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Frozen reaction fronts in steady flows: A burning-invariant-manifold perspective
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The dynamics of fronts, such as chemical reaction fronts, propagating in two-dimensional fluid flows can be
remarkably rich and varied. For time-invariant flows, the front dynamics may simplify, settling in to a steady state
in which the reacted domain is static, and the front appears “frozen.” Our central result is that these frozen fronts
in the two-dimensional fluid are composed of segments of burning invariant manifolds, invariant manifolds of
front-element dynamics in xyθ space, where θ is the front orientation. Burning invariant manifolds (BIMs) have
been identified previously as important local barriers to front propagation in fluid flows. The relevance of BIMs
for frozen fronts rests in their ability, under appropriate conditions, to form global barriers, separating reacted
domains from nonreacted domains for all time. The second main result of this paper is an understanding of
bifurcations that lead from a nonfrozen state to a frozen state, as well as bifurcations that change the topological
structure of the frozen front. Although the primary results of this study apply to general fluid flows, our analysis
focuses on a chain of vortices in a channel flow with an imposed wind. For this system, we present both
experimental and numerical studies that support the theoretical analysis developed here.
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I. INTRODUCTION: REACTING FLOWS
AND FROZEN FRONTS

The evolution of an autocatalytic reaction A + B → 2A in
a spatially extended system is characterized by the propagation
of reaction fronts that separate the species A and B. The
motion of these fronts is well understood for reaction-diffusion
systems in the absence of any substrate flow. The effects
of fluid motion on fronts in the more general advection-
reaction-diffusion system have only recently received sig-
nificant attention. This is somewhat surprising, given the
applicability of advection-reaction-diffusion to a wide range
of systems, including microfluidic chemical reactors [1],
plasmas [2], the dynamics of ecosystems in the oceans (e.g.,
plankton blooms) [3], cellular- and embryonic-scale biological
processes [4,5], and the propagation of diseases in society [6].
It has been recently proposed that the motion of reaction fronts
in fluid flows may be dominated by the presence of burning
invariant manifolds (BIMs), which act as one-way barriers
to advancing fronts [7,8]. The existence of BIMs and their
function as one-way barriers has been verified experimentally
in time-independent and time-periodic vortex chain flows, as
well as two-dimensional (2D) disordered vortex flows [9].

Experiments have shown that reaction fronts tend to pin
to vortex structures in the presence of an imposed wind [10].
These fronts neither propagate forward against the wind nor
are blown backwards, but remain “frozen.” This behavior is
surprisingly robust, occurring over more than an order of
magnitude of wind speeds and a variety of underlying flows
ranging from confined vortex chains to extended, spatially
random flows. Figure 1 shows a sequence of images from
experiments showing the evolution of a triggered, autocatalytic
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reaction front in a vortex chain with wind. The front eventually
stabilizes and remains fixed for the duration of the experiment.

In this paper, we use the theory of BIMs to characterize
these frozen fronts. Frozen fronts occur when a BIM spans
the entire width of the system with no changes in blocking
direction, or when there is a combination of overlapping
BIMs, with the same blocking directions, that together span
the system. In either of these situations, the shape of the frozen
front is determined by the shape of the BIMs responsible. We
illustrate the creation of frozen fronts and changes in their
structure by increasing the wind applied to a canonical base
flow (the alternating vortex chain) with a propagating chemical
reaction. We present both experimental and numerical studies
of this system.

This paper is organized as follows. We begin in Sec. II
by presenting experiments involving reaction fronts in a
particular quasi-two-dimensional fluid flow: the “windy al-
ternating vortex chain.” The images in this section illustrate
the behavior of frozen fronts under an imposed wind of
various strengths. Section III recalls some basic aspects of
burning invariant manifolds (BIMs), geometric structures that
govern the progress of fronts in fluid flows, including the
three-dimensional dynamics of front elements and fixed points
of this system. Next, Sec. IV connects the previous two sections
by showing that frozen fronts are composed of BIM segments.
Section V considers frozen fronts in a numerical model of
the experimental flow. It parallels Sec. II by increasing the
applied wind and observing the resulting changes in the frozen
fronts. Here, we discuss in detail the various frozen front
topologies and the dynamical systems mechanism underlying
the transitions which connect them. There are two appendixes.
Appendix A introduces a two-dimensional invariant surface of
“sliding fronts,” which is used to prove several key results in
the paper. Then, Appendix B establishes the stability condition
that frozen fronts must satisfy.
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FIG. 1. Sequence showing the evolution of a triggered reaction
front. The maximum fluid vortex speed (in the absence of wind) is
U = 1.4 mm/s, and the wind speed is Vw = 0.90 mm/s (leftward).
The cell width (vertical dimension in the images) is 1.9 cm. The
images in the sequence are separated by 10 s.

II. EXPERIMENTS: WINDY ALTERNATING
VORTEX CHAIN FLOW

The alternating vortex chain fluid flow has been the subject
of much study, both theoretical and experimental. It has
been used as a model of a two-dimensional cross section of
Rayleigh-Bénard (thermal) convection [11–14] and Taylor-
Couette vortices [15], and can be used to model vortex chains
and streets in oceanic and atmospheric flows [16,17]. The
alternating vortex chain has been used to study enhancement of
long-range, fluid transport in cellular flows [18–21]. More re-
cently, it has been used repeatedly in studies of chemical front
propagation in advection-reaction-diffusion systems [7,22–
26]. Here, we modify this flow by adding a uniform “wind,”
creating the windy alternating vortex chain [10].

A. Experimental setup

The experiments are conducted in a quasi-2D flow com-
posed of a chain of vortices in a thin (2 mm) fluid layer.
The flow is produced using a magnetohydrodynamic forcing
technique, as shown in Fig. 2. A chain of permanent 1.9-cm-
diameter Nd-Fe-Bo magnets sits below the fluid layer, thereby
imposing a spatially varying magnetic field. An electric current
is passed through this electrolytic fluid, generating Lorentz
forces on the fluid. In conjunction with rigid, plastic sidewalls
that bound the region of interest, the result is an alternating
chain of well-controlled vortices. The magnets are mounted
on a translation stage; motion of the translation stage results
in motion of the magnets and, consequently, the fluid vortices.
In these experiments, we move the magnets (and the vortices)
with a constant speed Vw. In the reference frame moving with
the magnets, the flow is a stationary chain of vortices with an
imposed, uniform wind of speed Vw.

FIG. 2. Experimental apparatus. (a) Exploded view of alternating
fluid vortices above array of magnets. Two acrylic strips bound the
fluid domain, which measures 1.9 cm × 26.7 cm, with 14 vortices.
Current through fluid induces Lorenz force. (b) Side view of the
apparatus. A 2-mm-thick layer of an electrolytic fluid is contained in
an acrylic box. The chain of Nd-Fe-Bo magnets moves on a translation
stage below the box.

The fronts are produced in the experiments with the
excitable, ferroin-catalyzed Belousov-Zhabotinsky chemical
reaction [27,28]. At the beginning of an experimental run,
the ferroin indicator in the solution is in its reduced (orange)
state. A reaction is then triggered by briefly dipping a silver
wire into the fluid. The silver oxidizes the ferroin in its vicinity,
changing the local indicator to a blue-green color. The oxidized
indicator in turn oxidizes the ferroin of its neighbors, resulting
in a blue-green reaction front that steadily propagates outward
from the trigger point with a roughly constant propagation
speed V0. For all experiments presented in this article, the
propagation speed is V0 = 0.07 mm/s. The front is a pulselike
front; behind the leading edge of the front, the reaction relaxes
back to its reduced (orange) state and can be re-triggered.
Previous studies [24–26] have shown that the leading edge of
these pulselike fronts exhibits the same propagation dynamics
as the leading edge of a burn-type reaction. (Burn-type
reactions do not relax back, rather A + B → 2A and stays
that way.) That is, what happens behind the front does not
affect the evolution of the front itself.

