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Experiments are presented on chemical front propagation in an oscillating chain of vortices in which the
mixing of passive impurities is chaotic. The excitable ruthenium-catalyzed Belousov-Zhabotinsky reaction is
used in these studies. Velocities of the propagating fronts are measured as a function of the frequency and
amplitude of external forcing. Mode locking is observed where the front propagates an integer number of
vortices in an integer number of drive periods. Arnol’d tongues are mapped out for two of the locking regimes.
These two tongues are shown to form a region of overlap where the velocity of the propagating front switches
erratically between two locked values. The experimental results agree with numerical predictions of mode
locking in a simplified model of the flow.
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I. INTRODUCTION

There is a great deal of interest in the patterns that form in
interacting systems; e.g., chemical reactions �1,2�, interacting
populations and ecosystems �3�, and systems undergoing
phase transitions �4�. The vast majority of previous research
on pattern formation in reacting systems has concentrated on
the reaction-diffusion limit �5,6� in which there are no fluid
flows; consequently, mixing is achieved solely via molecular
diffusion. However, most fluid systems are not stagnant;
flows in the system significantly affect the mixing properties
and thereby dramatically alter the pattern-formation process.
Despite the significant impact fluid mixing has on these pro-
cesses, there has been very little theoretical work on the
more general “advection-reaction-diffusion” problem �7–12�,
and there have been almost no experimental studies �13–16�.
The issue of the role of advection in the pattern-formation
process is particularly interesting in light of the discovery
that mixing can be chaotic even for very simple, laminar
fluid flows �17,18�.

Many reacting systems are characterized by the propaga-
tion of a front across the system. Examples of front propa-
gation can be seen in a wide range of systems, such as ma-
rine ecology �19,20�, combustion �21,22�, solidification �4�,
and the spreading of diseases �23�. The majority of previous
studies of front propagation deal with the reaction-diffusion
regime. The effects of fluid flows on front propagation, by
contrast, have not been studied in great detail. In particular, a
greater understanding of the role of coherent flow
structures—such as vortices—on the front propagation pro-
cess is needed.

In this article, we present experimental studies of chemi-
cal front propagation in an advection-reaction-diffusion sys-
tem. A variation of the excitable Ruthenium-catalyzed
Belousov-Zhabotinsky reaction is used to generate a chemi-
cal pulse which can be manipulated �and, in fact, erased�
optically. The flow consists of a chain of alternating vortices
in an annular configuration. The system is forced periodi-

cally with the vortex chain oscillating in the azimuthal direc-
tion, resulting in chaotic mixing �24–26�. In the experiments
presented here, the velocities of the chemical fronts are stud-
ied as a function of the amplitude and frequency of the ex-
ternal forcing. The experimental results are compared to pre-
vious numerical studies �11� that predict mode locking of the
chemical fronts to the external forcing. Mode-locking behav-
ior has been seen in many other physical systems �27,28�;
this, however, is the first experimental evidence of mode
locking in an advection-reaction-diffusion system �16�.

In Sec. II we present a summary of theories and numerical
simulations that are relevant to the current experiments. Sec-
tion III provides details on the experimental techniques,
chemical reaction used in these experiments, and analysis
techniques. The experimental results are presented in Sec. IV
and further discussed in Sec. V.

II. BACKGROUND

A. Front propagation

A wide range of front propagation processes can be mod-
elled by autocatalytic reactions of the form A+B→2B �12�.
This corresponds to the case where a stable phase �B� pen-
etrates into an unstable phase �A�. The dynamics of a propa-
gating front is governed by the interplay between mixing in
the system and the interaction between the different species.
For an autocatalytic process in the reaction-diffusion limit
the front speeds depend upon the molecular diffusivity D0
and the production process of the reaction that occurs on a
time scale �. In the absence of fluid flows, the front velocity
v0 has been predicted by Fisher and Kolmogorov �29–31� to
be given by

v0 = 2�D0

�
. �1�

Although derived specifically for autocatalytic processes,
this result has also been shown to hold for certain “trigger”
or pulselike reactions, including the Ru-catalyzed BZ reac-
tion used in these experiments �32�.

The next question is as follows: how is the front velocity
modified in the presence of fluid flows? In general the front*Email address: tsolomon@bucknell.edu
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velocity will not be constant; however, it is reasonable to
expect that it will be possible to define an average velocity v f
that can be predicted theoretically from the generalized
advection-reaction-diffusion problem. This average front ve-
locity v f is bounded above by v0+U, where U is the maxi-
mum flow velocity.

