Web Information Retrieval

Textbook by

Christopher D. Manning, Prabhakar Raghavan,
and Hinrich Schutze

Notes Revised by X. Meng for SEU
May 2014

Recap

« Index construction in memory
+ Boolean query and retrieval

Creating an Inverted Index

Create an empty index term list I;
For each document, D, in the document set VV
For each (non-zero) token, T, in D:
If T is not already in |
Insert T into I;
Find the location for T in I;
If (T, D) is in the posting list for T
increase its term frequency for T;
Else
Create (T, D);
Add it to the posting list for T;

Optimized Intersection Algorithm for
Conjunctive Queries

INTERSECT((ty, . .., t,))

1 terms «— SORTBYINCREASINGFREQUENCY((ty,. .., ts))

result — postings(first(terms))

terms «— rest(terms)

while terms # NIL and result # NIL

do result — INTERSECT(result, postings(first(terms)))
terms «— rest(terms)

return result

~No o s W

Outlines

» We will discuss two topics.
— Index construction
— Index compression

Index Construction Review

* We’ve discussed the basic algorithm for
index construction:

Create an empty index term list I;
For each document, D, in the document set V/
For each (non-zero) token, T, in D:
If Tis notalready in |
Insert T into I;
Find the location for Tin I;
If (T, D) is in the posting list for T
increase its term frequency for T;
Else
Create (T, D);
Add it to the posting list for T;

5/30/2014

5/30/2014

Discuss the Simple Indexing Algorithm

« Everything in SIA is in memory while in
reality the data indexed by a commercial
search engine is much bigger that will not
fit in memory
— Solution: read and write information from and

to secondary storage (e.g., disks)

+ Even with secondary storage, we still need
to consider the issue of index compression

Hardware Basics

« Many design decisions in information
retrieval are based on hardware constraints.

« We begin by reviewing hardware basics that
we’ll need in this course.

Hardware Basics

+ Access to data is much faster in memory than
on disk. (roughly a factor of 1000)

 Disk seeks are “idle” time: No data is
transferred from disk while the disk head is
being positioned.

* To optimize transfer time from disk to
memory: one large chunk is faster than many
small chunks.

Hardware Basics

+ Disk I/0O is block-based: Reading and writing
of entire blocks (as opposed to smaller
chunks). Block sizes: 8KB to 256 KB
(Google file system blocks are 64 MB in size)

« Servers used in IR systems typically have
several GB of main memory, sometimes tens
of GB, and TBs or 100s of TB of disk space.

* Fault tolerance is expensive: It’s cheaper to
use many regular machines than one fault
tolerant machine.

Some Stats (ca. 2008)

Some Definitions Used in the Textbook

symbol ‘ statistic value

s average seek time 5ms=5x1073s

b transfer time per byte 0.02pus=2x10"%s
processor’s clock rate 109s7!

P Low level operation (e.g., compare & swap a 0.01 ps=10"%s
word)
size of main memory several GB

size of disk space 1TB or more

« Token: a useful unit for processing, such as
“word,” “2013,” or “LLC”
 Type: a class of all tokens containing the same
character sequence
» Term: atype that is included in the IR system
» For example, “to be, or not to be: that is the
question.”
10 tokens
8 types (to, be, or, not, that, is, the, question)
1 term, if “to, be, or, not, that, is, the” are considered
stopwords

5/30/2014

RCV1 Collection

A Reuters RCV1 Document

 RCV: Reuters (#%i%) Corpus Volume,
English news article collections between 1995
and 1996

» Shakespeare’s collected works are not large
enough for demonstrating many of the points
in this course.

« As an example for applying scalable index
construction algorithms, we will use the
Reuters RCV1 collection.

REUTERS B

You are here: Home > N

GotoaSecton: U

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2008 3:200m ET

Email This Artice | Pr

— SYDNEY (Reuters) - Rare, mother-of-pear colored clouds
B Caused by extreme weather conditions above Antarctica are a
o possible indication of global warming, Australian scientists said on
o - Tuesday.

Known as nacreous clouds. the spectacular formations showing delicate
I -1 o' ccore were photographed i the <ky ver an Auciralion

Business Markels Poltes Enteriaiment Technokgy Spors Ocdy E

Reuters RCV1 statistics

Outline

N documents 800,000

L tokens per document 200

M terms (= word types) 400,000
bytes per token (incl. spaces/punct.) 6
bytes per token (without spaces/punct.) 45
bytes per term (= word type) 75

T non-positional postings 100,000,000

Average frequency of a term (how many tokens)? 4.5 bytes per
word token vs. 7.5 bytes per word type: why the difference?