B. Experimental results

We focus on the behavior of the leading edge of the
reaction front that propagates against the imposed wind. (In
the laboratory frame, these fronts propagate in the direction
of the imposed motion of the vortex cores.) An example of
a typical experiment is shown in Fig. 3. As viewed in the
laboratory reference frame [Fig. 3(a)], the front continually
propagates in both directions; in the reference frame moving
with the vortices [Fig. 3(b)] the rightmost edge of the reaction
front converges to a steady-state stationary shape that remains
fixed for the duration of the run. From here on, we use the
expression “wind” Vw to refer to either the translational speed
of the vortices in the laboratory frame or the speed of the
uniform wind in the vortex reference frame.

The propagation of a reaction front in the alternating vortex
flow in the absence of an imposed wind has been discussed
in detail in previous papers [25,26,29,30]. The reaction front
is carried around each vortex with the flow and “burns”
across the separatrix from one vortex to the next, resulting in

)b()a(

FIG. 3. Sequences showing the evolution of a reaction front in a
vortex chain. (a) Laboratory frame, with the vortices moving to the
right. (b) Reference frame moving with the vortices. In this frame, the
vortices are stationary and a wind blows across the vortices toward
the left. U = 1.4 mm/s, Vw = 0.30 mm/s. Images in the sequences
are separated by 20 s.

063005-2



FROZEN REACTION FRONTS IN STEADY FLOWS: A . . . PHYSICAL REVIEW E 92, 063005 (2015)

(c)

(a)

(b)

(d)

(e)

(f)

FIG. 4. Two sequences demonstrate front evolution near critical
wind speed. The maximum fluid vortex speed (in the absence of wind)
is U = 0.7 mm/s. For wind value Vw = 0.085 mm/s, the front is (a)
nearly vertical, (b) finds a small passage into the next right vortex,
and (c) fills in the right vortex continuing down the channel. For wind
value Vw = 0.090 mm/s, the front is (d) nearly vertical, (e) does
not find passage to the right, and (f) remains unchanged from (e),
a frozen front. The time between images is 40 s in both sequences.
Note that there is a small amount of experimental noise that increases
the transition slightly above Vw = V0 = 0.07 mm/s.

long-range propagation that is significantly faster than the
reaction-diffusion speed V0 in a static fluid. The long-term
average front speed is independent of the initial stimulation.

If a uniform wind Vw < V0 is applied (i.e., the wind speed
is smaller than the reaction-diffusion speed), the reaction front
still propagates to the right against the wind, although the
long-range propagation speed is reduced. At Vw = V0, there is
a transition where the front neither advances against the wind
nor is blown backwards [10]. Figure 4 shows a sequence for a
reaction front triggered in a flow with wind Vw just below V0

[Figs. 4(a)–4(c)] and Vw just above V0 [Figs. 4(d)–4(f)]. The
shape of the frozen front is not arbitrary; rather, a wide range
of initial stimulations will result in fronts that converge onto
the same structure. For Vw = V0, the shape of the frozen front
corresponds well with the advective separatrix having Vw = 0.

As the strength of the imposed wind is increased, the
shape of the frozen front evolves considerably. Figure 5 shows
time-averaged images of the steady-state reaction fronts for
several different wind speeds. With increasing wind speed, the
contact point of the frozen front with the upper boundary does
not move much. There is also a shift-flip symmetry apparent
in Figs. 5(b)–5(g); for every frozen front originating from a
contact point there is a flipped version of the same structure
originating from a contact point one vortex width leftward.
Consequently, for any wind speed, the leading edge of the
front could be pinned to any one of these contact points; i.e.,
any frozen front could be replaced by the same shape, shifted
by one vortex and flipped vertically.

The shift-flip symmetry is also relevant to a change in the
structure of the frozen front as the wind speed is increased.
The front develops a point, or corner, with an apparently
discontinuous derivative [Fig. 5(b)]. This point moves leftward
for larger and larger wind speeds [Figs. 5(c)–5(g)]. This
concave corner first appears near the downwind contact point
(one vortex width downwind in Fig. 5(b) and moves away from
the channel wall. In this situation, the frozen front is composed
of a combination of smooth curves that originate at different
contact points.

FIG. 5. (Color online) Time-averaged images of steady-state re-
actions for several wind speeds. U = 1.4 mm/s for all. Vw = (a)
0.15 mm/s, (b) 0.16 mm/s, (c) 0.20 mm/s, (d) 0.30 mm/s, (e)
0.60 mm/s, (f) 0.90 mm/s, and (g) 1.2 mm/s. Arrows indicate
apparent discontinuities in the frozen front tangent direction.

Above a minimum wind speed, the shape of the frozen
front is no longer uniquely determined (modulo the flip-shift
symmetry); rather, more than one front shape is possible,
depending on the manner in which the front is triggered
(Fig. 6). It is possible to trigger a reaction front that pins
only to the structure emanating from a single contact point, as
in Fig. 6(a). But, the same flow allows for other frozen fronts,
such as in Fig. 6(b). The number of different possible frozen
front shapes increases with the wind. As can be seen in both
Figs. 5 and 6, the front shapes are stretched out significantly
with increasing wind speed, spanning more and more vortex
cells. For all except the smallest wind speeds, a frozen front can
be composed of structures pinned onto adjacent vortex contact
points, as in Figs. 5(b)–5(g) and 6(b) and 6(c). For larger
wind speeds, additional frozen front shapes are possible. As
an example, Fig. 6(d) shows a frozen front composed of two
structures originating from contact points separated by five
vortex widths.

FIG. 6. Multiple frozen fronts are realized with the same flow,
depending on how the reaction is triggered. U = 1.4 mm/s for all.
Vw is 0.90 mm/s for (a), (b) and 1.2 mm/s for (c), (d).
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Experimentally, the more complex steady-state front shapes
are often found by simultaneously triggering the reaction in
multiple locations. However, these complex shapes appear
to be sometimes accessible with even a single, well-placed
trigger. A more detailed theoretical treatment of these “basins
of attraction” is in preparation.

For large enough wind, the stable state is lost completely,
with the front being “blown backwards” downwind. A com-
plete parameter space showing the range of wind speeds for
frozen fronts can be found in Ref. [10].

III. BIM REVIEW

We model advection-reaction-diffusion systems, such as
the above experiments, by considering only the front. This
amounts to taking the so-called “sharp-front” or geometric-
optics limit. While some other studies have made use of a grid-
based computational scheme [23,24], focusing on the front
is numerically economical and theoretically insightful. By
assuming that the front progresses in a curvature-independent
way [31,32], the front may be regarded as the collection of
independent front elements that comprise it. Although not
crucial to the basic ideas here, we also assume that the “burning
speed” [33] (i.e., front propagation speed in the local fluid
frame) is homogeneous and isotropic.

A front is the oriented boundary of a burned region with
orientation defined by the normal vector n̂ pointing away from
the burned region. (We can also refer to the orientation using
the tangent vector ĝ where n̂ × ĝ = +1, i.e., pointing out of
the plane.) Denoting by r the xy position of a front element
and by θ the angle from the x axis to ĝ, a front is a curve in
xyθ space that satisfies the front-compatibility criterion

dr
dλ

∝ ĝ(θ ), (1)

where λ is some smooth parametrization of the curve. The
above assumptions lead to the following three-dimensional
ordinary differential equation (ODE) governing the evolution
of an individual front element (r(t),θ (t)):

ṙ = u + v0n̂, (2a)

θ̇ = −n̂iui,j ĝj , (2b)

where u is the prescribed fluid velocity field, which is
nondimensionalized by dividing by U , the maximum fluid
vortex speed in the absence of wind. That is, in the absence of
wind, the maximum value of u is unity. Here, v0 = V0/U is the
nondimensionalized front propagation speed in the comoving
fluid frame. The position variable r is scaled so that the width of
each vortex and of the channel is unity. Time is scaled by the
advection time D/U , where D is the (dimensionful) vortex
width. Note that ĝ = (cos θ, sin θ ) and n̂ = (sin θ,− cos θ )
indicate the tangent to the front element and the normal
direction (propagation direction), respectively. Furthermore,
ui,j = ∂ui/∂rj and repeated indices are summed. The total
translational motion of a front element is the vector sum of
the fluid velocity and the front propagation velocity in the
fluid frame [Eq. (2a)]. The change in orientation is determined
entirely kinematically; Eq. (2b) describes the angular velocity
of a material line embedded in the fluid. It is also a special case

FIG. 7. (Color online) Evolution of reaction front in two counter-
rotating vortices. Stimulation (small blue circle) on lower left grows
while being acted on by the flow. Two BIMs (red) emanate from
burning fixed points on the bottom channel wall. The “burning
direction” of each BIM is indicated by red triangles. The reaction
passes through oppositely oriented BIM, but is blocked by cooriented
BIM. Finally the reaction front wraps around cusp of right BIM.

of the Jeffery equation [34] for rotation of an ellipsoidal tracer
in a 2D flow in the case where the aspect ratio of the tracer is
infinite, i.e., for a thin rod (or a front element in our case). It
is worth noting that this three-dimensional (3D) ODE can also
be derived from the G equation, widely used in the modeling
of combustion [35].