Transport in many fluid flows can be characterized as en-
hanced diffusion with an effective diffusion coefficient Deff.
It is natural to propose that the Fisher-Kolmogorov theory
might still apply for these cases, assuming the molecular
diffusion coefficient D0 in Eq. �1� is replaced by the effective
diffusion coefficient Deff. In the limit of very slow reaction
�21�, this approach works, since the advection in the system
dominates the dynamics �33�. Similarly, in the limit of very
fast reactions, the flow becomes insignificant and the Fisher-
Kolmogorov result is valid. For typical, naturally occurring
systems, however, the reaction time scale � is often on the
order of the fluid velocity time scale. In this case replacing
D0 with Deff is insufficient �34�.

A general method for theoretically predicting v f for
advection-reaction-diffusion systems is still unknown and
therefore numerical simulations must be employed. The dy-
namics of such fronts is simulated in the geometrical optics
regime �35� by Cencini et al. �11�. The geometrical optics
regime corresponds to the limit of fast reaction and thin
fronts, and is rigorously defined as the limit of �→0 and
D0→0 while maintaining the ratio D0 /� constant �36�.

B. Oscillating vortex chain

The flow in these studies is an oscillating vortex chain, as
shown in Fig. 1. Time dependence is achieved by oscillating
the entire chain periodically in a lateral direction �along the
direction of the chain�. This flow has been modeled numeri-
cally �24� using the following stream function:

��x,y,t� =
U

k
sin�kxs�t��W�y� , �2�

where xs�t�=x+B sin��t� accounts for the lateral oscillation
of the vortex chain with amplitude B and angular frequency
�. The x and y velocities for tracers moving in the flow can
be derived from Eq. �2� via Hamilton’s equations of motion
ẋ=�� /�y and ẏ=−�� /�x. The y dependence W�y� is deter-
mined by the boundary conditions at y=0 and y=d. For free-
slip boundary conditions

W�y� = sin��y/d� . �3�

The resulting flow is modeled by the following equations:

ux�x,y,t� = U sin��

d
�x + B sin��t���cos��

d
y� , �4�

uy�x,y,t� = − U cos��

d
�x + B sin��t���sin��

d
y� , �5�

where ux and uy are the flow velocities in the x and y direc-
tions, respectively, U is the maximum flow velocity, and d is
the width and height of a vortex. The y dependence is more
complicated for the case with no-slip boundary conditions
�37�.

The vortices in these studies have unity aspect ratio; the
wavelength �which is two vortex widths� is �=2d. The os-
cillation amplitude can be expressed nondimensionally as a
fraction of a vortex width b�kB /�, where k is the wave
number defined as k=2� /�. The oscillation frequency may
be scaled by the advective �mixing� time scale �adv
�2� /kU. By using this time scale, the frequency of oscilla-
tion can be expressed nondimensionally by ��� /kU.

Mixing in the oscillating vortex chain depends critically
on the oscillation amplitude b. If b=0 then the vortex chain
is stationary �time-independent�. In this regime, long range
mixing is slow, determined by an interplay between advec-
tion of impurites within the vortices and diffusion across the
separatrices from one vortex to the next �38,39�. For b�0,
the resulting time dependence produces chaotic mixing
�24,25,40–42� which greatly enhances long-range transport.
For small oscillation amplitudes, tracers near the centers of
the vortices typically follow ordered trajectories, while those
near the perimeters of the vortices follow chaotic trajectories.
The size of the chaotic region around and between the vor-
tices grows with oscillation amplitude; in fact, for many of
the experimental runs, the chaotic region occupies a signifi-
cant portion of the flow.

C. Mode locking and Arnol’d tongues

Mode locking can occur for a system that is periodically
forced by an external stimulus. Systems that mode-lock typi-
cally have a natural, internal frequency of oscillation in the
absence of external forcing. Mode locking occurs when the
system changes its natural frequency to become a rational
multiple of the frequency of the external stimulus. Mode-
locking phenomenon has been seen in a wide range of physi-
cal, chemical, and biological systems. Examples include cir-
cadian rhythms �24-h periodicity� such as the sleep-wake
cycles forced by the sun �43�, arrays of Josephson’s junctions
�44�, and chemical oscillators �45�.

Mode-locking behavior has been shown to depend both
upon the frequency of the imposed forcing as well as the
amplitude. Ideally, for frequencies very near the natural fre-
quency of oscillation for the system, only small oscillation
amplitudes should be required to induce mode locking. Fur-
ther from the natural frequency, though, greater amplitudes
are required to cause the system to change its oscillation
frequency to match that of the external forcing. Typically,
threshold amplitudes exist below which the system will not
mode lock for any frequency.