« Recap
« Introduction

» Blocked sort-based indexing (BSBI)
algorithm

« SPIMI algorithm
« Distributed indexing
+ Dynamic indexing

Goal: Construct the Inverted Index

Index Construction in IR 1:
Sort Postings in Memory

[Brurus | — [1] 2] 4] 1131 [45[173 [174

[Capsar] — [T] 2] 4] 5[6]16] 57 [132]...

[Cacpunnia | — [2] 3154101 |

——r
dictionary postings

term doclD term docl

R R S e e e et 1 e s 1o 1

5/30/2014

Sort-based Index Construction

Why?

 As we build index, we parse docs one at a

time.

The final postings for any term are

incomplete until the end of the entire

document collection.

+ Can we keep all postings in memory and then
do the sort in-memory at the end?

* No, not for large collections.

At 10-12 bytes per postings entry, we need a

lot of space for large collections.

» T =100,000,000 in the case of RCV1: we can
do this in memory on a typical machine in
2010.

+ But in-memory index construction does not
scale for large collections.

 Thus: We need to store intermediate results

on disk.

Same Algorithm for Disk?

“External” Sorting Algorithm
(Using Few Disk Seeks)

+ Can we use the same index construction
algorithm for larger collections, but by using
disk instead of memory?

+ No: Sorting T = 100,000,000 records on disk
is too slow — too many disk seeks.

* We need an external sorting algorithm.

* We must sort T = 100,000,000 non-positional
postings.
— Each posting has size 12 bytes (4+4+4: termID,
doclD, document frequency).
« Define a block to consist of 10,000,000 such
postings
Assume we can fit that many postings into
memory.
— We will have 10 such blocks for RCV1.

“External” Sorting Algorithm
(Using Few Disk Seeks)

Merging Two Blocks

+ Basic idea of algorithm:
For each block:
« (i) accumulate postings,
« (i) sort in memory,
« (iii) write to disk
Then merge the blocks into one long sorted
order.

postings
to be merged brutus d2

e | | e e

brutus d3 brutus d2

caesar d4 caesar 1 | ey | CBCSAT d4 merged
juliusd1 | postings

killed d2

noble d3

with d4

\ /

noble d3 julius d1
with d4 killed d2

5/30/2014

Blocked Sort-Based Indexing (BSBI)

BSBINDEXCONSTRUCTION()

1 n—0

2 while (all documents have not been processed)
3 don—n+1

4 block «— PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WriTeBLockToDisk(block, f,)

7 MERGEBLOCKS(f,..., fo: Fmerged)

— Key decision: What is the size of one block?

Outline

* Recap
* Introduction
+ BSBI algorithm

+ Single Pass In-Memory Index (SPIMI)
algorithm

« Distributed indexing
+ Dynamic indexing

Problem with Sort-Based Algorithm

Our assumption was: we can keep the dictionary in
memory.

We need the dictionary (which grows dynamically)
in order to implement a term to termID mapping.
Actually, we could work with term, docID postings
instead of termID, docID postings . . .

... but then intermediate files become very large.
(We would end up with a scalable, but very slow
index construction method.)

Single-Pass In-Memory Indexing

+ Abbreviation: SPIMI

» Key idea 1: Generate separate dictionaries for each block —
no need to maintain term-termID mapping across blocks.

» Key idea 2: Don’t sort. Accumulate postings in postings lists
as they occur.

» With these two ideas we can generate a complete inverted
index for each block.

+ These separate indexes can then be merged into one big
index.

SPIMI-Invert Algorithm

SPIMI-INVERT(token_stream)
1 output_file — NEWFILE()
dictionary «— NEwHAsH()
while (free memory available)
do token «— next(token_stream)
if term(token) ¢ dictionary
then postings_list — ADDToDICTIONARY(dictionary,term(token))
else postings_list — GETPOSTINGSLIST(dictionary, term(token))
if full(postingsJist)
9 then postings_list < DOUBLEPOSTINGSLIST(dictionary term(token)
10 ADDTOPOSTINGSLIST(postings Jist,doclD(token))
11 sorted_terms « SORTTERMS(dictionary)
12 WRITEBLOCKT0DISK(sorted _terms dictionary,output_file)
13 return output_file
Merging of blocks is analogous to BSBI.

