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Lagrangian chaos and correlated Ley flights in a non-Beltrami flow:
Transient versus long-term transport
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Long-range transport is studied numerically in a time-independent, three-dimen@bndluid flow com-
posed of the superposition of two chains of alternating vortices, one horizontal and the other vertical. Tracers
in this flow follow chaotic trajectories composed of correlatéahy #ights with varying velocities. Locations
of the chaotic regimes in the flow are compared with recent theories of chaos in non-Beltrami 3D flows.
Growth of the variance of a distribution of tracers is divided into transient and long-term regimes, each with
different growth exponents.
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It is well known that a simple, ordered fluid flow can have Simulations of motion in the flow reveal kg flights and
particle trajectories that amehaoticin the sense that nearby superdiffusive long-range transport. The growth of the vari-
trajectories separate exponentially in tiflg. For a three- ance is typically described by two different valuesyofor
dimensional3D) flow, chaotic trajectories are possible even different time regimes. The transient behavior is likely to be
if the flow is time independentas was first explained by Of significant importance for real systems, where issues of
Arnol'd in 1965[2]. Arnold’s theory, however, applies only Practical importance may occur over time scales far short of

to inviscid flows that satisfy the Beltrami conditiovix u t_hose needed to ach_leve_ the long-time limit common in th_eo-
ries of anomalous diffusion. We propose that this short-time

=\u, whereu is the velocity field and. is a constant. The papavior can be explained by considering correlations be-
theory of Lagrangian chaos in time-independent, 3D flows,yeen flights, which result in clusters that must be consid-
has been extended recently to include flows that are not ingreq \when relating flight statistics to long-range transport.
viscid and that do not satisfy the Beltrami conditi@). This The flow studied is the superposition of two chains of

recent theory proposes that for a wide range of 3D, timeyiernating vorticesFig. 1). The equations describing the
independent flows, Lagrangian chaos will be most COMyelacity field are

monly observed in regions of the flow where the diagnostic

|V X w|? is largest. . A 2m(x+0.5)\ . [mwy
Lagrangian chaos leads to significant enhancements in X:—aECO{T)S'”(F)

long-range transport. The long-term behavior of the transport

has been studied extensively; specifically, in the long-time I 2wx\ | [mz

limit, the variance of a distribution of tracers typically grows - aZZ_dZCO{ T) sm(d—z) ,

as a power law{r2)~t”. According to the Central Limit

Theorem, transport for— will be normally diffusive (y . 2 (x+0.5) wy

=1) if there are finite length and time scales to the motions y=asin — cos( T) (&N
of the tracers. On the other hand, superdiffusive>(l)

transport is possible if the trajectories are characterized by

Leévy flights which are long distance “jumps(between re- 7= . sinl @) cos(w—z

gions with relatively little motioh with a wide range of 2 N d,/’

lengths and durations and no finite scedé Theories relat-
ing the flight statistics to long-term transport assume thatn these equationss anda, are the magnitudes of the two
flights are independent of each othee., no correlations  superposed vortex chains, addand d, are the width and
furthermore, the short-tim@ransient behavior of the trans- height (respectively of the fluid layer. Throughout the rest
port is often neglected. of the paper, all of the vortices are assumed to have unity
In this Rapid Communication, we present a numericalaspect ratio.d=d,=1 and A=2. Consequently, the vari-
study of Lagrangian chaos and its effects on transient andblesx, y andz are all scaled by the vortex width. Further-
long-term transport in a novel 3D, time-independent, nonimore, times are scaled by a characteristic advective difae
Beltrami fluid flow. This flow is ideal for these studies due The relative magnitude of the two vortex chains is denoted
both to its simplicity and to its rich transport properties. by the amplitude rati@/as,.
Particle trajectories are determined numerically by inte-
grating Eqgs(1) using a fourth-order Runge-Kutta technique.