FIG. 1. Schematic of a chain of alternating
vortices. The arrows show the direction of the
flow within each vortex.
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The dependence of mode-locking behavior on both the
frequency and amplitude of oscillation is shown by mapping
out “Arnol’d tongues” �46� for a given system. Arnol’d
tongues are represented by plotting a parameter-space dia-
gram �amplitude versus frequency� showing locking behav-
ior. An Arnol’d tongue is the region in this parameter space
in which the system is mode locked with a particular �ratio-
nal� ratio of the internal and external frequencies.

D. Simulations of mode locking in front propagation

The propagation of a reacting front has been simulated
numerically for the oscillating vortex chain by Cencini et al.
�11� and by Abel et al. �9,10�. The simulations assume an
autocatalytic �“burn”� reaction where the reactants are con-
sumed, similar to a flame consuming fuel. Those studies as-
sume that in the absence of any fluid flow the reacting front
will propagate with a constant velocity v0, as discussed in
Sec. II A. The numerical algorithm presented in Ref. �11�
combines a spreading reaction front with the oscillating vor-
tex chain flow of Eqs. �4� and �5�. We have reproduced these
simulations ourselves for comparison with the experiments.

For the stationary vortex chain �b=0�, mixing between
adjacent vortices is limited by molecular diffusion. There-
fore, the propagation of the front from one vortex to the next
is solely by a reaction-diffusion mechanism. However,
within a vortex the front propagation is dominated by advec-
tion. As the maximum flow velocity increases, the front ve-
locity also increases since the time to travel around a given
vortex decreases. The result is a monotonic increase in the
front velocity as the maximum flow velocity increases �11�.

For an oscillating vortex chain �b�0�, mixing between
vortices is chaotic. Cencini et al. study the velocities of the
propagating fronts as a function of the oscillation frequency
for a particular oscillation amplitude. Mode-locking behavior
is found for particular ranges of frequencies. Mode locking
in this system is defined as the front propagating an integer
number N of wavelengths � of the flow �2 vortex widths� in
an integer number M of oscillation periods �. Consequently,
the velocity v f for the mode-locked fronts is given by

v f =
N

M

�

�
. �6�

Equation �6� can be rewritten as

v f =
N

M
�f �7�

or, nondimensionally as

� =
N

M
� , �8�

where ��v f /U.
For a �1,1� mode lock �that is N=1, M =1�, the shape of

the reaction front repeats every period of oscillation and is
rigidly translated by �, one wavelength of the flow. A se-
quence of numerical images for a �1,1� mode lock is shown
in Fig. 2. For a �1,2� mode lock �Fig. 3�, the shape of the
front repeats every 2 drive periods. In this case, it also takes

two drive periods for the front to advance one wavelength of
the flow.

A more rigorous test of mode locking can be obtained by
plotting the front velocity as a function of the external fre-
quency and comparing the results to the the predictions of
Eq. �8�. This has been done by Cencini et al. for a particular
oscillation amplitude �see Fig. 11 in Ref. �11��. Clear mode
locking is found in these simulations for the �1,1�, �1,2�,
�1,4�, and �1,6� locking branches, with front velocities in
agreement with Eq. �8� for a wide range of frequencies.

Note that mode locking of the propagating front is incon-
sistent with the Fisher-Kolmogorov prediction �Eq. �1�� for
reaction-diffusion systems, even with an enhanced diffusion
coefficient.

III. EXPERIMENTAL TECHNIQUES

A. Apparatus and flow

The alternating vortex chain—composed of 20 vortices
�10 wavelengths�—is produced using a magnetohydrody-
namic technique �16,25,47,48� shown in Fig. 4. A radial cur-
rent passes through a 2-mm-thick solution and interacts with
a spatially varying magnetic field. The magnetic field is pro-
duced by two concentric rings of magnets of alternating po-
larity, where the polarity alternates both in the azimuthal as
well as the radial direction. For a radial current, magnetic

FIG. 2. Simulation showing evidence for a �1,1� mode lock. A
snapshot of the reacting front is taken at some intial time t0. An-
other snapshot is taken after each period � of the oscillation. The
shape of the reacting front repeats every period and is rigidly trans-
lated by � after a transient, as expected for a �1,1� mode lock. The
parameters used in this simulation are b=0.3, f =0.5, U=1.0, and
v0=0.2.

FIG. 3. Simulation showing evidence for a �1,2� mode lock. The
shape of the reacting front repeats every other period and is rigidly
translated by � every two periods after a transient, as expected for a
�1,2� mode lock. The parameters used in this simulation are b
=0.3, f =1.0, U=1.0, and v0=0.2.
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forcing pushes the fluid azimuthally above the magnets, one
way above magnets with the north side up and the opposite
way above magnets with the south side up. Plexiglass bound-
ing rings of radius 6.1 and 8.3 cm form the boundaries of the
region of interest, which is an annulus for these experiments.
By using the magnet array and bounding rings shown in Fig.
4, the resulting flow is an annular chain of vortices. The
strength of the flow—characterized by the maximum flow
velocity U—is varied by changing the magnitude of the elec-
trical current passing through the fluid. Unless otherwise
stated, U=440 	m/s for all of the experiments.