Invariant manifolds of the full 3D (xyθ ) dynamics [Eq. (2)]
depend upon both the fluid flow and front propagation, and
therefore differ from the invariant manifolds of the underlying
advection dynamics. We focus on the 1D unstable manifolds
attached to the burning fixed points [fixed points of Eq. (2)]
that are of stability type stable-stable-unstable (SSU). We
call these burning invariant manifolds (BIMs). It has been
demonstrated theoretically and experimentally that these BIMs
are “one-way” barriers to front propagation in flows (Fig. 7).
That is, they prevent reactions from crossing in one direction
but allow them to cross in the other. It is somewhat surprising
that these codimension-two manifolds are in fact barriers.
BIMs are not generic curves through xyθ space; they obey
the front compatibility criterion 1 [8]. All fronts, including
BIMs, obey the front no-passing lemma: no front can overtake
another front from behind.

An interesting consequence of the front propagation dy-
namics is the ability to create cusps in fronts and in the BIMs. In
time-independent flows, cusps mark a change in the bounding
nature of BIMs. Figure 7 illustrates the evolution of a small
circular front (lower left, blue). During its evolution (blue to
green), it passes through the left BIM (red) because of their
opposite orientation. It then presses up against the right BIM
(cooriented) and follows closely until reaching the BIM cusp
where the BIM’s relative orientation changes, thus allowing
passage of the reaction front. We define the BIM core as the
BIM segment that includes the burning fixed point and extends
in both directions until reaching either a cusp, a new burning
fixed point, or infinity.

IV. FROZEN FRONTS: BASIC THEORY

Consider a fluid domain D that is connected, but not
necessarily simply connected. In this paper, we focus on a
channel flow where D = R ⊗ [0,1], but the results obtained
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in this section are general. We now introduce a more precise
mathematical definition of frozen front than the more intuitive
definition used thus far. First, we define frozen domain as a
burned subdomain of D that is invariant under the burning
dynamics and stable to perturbation [36]. (See Appendix B for
a precise discussion of this notion of stability.) Since the fluid is
incompressible, neither the frozen domain nor its complement
may be of finite area. A frozen front is the oriented boundary of
a frozen domain that separates the burned from the unburned
fluid. (The frozen domain boundary that coincides with the
boundary of D, i.e., a domain wall, is then not considered
part of the frozen front.) As with any front, we choose the
orientation of the frozen front to be a unit vector normal to the
frozen front pointing outward from the burned region. Since
the frozen domain is unbounded, the frozen front cannot be a
closed curve. Note that a frozen domain does not correspond
to a comoving parcel of fluid, but is a set of locations in the
laboratory frame. Similarly, a frozen front is not a material line
(nor is any front with nonzero v0).

Consider a particular frozen front F as a curve in xyθ space.
An individual front element on F can evolve into the interior of
the frozen domain, but not vice versa. Since the frozen domain
is invariant, the time evolution of F under Eq. (2) includes F

for any time t . In other words, the backward trajectory of any
point on F remains on F . Thus, the frozen front must be the
union of segments of front element trajectories, and is hence
a piecewise smooth curve. Each segment follows a trajectory
from t = −∞ to some t = tf . This implies each segment lies
within the unstable manifold emanating from a fixed point,
which may be at infinity.

On a smooth segment of frozen front a front element is
either a fixed point of the flow, or it “slides” along the segment
satisfying ṙ ∝ ĝ. Any frozen front can thus be decomposed
into a collection of these sliding fronts (Appendix A). Here,
we summarize the geometry of sliding fronts detailed in
Appendix A. First, sliding fronts only exist in the domain
where |u| � v0. We refer to this domain as the fast zone and
the complementary domain as the slow zone. In the fast zone,
the structure of the sliding fronts can be simply characterized.
At every point in the fast zone interior, there are two allowed
sliding front orientations characterized by the angle

β = arccos(−v0/|u|) (3)

between the front propagation direction n̂ and the fluid flow
u (Fig. 8, Lemma 8). In the limit v0/|u| → 0, the two sliding
fronts become parallel (burning in opposite directions) and
align with the streamlines, thus recovering the advective case.
We refer to these two choices of orientation as “+” and
“−” corresponding to sgn(ṙ · ĝ). Each choice of orientation
defines a set of sliding fronts whose projection foliates the
fast zone. When the sliding fronts are considered as curves in
xyθ space, they foliate a two-dimensional surface which is a
double-branched covering of the fast zone (see Figs. 22 and 23
for examples).

Consider a burned region bounded by two sliding fronts
(on different branches) that meet at a point as in Fig. 8. In
principle, the burned region may be either locally concave or
locally convex at this point. However, the convex case is not
relevant to frozen fronts because any convex corner will be
smoothed out after an arbitrarily short evolution. Therefore,

β

β

v0n̂

v0n̂

ṙ ∝ +ĝ

ṙ ∝ −ĝ

u

FIG. 8. A generic intersection of two sliding fronts (one black,
one gray). Each sliding front’s propagation vector v0n̂ cancels the
normal component of the fluid velocity u, leaving only motion tangent
to the front. The two orientations (black and gray) are symmetric
about u.

in the interior of the fast zone, a frozen front is simply a
union of smooth curves that meet at concave angles specified
by the local burning-to-fluid-speed ratio v0/|u|. In the limit
|u| → +v0, the two branches meet on the boundary of the
slow zone. At all such points of the boundary, two sliding
fronts meet with burning directions n̂ aligned. There are two
cases to consider.

In the first case, assume n̂ is not perpendicular to the slow
zone. Then, the sliding front trajectory passes through the fold
joining the two branches in such a way that it forms a cusp in the
xy plane (Fig. 9). We observed above that cusps mark a change
in the bounding behavior of BIMs. This change occurs at cusps
along any sliding front (including BIMs), which implies that a
frozen front cannot contain a cusp. Figure 10 illustrates why; it
shows the two possible burned regions that would be bounded
by such a cusp. In both cases, one segment of the sliding front
has a burning direction incompatible with, i.e., pointing into,
the proposed burned region.

FIG. 9. (Color online) The BIM (red) is a smooth curve in xyθ

space. Its projection (green) onto the xy plane has a cusp on the
boundary of the slow zone.
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FIG. 10. (Color online) A sliding front (red) with a cusp cannot
bound a burned region (gray). Either choice of shading leads to an
incompatibility in front orientation in which one piece of the front
points into the burned region.

Referring to Fig. 11, as n̂ becomes perpendicular to the
slow zone at the point x, the cusp becomes tangent to the slow
zone. By symmetry, a cusp also approaches x from the other
side.

In the second case, where n̂ is perpendicular to the slow
zone, Ref. [8] showed that the sliding front must meet the slow
zone at a burning fixed point x. This could be thought of as
the meeting of two cusps (Fig. 11). Each segment of the cusp
on the left pairs with its symmetric segment on the right to
form a smooth curve in xy space passing through x. Each of
these two combined curves is a 1D stable or unstable manifold
of x. There are four possible stability types of burning fixed
points in xyθ space: SSS, SSU, SUU, and UUU. These are
illustrated in Fig. 24. For SSU and SUU burning fixed points,
the dynamics restricted to the sliding surface is of stability SU
(Lemma 1). Figure 24 illustrates the 1D stable and unstable
manifolds attached to such burning fixed points. For SSS and
UUU points, the dynamics within the constraint surface is of
stability SS and UU respectively (Lemma 1). Since the burning
fixed point is either a sink or source in this case, it is met by
an infinite number of sliding trajectories.