© NG AW N

SPIMI: Compression

« Compression makes SPIMI even more
efficient.

— Compression of terms
— Compression of postings
— See next lecture

5/30/2014

Outline

* Recap

« Introduction

« BSBI algorithm

+ SPIMI algorithm

« Distributed indexing
+ Dynamic indexing

Distributed Indexing

For web-scale indexing (don’t try this at
home!): must use a distributed computer
cluster
Individual machines are fault-prone.

Can unpredictably slow down or fail.
How do we exploit such a pool of machines?

Search Engine Data Centers

« In order to handle such huge amount of
data, search engine companies establish a
number of data centers across the globe, see
a separate lecture on the subject of data
centers

Distributed Indexing

Maintain a master machine directing the
indexing job — considered “safe”

Break up indexing into sets of parallel tasks

Master machine assigns each task to an idle
machine from a pool.

Parallel Tasks

* We will define two sets of parallel tasks and
deploy two types of machines to solve them:
Parsers
— Inverters
« Break the input document collection into
splits (corresponding to blocks in
BSBI/SPIMI)

 Each split is a subset of documents.

Parsers

Master assigns a split to an idle parser
machine.

Parser reads a document at a time and emits
(term,doclD)-pairs.

Parser writes pairs into j term-partitions.
Each for a range of terms’ first letters
- E.g., a-f, g-p, g-z (here: j = 3)

5/30/2014

Inverters

« An inverter collects all (term,docID) pairs (=
postings) for one term-partition (e.g., for a-f).
« Sorts and writes to postings lists

Data Flow
splits assign [master assign postings
. - ™
parser a-flg-p/q-z ¥ inverter) +a-f
_parser va-flg-p q-z inverter - g-p
s inverter)+ g.z
parser a-flg-p q-z
segment reduce
map files hase
phase phase

MapReduce

The index construction algorithm we just
described is an instance of MapReduce.
MapReduce is a robust and conceptually
simple framework for distributed computing .

* .. .without having to write code for the
distribution part.

Just like sorting, search algorithms,
MapReduce is becoming a critical

computation model for distributed computing

A Simple Map-Reduce Example

* Sum up a sequence of n numbers on k
processors
» The Map phase:
Divide the n numbers into k sets

Each processor adds up n/k numbers and store
the partial sum as s

 The Reduce phase:
Add up the partial sums s, to get the total sum s

MapReduce

» The Google indexing system (ca. 2002)
consisted of a number of phases, each
implemented in MapReduce.

« Index construction was just the first phase.

+ The second phase: transform term-partitioned
into document-partitioned index.

Index Construction in MapReduce

Schema of map and reduce functions

map: input — list{k, v)

reduce: (K list{v)) — output

Instantiation of the schema for index construction

map: web collaction — list{termID, dociD)

reduce: ({termiDy.list{doclD)], {termiDy. Ist{dociD)]), ...) — (postings.list;, postingslisty, ...)
Example for index construction

map: dh:CDIED. dy: € C). — (IC, da}. {DIED.Gy), (C.dh

reduce: ((C(do.ch.ch)}.(DIED, (d) jicED () — ((C(d2.dz1)). (DIED (dheL)).

5/30/2014

Outline

Dynamic Indexing

* Recap

* Introduction

« BSBI algorithm

+ SPIMI algorithm

« Distributed indexing
 Dynamic indexing

 Up to now, we have assumed that collections
are static.

 They rarely are: Documents are inserted,
deleted and modified.

 This means that the dictionary and postings
lists have to be dynamically modified.

Dynamic Indexing: Simplest Approach

Issue with Auxiliary and Main Index

Maintain big main index on disk
+ New docs go into small auxiliary index in
memory.
« Search across both, merge results
Periodically, merge auxiliary index into big
index
Deletions:
Invalidation bit-vector for deleted docs
Filter docs returned by index using this bit-vector

 Frequent merges
* Poor search performance during index merge

* Actually:
Merging of the auxiliary index into the main
index is not that costly if we keep a separate file
for each postings list.
Merge is the same as a simple append.
— But then we would need a lot of files —
inefficient.

