. Results of simulations fora/a251.0; x andy are scaled
by d, and t is scaled byd/a. ~a! Poincare´ section atz50.0. ~b!

Diagnosticu¹W 3vW u2. The white regions correspond to large valu

of u¹W 3vW u2, where the theory predicts the chaotic regions.~c! and
~d! sample trajectories from chaotic region.

FIG. 4. Growth of the variance of a distribution. Fits~thin solid
lines! show the scaling regions; all fits are raised by 1 unit to d
tinguish from the data.~a! Amplitude ratio a/a255.0; slope is
0.8560.20 from log10(t)50 to 1.5 and is 1.660.2 from log10(t)
52.0 to 4.6.~b! a/a251.0; slope is 1.860.2 from log10(t)51.0 to
3.2 and 1.560.2 from log10(t)53.2 to 5.2.
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quently, the trapping time PDFs have finite second mom
and the prediction in Eq.~2! should hold. Comparing the
flight exponentsm from Fig. 5 and the superdiffusive expo
nentsg from Fig. 4, we find that the long-time behavior
consistent with the predictions from Eq.~2!.

The transient behavior fora/a255.0 can be explained
from the framework of Eq.~2!. Smaller length flights for this
amplitude ratio have a larger decay exponent;m53.460.2,
as seen in Fig. 5~a!. Sincem.3 for the small length flights,
the PDF is not consistent with Le´vy scaling for small lengths
~and, consequently, transient times!, so the transport should
be diffusive over small timescales. This is consistent with
transient growth exponentg50.8560.20 in Fig. 4~a!.

For a/a251.0, however, there is no kink in the PDF fo
flight lengths @closed circles in Fig. 5~b!#. To explain the
almost ballistic transport at short times in Fig. 4~b! it is nec-
essary to consider the fact that the flights are not indep
dent. In fact, there are significant correlations between
flight and the subsequent two flights, as shown in Fig. 6~a!
for a/a251.0. As shown by the solid curve in this figure,
flight of lengthLn in a particular direction is followed, on the
average, by a flight with a small average length^Ln11& in the
opposite direction. The dashed curve, however, shows
the next flight ~the second one after the original forwa
flight! on the average returns back~and beyond! in the origi-
nal direction by an average^Ln12& of 10 vortex widths in the
initial direction.

Because of these correlations, flights form clusters w
overall lengths that are frequentlysignificantly longer than
individual flights. Clusters are determined by the followin
algorithm: given a flight with a particular direction, if th
next two flights add up to produce a total jump of three
more vortex widths in the same direction, then those t
flights are combined with the first to form a cluster. Th
following two flights are analyzed in the same manner, a
the process continues with more and more flights adde
the cluster. A cluster ends when a pair of flights is fou
that, when added, do not continue the forward motion of
tracer by at least three vortex widths.

PDFs of cluster lengths are displayed in Fig. 5 as op
squares. Fora/a251.0 @Fig. 5~b!#, clustering of the smaller
flights results in a reduction in the PDF at small lengths a
an increase at intermediate lengths. The result is a sm

-
FIG. 5. Probability distribution functions~PDFs! for flights. The

solid circles show PDFs for individual flights, while the ope
squares correspond to the PDF of lengths of flight clusters.~a!
a/a255.0; fitted slope is23.460.2 for 0.4, log10(t),1.6 and is
22.360.2 for 1.4, log10(t),3.4. ~b! a/a251.0; fitted slope is
22.660.2.
1-3
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decay exponent for small lengths:mcluster51.760.3 over
this range. Considering the theoretical predictions in Eq.~2!,
this scaling is consistent with the almost-ballistic growth
the variance (g52) seen as a transient in Fig. 4~b!. Cluster-
ing is not significant for the very long flights, though, and th
two PDFs match up at the larger lengths.

Correlations are not as significant fora/a255.0. Thereis
a slightly increased probability that a flight will be followe
by another flight in the opposite direction. The followin
flight, however, has an equivalent average magnitude in
direction of the original flight, so the pair adds up, on t
average, to zero. The open squares in Fig. 5~a! show the PDF
of cluster lengths fora/a255.0. This PDF has almost ex
actly the same statistics as for individual flights; con
quently, clustering is insignificant in this case.

The implication here is that the statistics of the fligh
alone are not sufficient to determine the long-range trans
behavior if the flights have significant correlations. An ana

FIG. 6. Supporting data fora/a251.0. ~a! Correlations between
flights; average length for next flight (n11, solid line! and for
following flight (n12, dashed line!. The data shows that a
medium-to-long flight is likely to be followed by another long fligh
in the same direction after a small motion backward.~b! Scatter plot
of flight lengthL and speedv. The lower speed flights decay awa
for smaller lengths than those withv50.65. L andv are scaled by
the vortex widthd and peak velocitya, respectively.
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sis based on flight clusters gives a better prediction of
scaling behavior of the variance of a distribution.

There is another important deviation between the mod
used in the theoretical predictions@Eq. ~2!# and the current
system. Whereas the theories@6# assume constant velocit
flights, in this system different flights have different veloc
ties. This fact is revealed in scatter plots of flight leng
versus speed, as is shown in Fig. 6~b! @7#. A few dominant
speeds are apparent for the shorter length flights, each s
corresponding to sticking of trajectories to a different isla
in the Poincare´ sections of Fig. 3. Fewer of the islands a
able to maintain the longer flights, however, evidenced
the dropping out of some of the velocities as the flight len
increases. As seen in Fig. 6~b!, flights with lengths greater
than 50 vortex widths are dominated by a single flight velo
ity. The implication of these results is that each island m
be associated with its own PDF for sticking and that,
general, characterization of the flights with a single flig
length PDF may result in an incomplete description of t
phenomena. The success of the theories@6# in predicting the
long-time behavior for this system stems from the fact t
the long flights are dominated by a single velocity.

Experiments are currently in progress to test these res
In the experiments, the horizontal chain of vortices is p
ducd by a magnetohydrodynamic technique@8#, while the
vertical vortices are generated by thermal convection fr
heating and cooling strips. Preliminary results show trajec
ries that are qualitatively similar to those from the simu
tions. More data is needed to make quantitative comparis
though. This will be the subject of a future article.
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