Only two of the four stability types can occur on a frozen
front. Suppose a frozen front is tangent to a slow zone at a
burning fixed point where the burning direction is into the
slow zone, as for SUU or UUU stability types. Although
the burned region behind the burning fixed point does not
intersect the slow zone, a small perturbation of the burned
region at the burning fixed point can intersect the slow zone.

x

SZ

FIG. 11. (Color online) Sliding fronts (black) strike the slow
zone, forming cusps on either side of an SSU burning fixed point x.
As the cusps on either side approach x, they become more horizontal,
eventually joining tangent to each other at x. Here they are stable
(blue parabolic) and unstable (red horizontal) invariant manifolds of
x (and still sliding fronts).

Once any of the slow zone is burned, the entirety of the slow
zone must eventually be burned and remain burned forever
(Lemma 2). Since we require frozen fronts to be stable under
small perturbations (Appendix B), SUU and UUU burning
fixed points cannot occur on a frozen front.

The two remaining stability types SSU and SSS can exist
on a frozen front. We previously showed that the frozen front
consists of unstable manifolds. Only the SSU points have
unstable manifolds. Finally, since cusps are not allowed on
frozen fronts (shown earlier), we have one of the main results
of this paper.

Proposition 1. Frozen fronts are built from BIM cores.
More precisely, each frozen front is generated by some set
Sfrozen front of SSU burning fixed points. The frozen front is
obtained by tracing the unstable manifold from each point in
Sfrozen front until one of three things occurs: it intersects any
other BIM core emanating from Sfrozen front; it intersects any
domain boundary; or it terminates at an SSS burning fixed
point.

So far we have focused our attention on the generation of
the frozen front from burning fixed points. Here, we shift our
attention to consider how the sliding segments of a frozen
front end. We have already discussed the most common case
where segments intersect at a concave corner. There exist two
other possibilities: termination on an SSU or SSS burning fixed
point.

An SSU burning fixed point has a stable manifold that
contains an incoming sliding front. A frozen front can therefore
contain a segment which is a heteroclinic connection consist-
ing of a sliding front between SSU points. Figure 12(b) shows
two SSU burning fixed points joined by such a connection
flowing from the upper to the lower burning fixed point.
This configuration is a frozen front; in particular, it is stable
to perturbations of the burned region (Appendix B). In one
sense, the frozen front is also structurally stable because
generic perturbations of the flow yield frozen domains with
a similar shape [Figs. 12(a) and 12(c)]. In another sense, it
is not structurally stable because generic perturbations break
the heteroclinic connection, thus altering the dynamics along

(a) (b) (c)

FIG. 12. (Color online) The SSU-SSU connection is not struc-
turally stable as the wind speed is varied. Nevertheless, the frozen
domain (light gray) varies continuously. Slow zones are dark gray.
(a) The relation vw < vc places the lower SSU point behind the frozen
front attached to the upper SSU point. (b) The equality vw = vc makes
the unstable manifold from the upper SSU point coincide with the
stable manifold of the lower point. (c) The relation vw > vc pushes
the lower SSU point ahead, placing it and its BIM on the frozen front.
The frozen front is now composed of two BIMs meeting at a concave
corner.
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the front. Some of these perturbations cause the lower SSU
burning fixed point to fall behind the frozen front [Fig. 12(a)],
while other perturbations cause it to push through, and in
doing so contribute a segment of unstable sliding front to the
frozen front [Fig. 12(c)]. As seen in Figs. 12(b) and 12(c), both
of these perturbations return the system to the generic case.
So, while SSU burning fixed points can exist as “termination
points” along a frozen front, this is not generic.

Finally, we consider the SSU to SSS connection. The SSS
point attracts all points within a 3D neighborhood and, there-
fore, it attracts all sliding fronts within some neighborhood on
the invariant sliding surface. It might then seem that this SSS
point can be on a frozen front containing any of these incoming
sliding fronts. However, the sliding front must reach the SSS
point without having formed a cusp. This can only happen if
the eigenvalues of the SSS point are real. Such SSS points do
exist, albeit for what appears to be a small parameter range.

V. THEORY: WINDY ALTERNATING VORTEX
CHAIN FLOW

We continue our discussion of frozen fronts using a simple
numerical model of the experimental fluid flow.

A. Numerical model

The stream function that describes the flow is

� = 1

π
sin(πx) sin(πy) − vwy, (4)

where ux = d�/dy and uy = −d�/dx. This model has been
used in several previous studies, on both fluid mixing and re-
acting flows, yielding reasonable agreement with experiment.
Our intent here is to illustrate the theory of frozen fronts for
a particular fluid flow, and to reproduce basic features of the
experimental flow in Sec. II.

There is a weak three-dimensional component to the vortex
flow due to Ekman pumping that carries fluid toward the vortex
centers at the bottom of the fluid layer and up through the
vortex cores [37]. This effect is not included in the model.
Also, while the model has free-slip boundary conditions,
this is certainly not true in the experiment. Nevertheless, the
simplified free-slip model of Eq. (4) has been used successfully
in modeling several experiments on passive transport and front
propagation in vortex flows [14,20,22,24,25]. The last term in
Eq. (4) numerically models the fluid wind observed in the
moving frame of the vortices.

B. Dynamical systems analysis

We begin by considering a flow where the wind is of
insufficient strength to produce a frozen front [Fig. 13(a)].
The streamlines indicate that this is essentially a vortex flow,
but with a sinuous, left-moving jet. In Fig. 13(b), a small
circular stimulation (purple) is made in the lower left. This
circle evolves (purple to red) outward to the left and right
while being deformed by the flow. The rightward-moving front
is able to make slow progress “upwind.” Notice though that it
is blocked at the vortex boundary near the bottom and middle,
and must wind around through the top of the channel. In this

(a) (b)

(c) (d)

(e)

FIG. 13. (Color online) Small wind speed (v0 = 0.3, vw =
0.15). (a) Fluid flow streamlines, fixed points, and attached invariant
manifolds. (b) Sequence of fronts (small purple circle to red indicates
temporal evolution) shows preliminary convergence near bottom to
roughly vertical curve. (c) Further evolution; lower edge converges to
curved line while the rest proceeds around and to the right. (d) BIMs
attached to burning fixed points. Slow zones shaded gray. (e) The
one BIM most important for above front evolution, shown against
advective structure.

way, the reaction continues winding rightward through the
channel indefinitely [Fig. 13(c)].

Figure 13(d) illustrates all slow zones (gray), SSU burning
fixed points (red), and BIMs (red with arrows indicating the
burning direction) in this system. Two of the slow zones
contain the elliptic advective fixed points in the vortex centers.
The others contain hyperbolic advective fixed points on the
channel walls. Note that the slow zones are slightly offset
from a square lattice. This is due to the small wind added.
We show only the SSU burning fixed points since, as shown
in (Proposition 1), they are the generators of the unstable
manifolds which combine to form frozen fronts. Each burning
fixed point lies on a slow zone boundary and, because it is SSU,
is oriented away from the slow zone. The BIMs emanating
from these burning fixed points are similarly oriented. Each
BIM spirals into a vortex center where it forms a cusp on an
elliptic slow zone (i.e., a slow zone that contains an elliptic
advective fixed point). Only the incoming portion of the cusp
is pictured because, as shown earlier, the frozen front cannot
contain cusps, and so the remainder of the BIM will not be
relevant.