The magnet array is mounted coaxially on a motor that
can be programmed to move with any arbitrary, input wave
form. A stationary vortex chain is produced by having the
motor off. An oscillating vortex chain is produced by having
the magnets oscillate with a specified frequency f and am-
plitude B.

The experimental flow differs from the model of Eqs. �4�
and �5� in a few respects. First, the model flow assumes
free-slip rather than the no-slip boundary conditions that are
present at the bounding walls and bottom of the container.
Second, there is a weak, secondary, three-dimensional flow
that slowly pumps fluid into and up through the center of
each vortex �47�. The model equations assume a two-
dimensional flow, whereas the secondary flow present within
the experiments makes the experimental flow weakly three
dimensional. Third, the experimental vortex chain is
wrapped around into an annulus; consequently, there are
some curvature effects that are absent in the model. Fourth,
there are presumably some weak flows that are induced by
the chemical reaction itself, as has been predicted in previous
studies �49�. Our expectation is that these induced flows are
significantly smaller than the flows forced by the MHD tech-
nique.

B. Reaction

A variation of the Belousov-Zhabotinsky �BZ� reaction
�50,51� is used in the experiments presented here. Rather
than the standard ferroin-catalyzed BZ reaction, the
ruthenium-catalyzed BZ reaction is used. The Ru-catalyzed
BZ reaction may be either oscillatory �52� or excitable
�32,53�, depending on the reactant concentrations. The oscil-
latory reaction oscillates between the Ru2+ state, which is
orange in color, and the Ru3+ state which is green.

The excitable regime of the reaction is used in these ex-
periments. The system begins completely in the stable Ru2+

state. A Ru3+ pulse may then be triggered by placing a thin
�0.25 mm� silver wire into the solution for approximately ten
seconds. The silver oxidizes the Ru2+ in the vicinity of the
wire to the Ru3+ state. This region of Ru3+ then triggers the
surrounding Ru2+ and so forth, resulting in the propagation
of a Ru3+ front across the system. The reaction propagates as
a pulse rather than as a burn; the region behind the chemical
front returns to the Ru2+ state and may be retriggered. �In
fact, due to recirculation in the flow, the region behind the
front is repeatedly retriggered after the initial pulse passes.�
The dynamics of the front edge of the pulse is assumed to be
the same as the dynamics of the leading edge of a burn front.
Therefore, the excitable Ru-catalyzed BZ reaction may be
used to produce a propagating front in an advection-reaction-
diffusion system, as desired.

Another advantage of the Ru-catalyzed BZ reaction is the
fact that it is photosensitive for both the oscillatory and ex-
citable regimes �52�. The photosensitivity of the reaction al-
lows for the dynamics to be manipulated by light. For ex-
ample, by shining sufficiently intense blue light on the
reaction, the oscillatory behavior can be stifled leaving the
reaction entirely in the Ru2+ state. Examples of both pattern
formation �54� and mode locking �45� in a reaction-diffusion
regime have been produced using photoinhibition for the os-
cillatory regime of the reaction.

The ruthenium indicator used in these experiments comes
in the �Ru�bpy�3�Cl26H2O form. The Cl− ions inhibit the
reaction and also decrease the photosensitivity; therefore, the
Cl− ions should be removed before the experiment is run. To
remove the Cl− ions, a single-replacement reaction is used
�57�. The bromomalonic acid �BrMA� used in these experi-
ments is produced before each run by the following reaction
�53�:

BrO3
− + 2Br− + 3MA + 3H+ � 3BrMA + 3H2O. �9�

The reaction must be performed in a fume hood.
For most of the experiments in this paper, the initial con-

centrations are as follows: �BrMA�=0.09 M, �H2SO4�
=0.28 M, �BrO3

−�=0.16 M, �MA�=0.03 M, �Ru�bpy�3
2+�

=2.7 mM. The solution is initially orange in color and re-
mains orange until a silver wire is placed in the solution,
triggering the pulse. For these experiments, the reaction-
diffusion �no-flow� front velocity is v0=52 	m/sec.