*Electronic address: tsolomon@bucknell.edu The results are shown in Figs. 2 and 3 &a,=5.0 and 1.0,
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neering, Cornell University. Electronic address: Poincaresections are plotted in Figs(@ and 3a). The
fogelman@mae.cornell.edu points in these plots show they coordinates of a single
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tracer each time it passes through the mid-height@) of = —o. This condition, which defines vy flights, is met if the

the system. Periodic boundary conditions have been used ptobability distribution functiofPDF) for flight lengths has

x=0.0 and 2.0. A single tracer in the chaotic region visits thea power law tailp(L)~L™# with ©<3. If the trapping time

entire region, resulting in an intricate stochastic web for bothPDF has dinite second moment and if the flights all have the

amplitude ratios with empty “islands” corresponding to re- same constant speed, then the variance is pred[&ktb

gions containing ordered trajectories. Figuréb) 2and 3b) grow as

show the diagnostic proposed by Yannacopowdbal,, [3]

as applied to the flow in Eq(l). It is apparent from the 2, n<2

comparison betweef®) and (b) in both cases that the diag- y={ 4—p, 2<u<3;. )

nostic works quite well at identifying regions where La- 1 ~3

grangian chaos is most likely to be found. M
The x coordinate of the particle trajectori¢plotted in

FIG. 1. Diagram of fluid flow, consisting of
the superposition of a horizontal chain of alter-
nating vortices with a vertical chain of alternating
vortices.
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Fi o) a.=501 is th | Since there are no jet regions in this flow, a tracer mean-
igs. 2c)-2(f) for a/a,=5.0] is the one most relevant to ders around and between the vortices during a flight. The

discussions of Iong—rang_e transport. Figures) fknd d) fastest flights correspond to tracers that enter a vortex at one
show ordered trajectories for tracers confined to the

. : S . corner, circle halfway around, and exit at the opposite corner.
app.rop.rlately—lab'eled |sland§ in Figla? The qscnlatory pe- lower flights occur either if the tracer undergoes additional
havior is due to figure-8 motion between adjacent horizont

. " ; ; otations within each vortex before continuing onward, or if
vortices, with increasing number of loops for islands near thg, trajectory includes a pattern of figure-8s between adja-
centers fora/a,=5.0.

Of particular importance are the unbounded trajectories, o5 — R 05
such as those plotted in Fig(d. Tracers undergoing these .
trajectories snake their way around and between the vortices
traveling very long distance&t least several times longer
than a vortex widthin short periods of time, with the aver-
agex velocity determined by the number of loops executed
in each vortex before crossing to the next. Tracers in the
stochastic regiofFigs. 2e) and 2f)] temporarily stick to the -0
outsides of the islandgs], mimicking the behavior of the

corresponding ordered trajectory while stuck. The sticking ® mw(c) 20
process results in flights with a wide range of lengths and m v @

durations for the chaotic trajectories. It is striking that flights x WWV\A/V\A/V\M g
of these lengths are possible in this flow, even though there

1
are no jet regions. Several different flight velocities are pos-  A\AAAN VY v
[
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sible, depending on which island the tracer is sticking during  °c 2z < 3 B0 oo 105 20 40 60
the flights. Similar behavior is observed fafta,=1.0[Figs. \ !
3(c) and 3d)], although trapping is not as significant as for  e° © 05210 ®
the case witha/a,=5.0. 0 0
The variance of a spreading ensemble of tracers is plottec, x -05x10'
in Figs. 4@ and 4b) for amplitude ratios 5.0 and 1.0, re- 20 -10x10°
spectively. In both cases, there is a transient regime followec .
by a longer-term regime. Fa/a,=5.0[Fig. 4a)], the tran- %0 20000 aooo0 "0 050’ rowd’ 1sad
sient behavior is approximately diffusivey€ 0.85+0.20),
while the long-term behavior is superdiffusivey< 1.6 FIG. 2. Results of simulations fa/a,=5.0; x andy are scaled

+0.2). Fora/a,=1.0 [Fig. 4b)], the transient behavior is by the vortex widthd, andt is scaled by the advective tint#a. (a)
almost ballistic (/=1.8+0.2), followed by a superdiffusive poincaresection atz=0.0. (b) Diagnostic|V X w|?. The white re-
regime withy=1.5+0.2. ) o __ gions correspond to large values|&fX w|?, where the theory pre-