Figure 13(e) summarizes the dynamical structures relevant
to the behavior observed in Figs. 13(b) and 13(c). The BIM
core shown is responsible for blocking front propagation at the
bottom and center of the channel in Fig. 13(b). The transverse
stability of the BIM leads to the front’s rapid convergence
upon it [Fig. 13(b)]. As the front evolves further [Fig. 13(c)],
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(a) (b)

(c) (d)

(e)

FIG. 14. (Color online) Critical wind speed (v0 = vw = 0.3).
(a) Advective structure; similar to previous case. (b) This time,
front progress (from the left) is completely blocked. (c) Perturbation
of burned region shows instability, therefore not a frozen domain.
(d) Several BIMs, burning fixed points, and slow zones. (e) BIM
of interest is a straight vertical line, coincides with separatrix of
nonwindy flow.

it reaches the cusp at the end of the BIM core and winds
around it. The BIM core does not form a complete span across
the channel, and thus does not form a global barrier to the
propagation of fronts. This is the situation seen in experimental
images Figs. 4(a)–4(c).

Now, we increase the wind speed until it precisely balances
the burning speed vw = v0 (Fig. 14). Stimulating in the lower
left (purple) we find that the reaction approaches a vertical
curve [Fig. 14(b)], and so the reaction is confined to the left
side. This appears to be a candidate for a frozen domain. In
Fig. 14(c), we test the stability of this region by introducing
a small sinusoidal perturbation. The rightward component of
this perturbation grows, eventually filling in the entire cell
to the right, demonstrating that this region is not stable and
therefore not a frozen domain.

Let us examine the dynamical structures in Figs. 14(d)
and 14(e). The increase in wind has caused the slow zones
to shift slightly relative to Figs. 13(d) and 13(e); the two on
the lower boundary move together, as do the two on the upper
boundary; those in the vortices move up or down depending
on their rotational sense. The central BIM is now a straight
vertical line. It is important to note that this BIM spans the
entire channel with no cusp, thus creating a global barrier to
front propagation. Symmetry of the flow indicates that this
BIM terminates at an SUU burning fixed point at the top of
the channel. We have previously argued that such a fixed point
could not be on a frozen front, and it is this fixed point that
leads to the instability demonstrated in Fig. 14(c).

(a) (b)

(c)

FIG. 15. (Color online) Wind greater than critical (v0 =
0.3, vw = 0.4). A stimulation on the left (a) converges onto a smooth
curve that spans the channel. In (b) a sinusoidal perturbation of this
curve converges back to the curve, implying that it is stable. (Only
the last front is filled.) (c) The BIM responsible for the frozen front
spans the channel with no cusps.

Now, we increase the wind beyond the critical value. In
Fig. 15(a), a stimulation on the left converges to a burned region
bounded by a smooth curve spanning the channel. Unlike
in Fig. 14(c), a small rightward perturbation in Fig. 15(b)
converges back to this smooth curve, and hence this curve is
a frozen front. Figure 15(c) shows that the smooth bounding
curve is the BIM emanating from the bottom burning fixed
point. Note that this BIM terminates at a point on the boundary
that is not a burning fixed point. This explains the situation seen
in experimental images Figs. 4(d)–4(f) as well as Fig. 5(a).
Also note that this change is not accompanied by a change in
the fluid flow topology.

Now that we have seen BIMs act as both local and global
barriers, we would like to understand the transition between
these two cases in more detail. Imagine a deformation that
takes the BIM in Fig. 13(e) to the BIM in Fig. 15(c): What
might this deformation look like? Lemma 8 ensures that the
angle between BIMs and streamlines is nonzero throughout
the interior of the fast zone. Therefore, a BIM cannot form a
tangency with the channel wall (which must coincide with a
streamline) in the interior of the fast zone. Note, however, that
a BIM cusp, on the boundary of a slow zone, may encounter the
channel wall without forming a tangency. In fact, this occurs
when the cusp is perpendicular to the channel wall (Lemma 7).
This observation suggests two deformation strategies: either
move the existing cusp on the elliptic slow zone to the wall,
or create a new cusp on the hyperbolic slow zone and slide
the cusp to the wall. While the first mechanism seems more
straightforward, and has not been ruled out theoretically, it
has not yet been observed. However, the second mechanism is
observed here.

In Fig. 16, we increase vw through the critical value vw = v0

and follow the transformation of the BIM. Beginning with a
subcritical vw value in Fig. 16(a), we see the BIM (green)
that comes up from burning fixed point A (not shown) on the
bottom wall and veers off to the right to form a cusp on the
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A

SZ

B

A

SZC

(a)

(b)

FIG. 16. (Color online) The basic mechanism in the transition
to the first frozen front. We increase the wind speed, showing the
interplay between the BIM from burning fixed point A (not shown)
and the upper slow zone and its burning fixed points. (a) An SSU
burning fixed point B lies on the bottom of the slow zone. Attached
to it are BIMs (red) going left and right, both of which end in cusps
on elliptic slow zones (not shown). (i) A BIM (green) comes up from
the SSU burning fixed point A below (not shown) and then shadows
the unstable BIM (red) going to the right. (ii) The BIM (red and blue
dashed) forms a tangency, i.e. a heteroclinic connection, with the
burning fixed point B. (iii) The BIM (purple) is blown left, behind
the heteroclinic connection, forming a cusp. (b) An SUU burning fixed
point C is shown at the top of the channel. A BIM (red) lies within its
unstable manifold and goes off to the left. (iv) A BIM (green) slides
leftward along the slow zone, approaching the burning fixed point
C. (v) The BIM (red and blue dashed) forms a second heteroclinic
tangency with burning fixed point C. (vi) The BIM (purple) is blown
left, beyond this heteroclinic connection, forming a complete span
across the channel. Since the burning fixed point positions and slow
zones change slightly with vw , the specific burning fixed points B and
C shown, as well as their slow zones, are calculated for the parameter
values of the heteroclinic connections.

elliptic slow zone (not shown). This cusp marks the end of the
BIM core.

Increasing the wind, the BIM is “blown backward” develop-
ing a tangency (red and blue dashed) with the upper slow zone.
This tangency is not forbidden because the slow zone is not
defined by a streamline. Since the front is burning away from
the slow zone, the tangency must occur at either an SSU or
SSS burning fixed point on the upper slow zone (according to
Lemma 6 and Fig. 24). Because the slow zone is convex in this
case, the burning fixed point must be SSU. The heteroclinic
connection is illustrated by the coincidence of the unstable
BIM of burning fixed point A and the stable BIM of burning
fixed point B (red and blue dashed).

Continuing to increase the wind, the BIM is blown further
backward. Now, it does not meet the slow zone at a tangency,
and so the heteroclinic connection is broken, giving way to
a cusp; the other option allowed by Lemma 6. This cusp
slides along the slow zone, with its angle changing to remain
perpendicular to the fluid flow (Lemma 6). The cusp must
rotate counterclockwise, at least initially, so that its tangent

A

D
C

FIG. 17. (Color online) A series of frozen fronts for increasing
wind values (v0 = 0.3, v0 < vw < 1.7v0, blue vertical to red curve).
The BIM attached to burning fixed point A is swept backward until
it intersects burning fixed point D The slow zones also shift and are
colored accordingly. Compare to front shapes in experimental images.

points into the slow zone, as rotating clockwise would require
the BIM to enter the slow zone.

The BIM soon arrives at another tangency with the slow
zone [Fig. 16(b)]. Here, however, the BIM is burning into,
rather than away from, the slow zone. This tangency implies
a heteroclinic connection with the SUU burning fixed point
C. (Again, the UUU case cannot occur because the slow
zone is convex; see Fig. 24.) In a generic three-dimensional
dynamical system, heteroclinic connections between SSU
and SUU fixed points are codimension-two occurrences. In
this system, however, the BIMs are constrained to the two-
dimensional sliding surface, and so the heteroclinic connection
is a codimension-one occurrence. Said loosely, if a BIM is to
sweep from one side of a slow zone to the other, the BIM
cannot avoid connecting with at least two burning fixed points
on the slow zone boundary.