FIG. 4. Schematic of the flow and experimental apparatus. �a� Exploded view of the magnetohydrodynamic forcing technique. The flow
is an annular vortex chain bounded by two plexiglass rings �shown in black� with radii 6.1 and 8.3 cm. �b� Side view of the apparatus. A
circular container holds the fluid and the bounding rings. Below the container is the magnet assembly, which is mounted coaxially with a
motor.
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A variation of the Ru-catalyzed BZ reaction with en-
hanced photosensitivity is used for experiments in which the
chemical front propagates around the annulus more than
once �“wrap around”�. In order to do so, the tail of the react-
ing front is reduced back to the Ru2+ �“erased”� using pho-
toinhibition, which is further explained in the next section.
To increase the photosensitivity the sulfuric acid concentra-
tion �H2SO4� is decreased from 0.28 M to 0.22 M; all other
chemical concentrations are the same as those mentioned
above. It should be noted that the more photosensitive com-
bination could have been used for all of the data runs. The
wrap-around experiments were done last, however; conse-
quently, most of the data had already been obtained with the
higher H2SO4 concentration. More details about the reaction
and the methods used to prepare the chemicals can be found
in Ref. �55�.

C. Illumination and imaging techniques

To exploit the photosensitivity of the Ru-catalyzed BZ
reaction, a high-powered �205 W� video projector is used to
illuminate a pattern onto the system. The annular region of
interest is illuminated with red light which does not affect the
reaction dynamics. Furthermore, the Ru3+ state strongly ab-
sorbs light at 675.2 nm whereas the Ru2+ does not, so the use
of red light greatly improves image contrast. The rest of the
circular container is illuminated with blue and green light,
which inhibits the reaction �52�, thereby preventing any spu-
rious fronts from entering the region of interest.

Within the annular region, one to two vortices are also
illuminated with blue and green light to form a “blinding
region.” Since the reaction is inhibited by blue light, the
reaction front cannot pass through the blinding region.
Therefore, by triggering a chemical pulse next to the blind-
ing region, the chemical front can travel in only one direction
around the annulus. Then, instead of having only 10 vortices
of data if the reaction front were to travel in both directions
and meet itself halfway around the annulus, the front
traverses 18–19 vortices.

To obtain even more than 19 vortices of data, a wrap-
around approach is used. This approach uses the enhanced
photosensitivity discussed in the previous section and a dy-
namic blinding region that follows the advancing chemical
front. The blinding region is extended to cover nearly half of
the annulus while the other half is still illuminated with red
light. A chemical pulse is triggered within the red region, and
as the front advances the blinding region follows it in a way
such that the leading edge of the front always remains ap-
proximately in the center of the red region. �The blinding
region is always kept at least three vortices away from the
leading edge of the front.� As a result, the tail of the chemical
pulse is erased �the Ru3+ state is reduced back to the initial
Ru2+ state� by the illumination, allowing the front to propa-
gate around the annulus multiple times.

Images of the propagating front are captured using a
12-bit, high resolution CCD camera. Unless otherwise stated,
the time-interval between images in all the experiments pre-
sented here is 2.0 s. A red interference filter �676 nm�, which
only passes light from 674–678 nm, is placed over the lens

of the camera to improve image contrast. The Ru3+ state
strongly absorbs light at 675.2 nm and can therefore easily
be distinguished from the Ru2+ state with this particular filter.

D. Analysis

The velocity of the chemical front is determined from the
sequence of images. The first image taken is used as a back-
ground image and the intensity of each subsequent image is
subtracted from this background. The images are subtracted
from the background since the Ru3+ is dark due to the inter-
ference filter used. As a result, once subtracted, the Ru3+

front appears white in the subtracted images.
Each of the subtracted annular images is “decurled”

thereby displaying the annular vortex chain as a linear vortex
chain. The horizontal axis of the decurled images corre-
sponds to the azimuthal direction of the annulus and the
vertical direction corresponds to the radial direction. Since
the region of interest is an annulus, if the front leaves the
right edge of the decurled image it will appear at the left
edge and continue propagating to the right.

Each decurled image is then shifted by the same amount
in the azimuthal direction such that the front is triggered at

=0 for each run. The intensity of each image is summed in
the radial direction and stacked one on top of another to
make a space-time plot, as shown in Fig. 5�b�, for example.
The velocity of the front is the inverse slope of the leading
edge in the space-time plot.

IV. EXPERIMENTAL RESULTS

A. Stationary vortex chain

The time evolution of the reacting front in the stationary
vortex chain �b=0� is shown in Fig. 5. In the time-
independent case, the front advances by three primary
mechanisms. �1� Once initiated near a fixed point at the cor-
ner of a given vortex, the front is predominantly advected
around the perimeter of the vortex. �2� Once the front has
reached the opposing corner of the vortex, the front travels
across the separatrix via reaction diffusion and triggers a
reaction within the next vortex. �3� Having advected around
the perimeter of a vortex, the front also travels inward to the
center of the vortex via reaction diffusion. Advection around
the vortex �1� is rapid, while reaction �2� across the separa-

FIG. 5. Propagation of a Ru3+ pulse for the stationary �b=0�
vortex chain. �a� Time series of the propagating front; images are
separated in time by 32 s. �b� Corresponding space-time plot, ob-
tained by stacking radially summed and decurled images. The
dashed line shows the average velocity of the front.
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trix is slow, resulting in speeding up and slowing down of the
front within each vortex �seen as the “teeth” in the spacetime
plot, Fig. 5�b��. The process repeats itself every wavelength
of the flow; the result is a velocity that is constant over
distances greater than a vortex width.