To explain the transport behavior shown in Fig. 4, it is gicts chaotic regionsic) Sample trapped trajectories from ordered
necessary to determine the statistics of the flights and traegions. Each curve is labeled with a roman numeral corresponding
ping events. Theorief5] have been developed that demon-to an island in(a). (d) Sample untrapped trajectories from ordered
strate that superdiffusion can occur if a tracer undergoegegions. The differing velocities is apparent from the slopes of these
flights whose lengths have diverging second mom(alnf} curves.(e) and (f) Sample trajectories from the chaotic region.
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i ) quently, the trapping time PDFs have finite second moment,
and the prediction in Eq(2) should hold. Comparing the
J flight exponentsu from Fig. 5 and the superdiffusive expo-
nentsy from Fig. 4, we find that the long-time behavior is
consistent with the predictions from E@).
The transient behavior foa/a,=5.0 can be explained
\ from the framework of Eq(2). Smaller length flights for this
10 amplitude ratio have a larger decay exponent; 3.4+0.2,
as seen in Fig.®). Sinceu>3 for the small length flights,
. ‘ ‘ the PDF is not consistent with'kg scaling for small lengths
500 © / (d) (and, consequently, transient timeso the transport should
0 be diffusive over small timescales. This is consistent with the
X | ® s transient growth exponent=0.85+0.20 in Fig. 4a).
' For a/a,=1.0, however, there is no kink in the PDF for
‘ -1.0x10 . . , flight lengths[closed circles in Fig. ®)]. To explain the
e #o00¢ O 0Oy 08I0 120 gimost ballistic transport at short times in Figbyit is nec-
essary to consider the fact that the flights are not indepen-
FIG. 3. Results of simulations fa/a,=1.0; x andy are scaled  dent. In fact, there are significant correlations between a
by d, andt ls sgaled byd/a. (a) Poincaresection atz=0.0. (b) flight and the subsequent two flights, as shown in Fig) 6
Diagnostic|V X w|%. The white regions correspond to large values for a/a,=1.0. As shown by the solid curve in this figure, a
of |V X w|?, where the theory predicts the chaotic regiofiy.and  flight of lengthL , in a particular direction is followed, on the
(d) sample trajectories from chaotic region. average, by a flight with a small average length . ;) in the
opposite direction. The dashed curve, however, shows that
cent vortices. Identification of flights is facilitated by plotting the next flight (the second one after the original forward
the x andt coordinates only when the tracer crosses a sepdtight) on the average returns batnd beyonglin the origi-
ratrix between horizontal vortices, i.e., when it crosses nal direction by an averagé.,,. ,) of 10 vortex widths in the
=0.0,1.0,2.0. .. .Flights also revealed either as a continu- jnitial direction.
ally increasing (or decreasing sequence (e.g., X Because of these correlations, flights form clusters with
=2,3,4,5,6,..) if there are no figure-8s or as a non- overall lengths that are frequentiygnificantly longer than
reversing patterte.g.,x=2,3,3,3,4,4,4,5,5,5. . ) ifthetra-  individual flights. Clusters are determined by the following
jectory contains figure-8s. Each flight is associated with aalgorithm: given a flight with a particular direction, if the
direction and a speettlistance traveled per unit timeA  next two flights add up to produce a total jump of three or
flight is considered to have ended if eitligr the direction of  more vortex widths in the same direction, then those two
motion changes; ofb) the number of figure-8s at each sepa-flights are combined with the first to form a cluster. The
ratrix crossing changes. following two flights are analyzed in the same manner, and
Logarithmic plots of the PDFs for flight length are shown the process continues with more and more flights added to
in Fig. 5(closed circles The PDFs for both amplitude ratios the cluster. A cluster ends when a pair of flights is found
have algebraic tails with decay exponents consistent with thehat, when added, do not continue the forward motion of the
definition of a Levy flight: x=2.3 and 2.60.2 for a/a, tracer by at least three vortex widths.
=5.0 and 1.0, respectively. Trapping duration PDRst PDFs of cluster lengths are displayed in Fig. 5 as open
shown also have algebraic tails, but with exponents3.5  squares. Foa/a,= 1.0 [Fig. 5b)], clustering of the smaller
and 4.2 ¢0.2) for amplitude ratios of 5.0 and 1.0, respec-flights results in a reduction in the PDF at small lengths and
tively. These exponents are both greater than 3; consen increase at intermediate lengths. The result is a smaller
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FIG. 4. Growth of the variance of a distribution. Fitgin solid FIG. 5. Probability distribution function®DF9 for flights. The