Increasing the wind still further, the BIM, blown entirely
clear of the slow zone, spans the entire channel, uninterrupted
by cusps. We have now arrived at the frozen front configuration
in Fig. 15(c). This frozen front topology persists for a
significant range of wind values. As seen in Fig. 17, the shape
of this front can be nearly straight, or more boomerang shaped,
depending on the applied wind. Note that it is only due to the
symmetry of the flow that the second heteroclinic connection
in Fig. 16(b) occurs exactly when the BIM core first spans the
channel.

At approximately wind value vw = 0.34 = 1.7v0, the BIM
encounters the upper left slow zone in Fig. 17. Just like the BIM
transition in Fig. 16, we must form a heteroclinic tangency
(Lemma 6 and Fig. 24) to a new SSU burning fixed point
denoted burning fixed point D. (Note the latter is rotated by
roughly π/2 CCW in comparison to Fig. 16.) Foretelling this
tangency, the red curves in Fig. 17 begin to curve upward near
the upper channel wall. Once again, symmetry of the flow
requires that burning fixed point D be on the upper channel
wall.

As v0 is increased still further, the BIM forms a cusp just
behind the unstable BIM attached to burning fixed point D
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(a)

(b)
A

D

FIG. 18. (Color online) A composite frozen front formed from
two BIMs, neither one a frozen front (v0 = 0.3, vw = 0.525). The
evolving front rapidly converges to BIM A and then winds around its
cusp. However, it is prevented from going further rightward by the
short segment of BIM D.

[Fig. 18(b)], as seen in the mechanism in Fig. 16(a). Note
that while a front may wrap around the newly formed cusp
attempting to bypass the initial BIM, it will shortly encounter
the BIM attached to burning fixed point D which has closed
off this pathway [Fig. 18(a)]. Here, we have a frozen front that
is composed of two distinct BIMs. Note that the burning region
has a concave corner, with opening angle given by Lemma 8.
The appearance of this concave corner is exactly what was
observed in the experimental frozen front [Fig. 5(b)].

The sequence in Fig. 19(a) takes the BIM through a series
of encounters with slow zones as the wind speed is increased.
(Here, we consider v0 = 0.2 for simplicity.) The first encounter
is the attachment and detachment mechanism with the upper
right slow zone, analogous to that in Fig. 16. Here, however, the
BIM detachment does not result in a BIM core that spans the
channel. Rather, the BIM continues for some distance and then
spirals in toward the elliptic slow zone in the upper left, where
it forms a cusp. As the wind speed increases, the cusp slides
clockwise around the slow zone until the BIM forms a new
tangency with the upper left slow zone. The cusp on the elliptic
slow zone is “cut off” by this tangency, which dynamically
precedes it along the BIM. This begins the mechanism of
Fig. 16 again, after which the BIM core forms a complete span
and defines a frozen front.

Figure 19(b) shows a similar sequence as Fig. 19(a) for
v0 = 0.3. The main difference between these two images is
that three slow zones have merged into one in Fig. 19(b).
Consequently, the initial detachment of the BIM from the upper
right of the slow zone results in a new cusp formed near the
bottom of the same slow zone. Furthermore, as the cusp moves
clockwise around the slow zone, it is never “cut off,” but instead
slides along the slow zone to the channel wall.

By flip-shift symmetry of the flow, the BIM attached to
burning fixed point D has undergone the same transition as

(a)

(b)

FIG. 19. (Color online) Increasing the wind beyond first instance
of frozen front generates new transitions. (a) (v0 = 0.2, 0.3 < vw <

0.6) Blue (rightmost) frozen front rapidly attaches to and detaches
from slow zone. Upon detaching, the BIM “jumps” straight to a cusp
on an elliptic slow zone. With even higher wind, another attachment
and detachment leads again to a complete span. (b) (v0 = 0.3, 0.45 <

vw < 0.8) Illustration of similar transitions where “jumping” occurs
all within a single connected slow zone.

the BIM attached to burning fixed point A and so forms
a frozen front as well [Fig. 20(a)]. Importantly these two
frozen fronts intersect. Consequently, in addition to the frozen
domains defined by single BIMs, the union of two neighboring
frozen domains defines a distinct frozen domain. This union
is continuously related to the frozen domain observed in
Fig. 18(a) as vw is increased. In Figs. 15 and 18, there is

(a)

(b)

(c)

(d)

(e)

A

D

FIG. 20. (Color online) Frozen front diversity and sensitivity to
initial stimulation (v0 = 0.3, vw = 0.95). (a) BIMs A and D (related
by flip-shift symmetry) each form a complete span, and intersect.
Nearby stimulations (small pink dots near the right side) lead to
different asymptotic frozen domains. The frozen domains fall into
two classes: (b) and (c)–(e). (b) The frozen front is composed of
a single BIM, which spans the channel. (c)–(e) The frozen front is
composed of two BIMs.
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(a)

(b)

(c)

(d)

FIG. 21. (Color online) For the windy alternating vortex chain
flow we can enumerate the increasing number of possible frozen
domains that occur with increasing wind speed. In this example,
there are four frozen front shapes (up to flip-shift symmetry) (v0 =
0.2, vw = 1.18).

a one-to-one correspondence between frozen domains and
vortices in the channel. Now, in Fig. 20, the diversity of frozen
domains (at fixed v0 and vw) has increased. We can have either
a frozen front formed by a single BIM core [Fig. 20(b)] or by
two intersecting BIM cores [Figs. 20(c)–20(e)]. Note that the
diversity of frozen fronts in Figs. 20(b)–20(e) is produced by
small changes to the initial stimulation point.

As the wind is increased, the process in Fig. 19 is repeated.
The BIM slides along the upper channel wall until it encounters
an SSU burning fixed point on a slow zone. It moves around
the slow zone until it moves completely to the left of the slow
zone and reconnects to the channel wall. This process occurs
once for each vortex pair. After each such occurrence, the BIM
acquires a new intersection with another BIM emanating from
the opposite side of the channel. We can thereby enumerate
all frozen domains of this system for given values of v0 and
vw (Fig. 21). Finally, when min(|u|) > v0, there are no slow
zones, and therefore no burning fixed points, and therefore no
frozen fronts.

VI. CONCLUSIONS

The ability of a heterogeneous flow to freeze reaction fronts
in the presence of an imposed wind appears to be quite general.
Frozen fronts (“sustained patterns”) have been observed
numerically in simulations of oceanic plankton blooms [38].
Frozen fronts have also been seen both experimentally and
numerically in reacting flows in a porous media with a
throughflow [39,40]. We have also conducted experiments on
frozen fronts in extended flows composed of two-dimensional
arrays of vortices, either ordered or disordered [41]. As is the
case in this paper, the frozen fronts in an extended flow with a
wind are due to patterns of overlapping BIMs.

This work suggests several directions of future research. In
the context of design and control, this analysis could be used
to develop a reacting fluid flow with some desired property.
An obvious example is a system with maximal reaction rate.
Given some class of accessible fluid flows, the reaction rate
can be readily maximized by computing the lengths of frozen
fronts. Another example is reaction rate stability. We might be
given a particular flow perturbation and seek the base flow that
minimizes reaction rate fluctuation.

It may be desirable to generate a frozen front with a
particular geometry. For instance, there may be a region in the

neighborhood of the frozen front that we wish to keep strictly
separated from the front (e.g., a sensor in the vicinity of a
combustion front that cannot withstand the temperatures of the
front itself). The analysis here provides a detailed connection
between the stream function and frozen front shape making
these questions accessible.
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APPENDIX A: SLIDING FRONTS

Although we study fronts propagating in time-independent
fluid flows, the fronts themselves certainly need not be time
invariant. For instance, a fast-propagating front in a weak flow
will evolve approximately as a circle of increasing radius.
Loosely speaking, this is because each front element in the
circle “burns beyond itself.” For a front to be time invariant,
each element must instead “slide along itself.” In this section,
we make this statement clear and derive several consequences.

Definition 1. A front element, i.e., a point in xyθ space,
is said to be sliding when ṙ ∝ ĝ, where ĝ = [cos θ, sin θ ].
Equivalently,

ṙ · n̂ = 0, (A1)

where n̂ = [sin θ,− cos θ ].
While the sliding property is defined for any fluid flow, it

is of most use when the flow is time independent, as we have
assumed throughout this paper and its appendices.