The front velocity v f increases monotonically with the
maximum flow velocity U �Fig. 6�. This can be explained
from the fact that the time for a front to advect around a
vortex drops with increasing U. However, the relation is not
linear. This is due to the fact that propagation from one vor-
tex to the next is limited by the reaction-diffusion mecha-
nism, since there is no advection directly from one vortex to
the next. Furthermore, there is a limit on the values of U for
which v f is even defined; as U grows too high, the reaction is
extinguished due to the increased shearing. The specifics of
this limit have not been extensively studied as of yet but
have been qualitatively observed.

B. Mode locking in the oscillating vortex chain

The behavior for the oscillating vortex chain �b�0�
�Figs. 7�a�, 8�a�, and 9�a�� is dominated by chaotic advection
and can be quite different from the stationary case �Fig.
5�a��. The stretching and folding that is characteristic of cha-

otic mixing of passive impurities �25,26� can be seen in the
advection-reaction-diffusion images presented here. Evi-
dence for mode locking can be seen by examining a time
series of snapshots of the chemical front separated by one
period of oscillation. An example of mode locking with
�N ,M�= �1,1� is shown in Fig. 7�a�. Similar to the simula-
tion shown in Fig. 2, the shape of the leading edge of the
front is repeated and rigidly translated by one wavelength
every period of oscillation. The corresponding space-time
plot is shown in Fig. 7�b�. There is a very clear, constant
velocity throughout the duration of the run, consistent with
the prediction of Eq. �8�.

An example of a �1,2� mode lock is shown in in Fig. 8�a�.
Similar to the simulation shown in Fig. 3, the shape of the
leading edge is repeated and rigidly translated by one wave-
length every two periods. The corresponding space-time plot
for this run is shown in Fig. 8�b�. Once again, the leading
edge of the front propagates at a constant velocity.

An example of an unlocked case is shown in Fig. 9�a�.
The time series for this case does not show the repeating
translation seen in Figs. 7�a� or 8�a�. Furthermore, there is no
clear, single velocity for this frequency; the space-time plot
�Fig. 9�b�� has many undulations and the velocity is continu-
ally changing. It could be argued that this frequency may
simply fall on a locking branch that is inaccessible due to the
fact that only twenty vortices are used. However, comparison

FIG. 6. Experimental plot of the average front velocity v f as a
function of the maximum flow velocity U for the stationary �b
=0� vortex chain; both velocities are normalized by the reaction-
diffusion �no flow� front velocity v0. The line of best fit has a
functional form v f /v0=0.87�U /v0�0.62.

FIG. 7. Experimental evidence for a �1,1� mode-locked front in
the oscillating vortex chain ��=0.2255 and b=0.345�. �a� A time
series showing the propagation of the front. Each image is separated
in time by one oscillation period ��=190 s�. The shape of the front
repeats every oscillation period and is rigidly translated by one
wavelength �two vortices�. �b� Corresponding space-time plot. The
dashed line shows the constant velocity of the front and agrees with
Eq. �8�.

FIG. 8. Experimental evidence for a �1,2� mode-locked front in
the oscillating vortex chain ��=0.54 and b=0.345�. �a� A time series
showing the propagation of the front. Each image is separated in
time by one oscillation period ��=80 s�. The shape of the front
repeats every other oscillation period and is rigidly translated by
one wavelength �two vortices� every two periods. �b� Correspond-
ing space-time plot. The dashed line shows the constant velocity of
the front and agrees with Eq. �8�.

FIG. 9. Experimental evidence for an unlocked front in the os-
cillating vortex chain ��=0.3296 and b=0.086�. �a� A time series
showing the propagation of the front. Each image is separated in
time by one oscillation period ��=130 s�. The shape of the front
does not repeat. �b� Corresponding space-time plot. There is no
constant velocity that agrees with Eq. �8�.
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of this run with those at very close frequencies reveals no
linear scaling of the front velocity with frequency �see Eq.
�8�� another typical indication of mode locking that is absent.

