- Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and
Eric P. Xing. 2008. Mixed Membership Stochastic Blockmodels.
*J. Mach. Learn. Res.*9 (June 2008), 1981-2014.

Accessed March 29, 2012 at http://jmlr.csail.mit.edu/papers/volume9/airoldi08a/airoldi08a.pdf. - Backstrom,L., Huttenlocher, D., Kleinberg, J. and Lan, X. (2006). Group formation in large social networks:
membership, growth, and evolution. In
*Proceedings of the 12th ACMSIGKDD international conference on Knowledge discovery and data mining*, pages 44-54,New York,NY, USA. ACM. ISBN 1-59593-339-5. Accessed January 27, 2012 at DOI: 10.1145/1150402.1150412 - Ball, B., Karrer, B., and Newman, M.E.J. (2011). An efficient and
principled method for detecting communities in networks.
*Phys. Rev.*E 84, 036103. Accessed March 18, 2012 at http://arxiv.org/pdf/1104.3590v1.pdf. 14 pages. - P.J. Bickel and A. Chen. A nonparametric view of network models and
Newman–Girvan and other modularities. In
*Proceedings of the National Academy of Sciences*USA 106, 21068–21073. (2009). Accessed March 18, 2012 at http://www.pnas.org/content/106/50/21068.full.pdf+html. - Brand, M. (2006). Fast low-rank modifications of the thin singular
value decomposition.
*Linear Algebra and Its Applications*. 415 (1), 20–30. Accessed March 27, 2012 from http://www.stat.osu.edu/~dmsl/thinSVDtracking.pdf - Fortunato, S. (2010). Community Detection in Graphs.
*Physics Reports*, 486(3-5), pp. 75-174. Accessed January 17, 2012 at http://arxiv.org/abs/0906.0612. 103 pages. - A. Gyenge, J. Sinkkonen, and A. A. Benczur. An efficient
block model for clustering sparse graphs. In
*Proceedings of the 8th International Workshop on Mining and Learning with Graphs*, pp. 62–69, Association of Computing Machinery, New York (2010). Accessed March 18, 2012 at http://users.cis.fiu.edu/~lzhen001/activities/KDD_USB_key_2010/workshops/W01%20MLG2010/p62-gyenge.pdf - K. Henderson and T. Eliassi-Rad. Applying latent Dirichlet
allocation to group discovery in large graphs. In
*Proceedings of the 2009 ACM Symposium on Applied Computing*, pp. 1456–1461, Association of Computing Machinery. New York (2009). Accessed March 18, 2012 at http://eliassi.org/papers/henderson-sac09.pdf. - Karrer, B. and Newman, M. E. J. (2011). Stochastic blockmodels and
community structure in networks.
*Phys. Rev. E*83, 016107. Accessed March 22, 2012 at http://arxiv.org/abs/1008.3926. - B. Long, Z.M. Zhang, X. Wu, and P. S. Yu. Spectral clustering for multi-type relational data. In
*ICML ’06: Proceedings of the 23rd international conference on Machine learning*, pages 585–592, New York, NY, USA, 2006. ACM. ISBN 1-59593-383-2. DOI: 10.1145/1143844.1143918 - Newman, M. E. J. and Girvan, M. (2004a). Finding and evaluating community structure in networks.
*Phys. Rev.*E 69, 026113. Accessed January 27, 2012 at http://arxiv.org/abs/cond-mat/0308217 - Newman, M. E. J. (2004b). Who is the best connected scientist? A study of scientific coauthorship networks. In
*Complex Networks*, E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai (eds.), pp. 337-370, Springer, Berlin. Accessed January 27, 2012 at http://www-personal.umich.edu/~mejn/papers/cnlspre.pdf. 32 pages. - Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices.
*Phys. Rev.*E 74, 036104. Accessed January 27, 2012 at http://arxiv.org/abs/physics/0605087 - Newman, M. E. J., Barabási, A.-L., and Watts, D. J. (2006b).
*The Structure and Dynamics of Networks*. Princeton University Press. - Newman, M. E. J. (2011). Communities, modules and large-scale
structure in networks.
*Nature Physics*8, 25-31. Accessed March 22, 2012 at http://www-personal.umich.edu/~mejn/papers/npcommunities.pdf. - J. Parkinnen, A. Gyenge, J. Sinkkoken, and S. Kaski, A
block model suitable for sparse graphs. In
*Proceedings of the 7th International Workshop on Mining and Learning with Graphs, Association of Computing Machinery*, New York (2009). Accessed March 18, 2012 at http://research.ics.tkk.fi/publications/sami/mlg09sibm.pdf. - Porter, M.A., Onnela, J. & Mucha, P.J. (2009). Communities in Networks.
*Notices of the American Mathematical Society*, 56(9), pp. 1082-1097, 1164-1166. Accessed January 17, 2012 at http://arxiv.org/abs/0902.3788. 27 pages. - Psorakis, I., Roberts, S., and Sheldon, B. (2010).
Soft Partitioning in Networks via Bayesian Non-negative Matrix Factorization.
In
*Proceedings of the 24th Annual Conference on Neural Information Processing Systems (NIPS), Workshop on Networks Across Disciplines: Theory and Applications*. Accessed March 22, 2012 at http://www.robots.ox.ac.uk/~yannis/psorakis_roberts_sheldon_nips2010.pdf. - L. Tang, X. Wang, and H. Liu. (2009). Uncovering groups via
heterogeneous interaction analysis. In ICDM
’09:
*Proceedings of IEEE International Conference on Data Mining*, pages 503–512. Accessed March 22, 2012 at http://www.public.asu.edu/~ltang9/papers/multi-dimensional_network.pdf. - Tang, L. & Liu, H. (2010). Graph Mining Applications to Social Network Analysis. In C.C. Aggarwal and H. Wang (eds.)
*Managing and Mining Graph Data*, chapter 16, pp. 487-513. Springer. Accessed January 17, 2012 at http://www.public.asu.edu/~ltang9/papers/graph_mining.pdf. 27 pages. - Tang, L. & Liu, H. (2010).
*Community Detection and Mining in SocialMedia*. Morgan & Claypool Publishers. Accessed January 17, 2012 at http://dmml.asu.edu/cdm/. 127 pages. - H. Zhang, B. Qiu, C. L. Giles, H. C. Foley, and J. Yen. An
LDA-based Community Structure Discovery Approach
for Large-Scale Social Networks. In
*Proceedings of the IEEE International Conference on Intelligence and Security Informatics.*pp. 200--207 (2007). Accessed March 18, 2012 at http://clgiles.ist.psu.edu/papers/ISI2007-LDA-SNA.pdf.

- From Mark E.J. Newman of University of Michigan:

http://www-personal.umich.edu/~mejn/netdata/ - Stanford Network Analysis Platform (SNAP), or Stanford Network Analysis Project (SNAP):

http://snap.stanford.edu/ - UMass Knowledge Discovery Laboratory data set:

http://kdl.cs.umass.edu/data/dblp/dblp-info.html - Andrew McCallum's code collection and data collection

- CFinder: Clusters and communities: Overlapping dense groups in networks.
http://www.cfinder.org/ Accessed January 27, 2012.
- LFR benchmark graph generator: software that generates random graphs
with certain properties (e.g., communities). http://sites.google.com/site/santofortunato/inthepress2 Accessed January 27, 2012.
- Andrew McCallum's code collection and data collection Accessed January 27, 2012.
- Tom Haines's code on machine learning, including LDA Accessed February 24, 2012.