The “sliding” constraint (A1) is illustrated geometrically in
Fig. 8. For a given xy location, there are either zero, one, or
two solutions for θ satisfying this constraint. Where the fluid
speed is small (|u| < v0), there is no solution; we call such a
region a “slow zone.”

Lemma 1. There are no sliding elements inside a slow zone.
Proof. Combining the sliding constraint (A1) with Eq. (2),

we find |u · n̂| = |v0|. This cannot be satisfied for |u| < v0. �
Where the fluid speed is large (|u| > v0), there are two

solutions to Eq. (A1). Where the fluid speed equals the
burning speed (|u| = v0), these two solutions are degenerate.
We call a region where |u| � v0 a “fast zone.” The sliding
constraint (A1) defines a two-dimensional submanifold of
xyθ space, called the sliding surface, which can be viewed
as a double-branched surface over the fast zone. Figures 22(a)
and 23(a) show the sliding surface for a hyperbolic and an
elliptic flow, respectively [42]. In Figs. 22(a) and 23(a), we see
that, when viewed from above, these sliding surfaces have a
hole in the middle exactly where the slow zone is.

Lemma 2. If at any time some portion of a slow zone is
burned, the asymptotic burned domain will include that entire
slow zone.

Proof. Within the slow zone, the velocity of the front is
everywhere greater than the fluid. Therefore, no direction of
motion is forbidden to the front, and so the front will eventually
access all parts of the slow zone. �

063005-11



MAHONEY, LI, BOYER, SOLOMON, AND MITCHELL PHYSICAL REVIEW E 92, 063005 (2015)

FIG. 22. (Color online) Hyperbolic fluid flow. ẋ = −Ax, ẏ =
+Ay. (v0 = 0.35, A = 1) (a) Sliding surface. (b) Streamlines of the
w+ field. (c) Streamlines of the advective fluid flow. (d) Streamlines
of the w− field.

FIG. 23. (Color online) Elliptic fluid flow. ẋ = −Ay, ẏ = +Ax.
(v0 = 0.35, A = 1) (a) Sliding surface. (b) Streamlines of the w+
field. (c) Streamlines of the advective fluid flow. (d) Streamlines of
the w− field.

Lemma 3. Sliding is an invariant property. That is, if a
front element is sliding, every element along its trajectory
under Eq. (2) is also sliding. Hence, we may speak of sliding
trajectories.

Proof. We examine the time derivative of Eq. (A1):

d

dt
(ṙ · n̂) = (ui,j ṙj + v0θ̇ ĝi)n̂i + ṙkĝk θ̇

= n̂iui,j ṙj + ṙk ĝk θ̇

= ±|ṙ|n̂iui,j ĝj ± |ṙ|ĝkĝkθ̇

= ±|ṙ|(−θ̇ ) ± |ṙ|θ̇ = 0,

where the first equality follows from Eq. (2a) and the fact that
dn̂/dt = ĝθ̇ , the second from the orthogonality of n̂ and ĝ, the
third from the sliding assumption ṙ = ±|ṙ|ĝ, and the fourth
from Eq. (2b). �

A consequence of this lemma is that the sliding surface is
dynamically invariant. Recall that a front is a curve (r(λ),θ (λ))
that everywhere satisfies the front compatibility criterion (1),
which is expressed equivalently as

dr/dλ · n̂ = 0. (A2)

Lemma 4. A trajectory of Eq. (2) is sliding if and only if
the curve it sweeps out is a front.

Proof. Choosing λ = t , Eq. (A1) is equivalent to
Eq. (A2). �

In light of Lemma 4, we may refer to a sliding trajectory
as a sliding front. More generally, we make the following
definition.

Definition 2. A sliding front is a smooth curve that every-
where satisfies Eq. (A1) or, equivalently, Eq. (A2).

Note that a sliding front may be composed of multiple
trajectories joined at fixed points. Also, any segment of a
sliding front is also referred to as a sliding front.

Lemma 5. BIMs are sliding fronts, and thus lie within the
sliding surface.

Proof. A BIM is the unstable invariant manifold of an SSU
burning fixed point. Since we consider time-independent flows,
this invariant manifold is also a trajectory. As shown in Ref. [8],
BIMs satisfy the front compatibility criterion. Therefore, by
Lemma 4, BIMs are sliding fronts. �

Since the sliding surface is invariant, it is natural to restrict
Eq. (2) to this surface. We next derive an explicit expression
for this 2D flow. Applying the sliding constraint (A1) to the
front element dynamics (2), we have u · n̂ = −v0. Using this
to resolve the unit vector n̂ into components, we have n̂ · û =
−v0/|u| and n̂ · û⊥ = ∓

√
1 − (v0/|u|)2, where u⊥ or û⊥ is a

right-handed rotation by π/2 of u or û = u/|u|. Inserting the
resolved form of n̂ into Eq. (2), we have

ṙ = w± ≡
[

1 −
(

v0

|u|
)2

]
u ∓ v0

|u|

√
1 −

(
v0

|u|
)2

u⊥. (A3)

This defines two flows over the fast zone, one for each of the
two branches of the sliding surface. Our sign convention is
such that w+ is the flow on the branch where ṙ = +|ṙ|ĝ (the
+ branch), and w− is the flow on the branch where ṙ = −|ṙ|ĝ
(the − branch).
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Equation (A3) shows that the w± fields are undefined
(complex valued) within the slow zone and are zero on its
boundary, confirming Lemma 1. All fixed points of Eq. (2)
are fixed points of Eq. (A3) because all burning fixed points
trivially satisfy the sliding constraint. These burning fixed
points lie on the slow zone boundary. Equation (A3) also has
a set of spurious fixed points at all other points along the
slow zone boundary, i.e., where |u| = v0. However, we ignore
these spurious fixed points as they are not physically relevant
fixed points of Eq. (2), but rather result from the square-root
singularity in Eq. (A3), obtained by projecting Eq. (2) onto
xy space. This square-root singularity also invalidates the
uniqueness of solutions to Eq. (A3) at the slow zone boundary.
Thus, there are other physically relevant trajectories that pass
through the slow zone boundary.

Figures 22(b) and 22(d) and 23(b) and 23(d) illustrate the
w± flows for the cases of hyperbolic and elliptic fluid flow,
respectively. The gray regions are the slow zones. burning
fixed points are indicated on the boundary of the hyperbolic
slow zone. The stable and unstable manifolds of these burning
fixed points are shown in blue and red, respectively.

Reference [8] proved that for any burning fixed point, ĝ is
an eigenvector of ui,j , i.e.,

ui,j ĝj = μĝi, (A4)

where μ is the eigenvalue. Reference [8] also defined the
quantity μ′,

μ′ = μ + v0κ, (A5)

where κ is the signed curvature of the slow zone boundary
at the burning fixed point. (κ < 0 means that n̂ points toward
the center of curvature.) Following, we reproduce Theorem 4
from Ref. [8] [43]:

Theorem 1. For a time-independent, incompressible flow
u, the eigenvalues about a burning fixed point are

λ0 = −μ, (A6)

λ± = 1
2 (−μ ±

√
μ2 + 4μμ′), (A7)

where μ and μ′ are given by Eqs. (A4) and (A5). The linear
stability of a burning fixed point is thus determined by the
signs of μ and μ′ according to the following table:

μ > 0 μ < 0

μ′ > 0 SUS UUU

μ′ < 0 SSS SUU

We next specialize this result to the dynamics on the sliding
surface.

Corollary 1. The eigenvalues for a burning fixed point of
the dynamics (2) restricted to the sliding surface are given
by λ± from Eq. (A7). The xy projection of each of the
corresponding eigenvectors is proportional to ĝ.

The sliding surface stability information is summarized
in Fig. 24. For each of the four stability types, the first two
stabilities (in bold) describe the dynamics within the invariant
sliding surface. Equation (A5) places restrictions on the local
convexity of the slow zone at the burning fixed point. These
possibilities are illustrated in Fig. 24.