To test predictions of mode-locking in the oscillating vor-
tex chain, a particular amplitude of oscillation is chosen �b
=0.345� and the nondimensionalized front velocity � is plot-
ted as a function of the nondimensionalized frequency � for
this amplitude �Fig. 10�. The dashed lines correspond to the
theoretical predictions of Eq. �8�. The solid, horizontal line
corresponds to the stationary velocity �for b=0� measured
for the same value of U. There are clearly many frequencies
that mode lock onto both the �1,1� and �1,2� locking branches
and a couple on the �1,5� locking branch. It should be noted
that there are no fitted parameters in this plot.

The plot of � versus � shown in Fig. 10 does not capture
the full advection-reaction-diffusion problem. The maximum
flow velocity U and the oscillation frequency f could both be
doubled, for instance, leaving the advective properties of the
flow �represented by the non-dimensional frequency �� the
same. However, it would take only half the time to achieve
the same amount of mixing, but the reaction time scale
would remain unchanged. Consequently, the balance be-
tween advection, reaction and diffusion would be altered,
potentially resulting in different dynamics. As an extreme
example, for U→�, the system becomes an advection-
diffusion system and the dynamics of the reaction is lost. For
U→0, the system becomes a reaction-diffusion system and
the effects of the fluid flows are lost and the front will propa-
gate at velocity v0.

C. Arnol’d tongues

Although the mode-locked front velocity is fully deter-
mined by the oscillation frequency, whether the system mode
locks or not is also dependent upon the oscillation amplitude.
As the oscillation amplitude approaches zero, all front ve-
locities will tend toward the stationary velocity rather than
the predicted, locked velocity. Therefore, the range of fre-
quencies that will mode lock on a particular branch ought to
decrease with decreasing oscillation amplitude, resulting in
Arnol’d tongue behavior.

Arnol’d tongues for our experiments are shown in Fig. 11
for the �1,1� and �1,2� locking regimes. Several types of be-
havior are displayed within this plot. Most simply are the
cases where the front either mode-locks onto the �1,1� or
�1,2� branches symbolized by � and �, respectively, or is
completely unlocked �filled in diamonds�. Near the edges of
the tongues the front may be “partially locked,” defined as
the front being locked for 25–75 % of the total run. These
partially locked cases are denoted by � and � for the �1,1�
and �1,2� tongues, respectively.

The mode-locking behavior shows a clear dependence
upon the oscillation amplitude. As the oscillation amplitude
increases, the range of frequencies over which the system
mode-locks increases. Furthermore, as the oscillation ampli-
tude decreases towards zero, the system does not lock for
any frequencies of oscillation, as expected. Specifically, no
mode-locking behavior is observed for amplitudes below b
=0.075.

D. Overlapping Arnol’d tongues

The �1,1� and the �1,2� tongues overlap for a large range
of amplitudes, denoted by � in Fig. 11. The overlap can also
been seen in Fig. 10; specifically, the front velocity � is not
single-valued for all frequencies. Within this overlap region
dual-locked behavior occurs. The front velocity switches al-
ternately �and erratically� between two different values, cor-
responding to the two different locking tongues. In these
cases, both velocities are plotted in Fig. 10.

To explore the switching behavior between the overlap-
ping Arnol’d tongues the wrap-around technique is used, al-
lowing for the front to travel significantly farther than the 20
vortices available in one transit around the annulus. In addi-
tion to increasing the photosensitivity �see Sec. III B�, the
maximum flow rate is tripled in order to allow for the chemi-
cal front to travel around the annulus more than once before
the chemicals are exhausted. This is achieved by increasing
the maximum flow velocity to U=1.32 mm/sec, rather than
U=440 	m/sec. Because of the faster flow, the interval be-
tween acquisition of images is reduced to 1.0 s.

FIG. 10. Front propagation velocities for the oscillating vortex
chain; b=0.345. The velocity for the stationary case �see Fig. 5� is
denoted by the horizontal line. The dashed, diagonal lines corre-
spond to the predictions from Eq. �8� for mode-locked fronts with
integers �N ,M�.

FIG. 11. Arnol’d tongues for the mode-locked regimes; � and
� correspond to locking with �N ,M�= �1,1� and �1,2�, respectively;
� corresponds to dual-locked states; � and � denote partially
locked runs; and solid diamond corresponds to unlocked fronts. The
dotted and dashed curves show roughly the boundaries of the �1,1�
and �1,2� tongues, respectively.
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Unlocked, single-locked and dual-locked cases are all ob-
served for wrap-around experiments. A space-time plot for a
dual-locked case is shown in Fig. 12. The front spontane-
ously switches a total of 11 times between the �1,1� and �1,2�
locking branches. Furthermore, there are times when the
front is simultaneously locked on both the �1,1� and �1,2�
locking branches. A sequence of images for this run �Fig. 13�
shows this simultaneous dual locking. The front begins
locked on the �1,2� tongue. However, along the outside of the
annulus �bottom of each image�, a thin portion of the front is
able to shoot ahead of the rest of the front. This thin filament
is the portion of the front that is mode locked on the �1,1�
branch, evidenced by a fast front velocity that is measured to
agree with Eq. �8�. The portion of the front that remains
behind, however, follows the behavior corresponding to the
�1,2� mode. The result is the split in the front as shown in the
topmost image. Ultimately, the filament that shoots ahead
burns its way into the vortex centers, so the �1,1� mode
dominates in the long term during these simultaneous re-
gimes.