lines) show the scaling regions; all fits are raised by 1 unit to dis-solid circles show PDFs for individual flights, while the open
tinguish from the data(a) Amplitude ratio a/a,=5.0; slope is squares correspond to the PDF of lengths of flight clusteds.
0.85+0.20 from logy(t)=0 to 1.5 and is 1.660.2 from log(t) ala,=5.0; fitted slope is—3.4=0.2 for 0.4<log;((t)<1.6 and is
=2.0to0 4.6.(b) a/a,=1.0; slope is 1.&0.2 from log(t)=1.0 to —2.3£0.2 for 1.&log;((t)<3.4. (b) a/a,=1.0; fitted slope is
3.2 and 1.5:0.2 from log(t)=3.2 to 5.2. —2.6+0.2.
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sis based on flight clusters gives a better prediction of the
(b) scaling behavior of the variance of a distribution.
o There is another important deviation between the models
used in the theoretical predictiofgqg. (2)] and the current
system. Whereas the theorig8 assume constant velocity
flights, in this system different flights have different veloci-
20 0.0 ties. This fact is revealed in scatter plots of flight length
-50 ° 50 o 100 20°L3°0 400 500 versus speed, as is shown in Figb)[7]. A few dominant
" speeds are apparent for the shorter length flights, each speed
FIG. 6. Supporting data fa/a,= 1.0.(a) Correlations between corresponding to sticking of trajectories to a different island
flights; average length for next flighin¢-1, solid line and for  in the Poincaresections of Fig. 3. Fewer of the islands are
following flight (n+2, dashed line The data shows that a able to maintain the longer flights, however, evidenced by
medium-to-long flight is likely to be followed by another long flight the dropping out of some of the velocities as the flight length
in the same direction after a small motion backwah Scatter plot  increases. As seen in Fig(l9, flights with lengths greater
of flight lengthL and speed. The lower speed flights decay away than 50 vortex widths are dominated by a single flight veloc-
for smaller lengths than those with=0.65. L andv are scaled by ity. The implication of these results is that each island may
the vortex widthd and peak velocitya, respectively. be associated with its own PDF for sticking and that, in
) general, characterization of the flights with a single flight
de_cay expenent for' small Iengthﬁ?clustm:l,],i 0'3_ over length PDF may result in an incomplete description of the
this range. Considering the theoretical predictions in(2j. phenomena. The success of the thedidsn predicting the

this scaling is consistent with the almost-ballistic growth Oflong-time behavior for this system stems from the fact that
the variance ¢=2) seen as a transient in Figb#. Cluster- o long flights are dominated by a single velocity.

ing is notsignificant for the very long flights, though, and the gy eriments are currently in progress to test these results.

two PDFs _match up at the I_arg_e_r lengths. _ In the experiments, the horizontal chain of vortices is pro-
Correlations are not as significant fafa,=5.0. Thereis  4,,cq by a magnetohydrodynamic technidi@, while the

a slightly increased probability that a flight will be followed \erical vortices are generated by thermal convection from

by another flight in the opposite direction. The following heating and cooling strips. Preliminary results show trajecto-

flight, however, has an equivalent average magnitude in thgeg that are qualitatively similar to those from the simula-

direction of the original flight, so the pair adds up, on the(ons. More data is needed to make quantitative comparisons,

average, to zero. The open squares in Figl Show the PDF 15,91 This will be the subject of a future article.
of cluster lengths foa/a,=5.0. This PDF has almost ex-

actly the same statistics as for individual flights; conse- We are pleased to acknowledge discussions with |. Mezic,
quently, clustering is insignificant in this case. J. Klafter, and M. Shlesinger. These studies are supported by

The implication here is that the statistics of the flightsNSF Grant Nos. PHY-9732158 and DMR-0071771. Equip-
alone are not sufficient to determine the long-range transporhent used in these studies was funded by the Research Cor-
behavior if the flights have significant correlations. An analy-poration.
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