FIG. 24. (Color online) Four burning fixed point stability types.
Black arrow indicates burning direction. Gray regions are slow zones.
Two unstable (stable) manifolds of each burning fixed point are within
the sliding surface. Each manifold is labeled with +/− indicating its
corresponding branch of the sliding surface.

Lemma 6. At an intersection p between a sliding front and
the boundary of a slow zone, the fluid flow is perpendicular to
the sliding front. If the sliding front is tangent to the boundary,
p is a burning fixed point. Otherwise, p is a cusp along the
sliding trajectory. All burning fixed points and cusps of sliding
fronts occur at the intersection between a sliding front and
slow zone boundary.

Proof. Combining the sliding constraint Eq. (A1) with
the front element dynamics (2) gives u · n̂ = −v0. Since
|u| = v0 on the slow zone boundary, u = −v0n̂. Thus, u is
perpendicular to ĝ. In Theorem 2 of Ref. [8], it was shown
that a necessary and sufficient condition for a burning fixed
point was for it to be on the boundary of the slow zone with n̂
perpendicular to the boundary. Thus, ĝ tangent to the boundary
implies a burning fixed point. If ĝ is not tangent to the boundary,
then since the sliding trajectory cannot enter the slow zone, it
reaches the boundary and then must reverse direction forming
a cusp. Finally, a burning fixed point and cusp both require
ṙ = 0. This satisfies the sliding constraint and also implies
|u| = v0. �

Lemma 7. A burning fixed point or cusp on the boundary
of the fluid domain, i.e., at a wall, must have ĝ perpendicular
to that boundary.

Proof. This follows from the previous Lemma 6 and that
the fluid velocity of an incompressible fluid is tangent to the
fluid domain boundary.

An incompressible 2D fluid flow can be specified by
a stream function �(r), with ux = d�/dy, uy = −d�/dx.
Each fluid element follows a level set, or streamline, of �.
Front elements, on the other hand, do not follow streamlines,
but generally cross them one way or the other depending on
their relative orientation.

Lemma 8. Sliding fronts cross streamlines such that θn̂,u,
the angle between n̂ and u, satisfies cos(θn̂,u) = −v0/|u|.

Proof. From Eq. (2), u = ṙ − v0n̂. The sliding front condi-
tion implies u = ±|ṙ|ĝ − v0n̂. Dotting with n̂, n̂ · u = −v0.�

Lemma 8 means that sliding fronts are never tangent to
streamlines, except in the v0/|u| → 0 limit. Physical bound-
aries of the fluid (channel walls) are particularly important
streamlines at which this lemma can be utilized.
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In addition to the angle at which sliding fronts cross
streamlines, we can examine how rapidly they are crossed.
To this end, we calculate the rate at which � changes when
viewed from the frame of an individual front element

D�

Dt
≡ ∂�

∂x

∂x

∂t
+ ∂�

∂y

∂y

∂t
+ ∂�

∂t
(A8)

= −uyẋ + uxẏ (A9)

= −(ẏ + v0 cos θ )ẋ + (ẋ − v0 sin θ )ẏ (A10)

= −v0ṙ · ĝ (A11)

= − sgn(ṙ · ĝ)v0|ṙ|, (A12)

where the last equality makes use of the sliding constraint.
Scaling by the front element speed, we find the simple relation

D�

Ds
= − sgn(ṙ · ĝ)v0, (A13)

where s measures the Euclidean xy length along the trajectory.
Equation (A13) shows that the sliding trajectories on the +
(−) branch of the sliding surface are those that climb the
stream function with the constant rate of descent (ascent) v0.
It is straightforward to show that the only front elements that
ascend or descend at a constant rate are sliding.

Consider two streamlines with values �a and �b and a
sliding front Fa,b that connects one to the other with no
intervening cusps. The xy length of the segment Fa,b follows
directly from Eq. (A13):

|Fa,b| = |�b − �a|
v0

. (A14)

This expression is particularly useful when thinking about
frozen fronts in channel flows of arbitrary geometry. Since the
channel wall enforces a boundary condition of constant �,
the frozen front length is found through Eq. (A14). Thus, the
length of a frozen front that spans a channel depends only on
this “energy difference” between the two walls and the burning
speed, and not on other details of the flow. While Eq. (A14)
was derived for a single sliding front, it also holds for frozen
fronts that are composed of multiple BIM cores. This can be
seen by applying Eq. (A14) to each BIM segment separately.
Interestingly, this implies that multiple frozen fronts existing in
the same flow must have the same length, even in the absence
of any flow symmetry.

Equation (A14) also implies that a channel of width W

cannot support a frozen front if 	� < v0W . Furthermore, if
we assume that a flow u without wind gives no net flow down
the channel, then for the flow u + vw, Eq. (A14) becomes

|Fa,b| = Wvw/v0. (A15)

This can be interpreted as the equality of fluid flux across the
frozen front and across the channel width. Equation (A15)
shows that vw � v0 is necessary but not sufficient. In the
case that frozen fronts do occur at vw = v0, they must be
straight lines that meet the channel walls at right angles. This
occurs exactly when the original fluid flow (vw = 0) has a
vertical advective separatrix. This condition is met for the
windy alternating vortex chain model; additionally, Ref. [10]
experimentally demonstrated that vw = v0 marked the onset
of frozen fronts. However, it is not difficult to construct flows

where vw = v0 is not sufficient for the existence of frozen
fronts.

APPENDIX B: STABILITY OF FROZEN DOMAINS

At the beginning of Sec. IV, we specified that frozen
domains should be stable under small perturbations. Here,
we define this stability more precisely. For a given invariant
burned domain, with boundary F , we define an allowable
distortion of F at a point r ∈ F to be a distortion such that F

remains unchanged outside a ball of radius ε(r) > 0 centered
at r. Note that the value of ε(r) is not fixed but may vary with
the point r.

Definition 3 (Stability of frozen domains and fronts). A
frozen domain (front) is required to be stable in the following
sense. There must exist a function ε(r) of each point r along
the front F , i.e., the domain boundary, such that after any
allowable distortion, the front remains pointwise close to F

and converges pointwise to F as time goes to infinity.
Here, pointwise close is in the “Lyapunov” sense, in that

the maximum (over all time) distance from the time-evolved
distorted front to the original front F remains bounded and
goes to zero as ε goes to zero.

With this definition, one can easily verify the argument of
Sec. IV proving that a frozen front cannot contain an SUU or
UUU burning fixed point. One also sees that a frozen front
can contain an SSU or SSS burning fixed point, and that the
curves constructed in Proposition 1 are stable. Regarding the
latter, it is interesting to note how a perturbation of the frozen
front F returns to F . First, a perturbation localized to the
neighborhood of an SSS point simply shrinks in size, back
into the original frozen front, due to the SSS point’s being
a sink. Consider now a perturbation localized at some point
r of the frozen front that is not an SSS burning fixed point.
This perturbation will be “swept” along the front, away from

FIG. 25. (Color online) The fates of localized perturbations to a
frozen front. (a) The perturbation eventually shrinks into an SSS
burning fixed point on the frozen front. (b) The perturbation strikes a
wall of the fluid domain. (c) The perturbation strikes a second BIM
core at a concave corner of the frozen front. (d) The perturbation goes
to infinity along a BIM core that stretches to infinity. Although the
size of the perturbation could grow indefinitely, the perturbed front
still returns to the frozen front pointwise.
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the unstable burning fixed point that generates the BIM; the
perturbation might even initially grow in size. The localized
perturbation will continue to follow the BIM segment from
which it was perturbed, and will subsequently encounter either
an SSS point, a domain wall, another BIM segment of the
frozen front, or it will be swept to infinity (Fig. 25). In the initial
three cases, it is clear that the perturbation will disappear as

it either shrinks into the SSS burning fixed point [Fig. 25(a)],
strikes the wall [Fig. 25(b)], or runs into the already burned
region [Fig. 25(c)], assuming the initial size of the perturbation
ε(r) is sufficiently small. The case in which the perturbation is
swept to infinity [Fig. 25(d)] requires an additional assumption
on the far-field nature of the fluid flow which we will address
in a future publication.
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