Note that on the second trip around the annulus the front
does not follow the same switching pattern as it does the first
time �Fig. 12�. Therefore, the cause of the switching is not
governed by the location within the apparatus.

There have been theoretical predictions of chaotic switch-
ing when there are overlapping Arnol’d tongues �56�. How-
ever, to experimentally verify the chaotic nature of this
switching, many more switches are required within a single
run. Therefore, in order to perform the analysis, the reaction

would have to be able to last several more hours in order to
obtain the necessary data. This could be achieved in future
experiments by refreshing the reactants during the run. In
conjunction with the wrap-around illumination technique, ar-
bitrarily long runs could be achieved.

V. DISCUSSION

The experimental results presented here agree with the
previous numerical studies �11�, despite the differences be-
tween the model and experimental flows �see Sec. III A�. In
addition to the differences in the flows, the simulations also
assume a burn reaction whereas the experiment produces a
pulse reaction. Lastly, the mode-locking behavior is unaf-
fected by the wrap-around technique, even though the chem-
istry changes over time. From all of this, we can conclude
that the mode-locking phenomenon is quite robust.

The behavior shown in these experiments is similar to
mode locking and Arnol’d tongue behavior in other systems.
However, in other examples of mode locking, there is typi-
cally a well-defined, global, natural frequency of oscillation

FIG. 12. Space-time plot showing switching behavior between
the �1,1� and �1,2� locking tongues; �=0.2465 with U
=1.32 mm/s and b=0.40. The wrap-around technique is used in
this run. The dotted line shows regions for which the front propa-
gates at a velocity corresponding to mode locking with �N ,M�
= �1,1�. The dashed lines show mode locking for �N ,M�= �1,2�.

FIG. 13. Sequence of images showing the simultaneous exis-
tence of mode-locking on the �1,1� and �1,2� tongues as shown in
Fig. 12 for �=0.2465 with U=1.32 mm/s and b=0.40. The images
are separated in time by 5 s.
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for the system. In those cases, it is this internal frequency of
oscillation that changes to lock onto the imposed, external
forcing. In the advection-reaction-diffusion experiments pre-
sented here, there is no well-defined, internal frequency of
oscillation. The closest analog in this system to a natural,
internal frequency is the typical circulation frequency within
a vortex. This frequency, though, is dependent on the loca-
tion within the vortex and diverges for tracers moving along
the separatrices. Furthermore, the circulation frequency is in-
dependent of whether the chemical front locks or not. It is
the reaction itself—the propagating front—that locks onto
the external frequency.

The experimental results illustrate the need to go beyond
the Fisher-Kolmogorov theory for describing front propaga-
tion in generalized advection-reaction-diffusion systems.
Even though transport in this system is diffusive with an
enhanced diffusivity Deff, the results presented here cannot
be obtained from Eq. �1� with D0 replaced by Deff. Clearly
the cellular structure of the flow plays an important role in
this process. We expect this to be a general result—the pres-
ence of coherent structures in a flow should be expected to
have a significant effect on the motion of fronts. The impor-
tance of this result goes beyond situations with laminar
flows, as coherent structures are prevalent in a wide range of

flows, including turbulent flows that are often characterized
by the formation of large, persistent patches of vorticity.

The fact that the transport within the system is dominated
by chaotic advection raises another interesting question. For
many of the mode-locked cases, trajectories of fluid elements
within the flow are predominately chaotic. Despite the cha-
otic nature of the mixing, the overall behavior of the spread-
ing reaction when mode locked is time periodic as shown in
Figs. 7�a� and 8�a�. This might not seem surprising at first,
since the velocity field itself is periodic. But from a chemis-
try perspective, it is not the velocity field that is important
but rather the manner in which the chemicals are mixed, and
the mixing is clearly chaotic in this system.

Ultimately, a deeper theoretical understanding is needed
to explain the locking behavior seen in these experiments. In
particular, the question arises as to whether some of the the-
oretical tools used to describe chaotic mixing can be applied
toward explaining the mode-locking behavior.
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