Web Information Retrieval

Textbook by

Christopher D. Manning, Prabhakar Raghavan,
and Hinrich Schutze

Notes Revised by X. Meng for SEU
May 2014

Posting Lists

Generate Posting

Do L. i did enaet julius cassar i was
Killad i the capitol brutus killed me

Doc 2. so let it be with caesar the =
noble beutus hath told you caesar was
ambitious

term doclD
i 1

did
enact

1
1

1

1

1

1

1

1

1

1

1

1

1

2

2

it 2
2

2

2

2

2

2

2

2

2

caesar 2
2

2

was
ambitivus

Outlines

5/30/2014

« We will discuss two more topics.

— Boolean retrieval
— Posting list

Tokenizing And Preprocessing

Doc 1. | did enact Julius Caesar: |
was killed i' the Capitol; Brutus killed
me.

Doc 2. Solet it be with Caesar. The
noble Brutus hath told you Caesar
was ambitious:

Sort Postings

Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

term doclD term doclD
] 1 ambiioss 2
4id 1 be 2
4nact 1 batss 1
julius 1 buws 2
caesw 1 apitel 1
1 cer 1

as 1 Gex 2
killed 1 sy 2
v 1 did 1
the 1 enact 1
aptel 1 hath 1
buts 1 i 1
killed 1 i 1
me 1 i 1
s 2= 2
let 2 julus 1
it 2 billed 1
be 2 illed 1
wath 2 ™ 2
s 2 me 1
the 2 nable 2
ncble 2 w 2
buts 2 the 1
hath 2 the 2
wald 2 wid 2
you 2 vou 2
caesw 2 vas 1
was 2 vas 2
ambitions 2 with 2

Creating Postings Lists, Determine Document
Frequency

ostings fists

T

-
bl

EEEEEEFERE R EEEEEE EERE]

Inverted Index

D, tf;
Index terms ~ df =

computer 3—1—(D. 4
database »—+—{D,3

science 4——[D4 | | [|
system 1 __"DsT‘
Term List Postings lists

(ak.a. Dictionary)

In-Class Work

+ Creating an inverted index for the following
documents
— “The quick brown fox jumps over the lazy dog”
— “The quick fox run”
— “The lazy dog sleep”
= Assume:
— “the” and “over” are stopwords that are not indexed

— various forms of verbs are not indexed separately, only
the original form (stem) is indexed

Split the Result into Dictionary and
Postings File

5/30/2014

[Brurus | — [1] 2] 4] 113145173] 174]

[Camar | — [I[2] 4] 5[6[6] 57 [132]..

CALPURNIA | — [2] 3154 101]

—_—
dictionary postings

Creating an Inverted Index

Create an empty index term list I,
For each document, D, in the document set V
For each (non-zero) token, T, in D:
If T is not already in |
Insert T into I;
Find the location for T in I;
If (T, D) is in the posting list for T
increase its term frequency for T;
Else
Create (T, D);
Add it to the posting list for T;

Boolean Retrieval

Processing Boolean queries
Query optimization

Simple Conjunctive Query (two terms)

« Consider the query: BRUTUS AND CALPURNIA

+ To find all matching documents using inverted
index:

— Locate BRUTUS in the dictionary (term list)

5/30/2014

Intersecting Two Posting Lists

BruTUS — —>—>—’
CALPURNIA —

Intersection —

— Retrieve its postings list from the postings file
— Locate CALPURNIA in the dictionary » The complexity is linear in the length of the
— Retrieve its postings list from the postings file postings lists.

~ Intersect the two postings lists « Note: This only works if postings lists are sorted.
— Return intersection to user

Algorithm of Intersecting Two Posting Lists Query Processing: In-Class Work

Assume posting lists are sorted by docID

prance — [T-2HEHE-EH7HE-gHI-{z2]-[13]-{14]-{15]
s — 25

LEAR — ﬁ@

INTERSECT(p1, p2)
1 answer — {)
2 while p; # NIL and pa2 # NIL
3 doif doclD = doclD
4 then f{’;ﬁ)(a,,m,‘ (df,zc)m(pl)) Compute hit list for ((paris AND NOT france) OR lear)
5 p1 < next(p1)
6 p2 < next(pz)
7 else if doc/D(p1) < doclD(p2)
8 then p; — next(p;)
9 else p, < next(p,)
10 return answer

Boolean Queries Outline

« The Boolean retrieval model can answer any query that is a
Boolean expression.

— Boolean queries are queries that use AND, OR and NOT to join query .. .
terms. * Query optimization

Views each document as a set of terms.
Precise: either document matches condition or not, nothing in between.
« Primary commercial retrieval tool for three decades

« Many professional searchers (e.g., lawyers) still like Boolean
queries.

You know exactly what you are getting.

« Many search systems you use are also Boolean: spotlight, email,
intranet etc.

Query Optimization

Consider a query that is an and of n terms, n > 2

For each of the terms, get its postings list, then and

them together

« Example query: BRUTUS AND CALPURNIA AND
CAESAR

» What is the best order for processing this query? That

is, should we process BRUTUS first? CALPURNIA

first? Or CEASAR first?

Optimized Intersection Algorithm for
Conjunctive Queries

INTERSECT({t1, ..., t.))

1 terms «— SORTBYINCREASINGFREQUENCY((t1,. .., t,))
2 result — postings(first(terms))

3 terms «— rest(terms)

4 while terms # NIL and result # NIL

5 do result — INTERSECT(result, postings(first(terms)))

6 terms < rest(terms)
7 return result

5/30/2014

Query Optimization

Example query: BRUTUS AND CALPURNIA AND CAESAR

Simple and effective optimization: Process in order of increasing
frequency

Start with the shortest postings list, then keep cutting further
In this example, first CAESAR, then CALPURNIA, then

BRUTUS
BRUTUS Y I Y WV Y S S FVEY S Rz
CALPURNIA — _’
CAESAR —

More General Optimization

Example query: (MADDING OR CROWD) and (IGNOBLE OR
STRIFE)

Get frequencies for all terms

Estimate the size of each or by the sum of its frequencies
(conservative)

Process in increasing order of or sizes