Issue with Auxiliary and Main Index

Logarithmic Merge

Assumption for the rest of the lecture: The index is
one big file.
In reality: Use a scheme somewhere in between
(e.g., split very large postings lists into several files,
collect small postings lists in one file etc.)
+ Time complexity:
— index construction time is O(T?) as each posting is
touched in each merge.
Suppose auxiliary index has size a

- a+23+33+4a+...+na=aﬂ”2iz=O[nz)

« Logarithmic merging amortizes the cost of merging
indexes over time.
— Users see smaller effect on response times.

» Maintain a series of indexes, each twice as large as
the previous one.

» Keep smallest (Z0) in memory
« Larger ones (l0, I1, .. .) on disk
 If Z0 gets too big (> n), write to disk as 10

« ...ormerge with 10 (if 10 already exists) and write
merger to 11 etc.

5/30/2014

The Algorithm
LMErGEADDTOKEN(indexes, Zo, token)
1 Zy — MERGE(Zy, {token})

2 0|2 =n
3 then for i « 0 to

4 do if [; € indexes
5 then Z,,, « Mence(l, Z)
6 (Z;.1 is a temporary index on disk.)
7 indexes «— indexes — {I;}
8 else ; — Z; (Z; becomes the permanent index I;.)
9 indexes «— indexes \J {I;}
10 BrEAK
11 Zy—0
LoGARITHMICMERGE()
L Zy—0 (Zyis the in-memory index.)

2 indexes — @
3 while true
4 do LMERCEADDTOKEN(indexes, Zy, CETNEXTTOKEN())

Logarithmic Merge

Number of indexes bounded by O(log T) (T is total number
of postings read so far)

So query processing requires the merging of O(log T)
indexes

Time complexity of index construction is O(T log T).

... because each of T postings is merged O(log T) times.

So logarithmic merging is an order of magnitude more
efficient than the simple merge seen earlier.

» The price we pay is a bit slower in search operations

Dynamic Indexing at Large Search Engines

+ Often a combination of
— Frequent incremental changes
— Rotation of large parts of the index that can then
be swapped in
— Occasional complete rebuild (becomes harder
with increasing size — not clear if Google can do a
complete rebuild)

Building Positional Indexes

« Basically the same problem except that the

intermediate data structures are much larger.

Compression

Index compression and posting lists
compression

Compression

« Inverted lists are very large
— e.g., index lists occupy 25-50% of the collection
for TREC collections using Indri search engine

Much higher if n-grams are indexed
» Compression of indexes saves disk and/or
memory space
— Typically have to decompress lists to use them

— Best compression techniques have good
compression ratios and are easy to decompress

* Lossless compression — no information lost

5/30/2014

Compression

« Basic idea: Common data elements use short
codes while uncommon data elements use
longer codes
— Example: coding numbers

« number sequence: 0,1,0,3,0,2,0

« possible encoding (14 bits): 00 01 00 10 00 11 00

« encode Ousingasingle0: (0010100110

« only 10 (ten) bits, but...

Compression Example

+ Ambiguous encoding — not clear how to
decode

« thesamecoding: (0010100110

« which represents: 0,1,1,0,0,3,0

i Number Code
* use unambiguous code: o 0

— example: prefix codes i %

« which gives: (13 bits) 3 n
0101011101100

Recap

Introduction

BSBI algorithm

SPIMI algorithm

Distributed indexing (MapReduce)
Dynamic indexing

Delta Encoding

 Word count data is good candidate for
compression
many small numbers and few larger numbers
encode small numbers with small codes
» Document numbers (doclD) are less
predictable

— but differences between numbers in an ordered list
are smaller and more predictable

« Delta encoding:

encoding differences between document numbers
(d-gaps)

Delta Encoding

Inverted list

1,5,9,18,23,24, 30, 44, 45, 48
Differences between adjacent numbers

1,4,4,9,5,1,6,14,1,3
Differences for a high-frequency word (thus
appearing in consecutive documents) are easier to
compress, e.g.,

1,1,2,1,5,1,4,1,1,3, ...

Differences for a low-frequency word are large,
eg., 109, 3766, 453, 1867, 992, ...

Bit-Aligned Codes

 Breaks between encoded numbers can occur
after any bit position

» Unary code
— Encode k by k 1s followed by 0
— 0 at end makes code unambiguous

111110

10

5/30/2014

Unary and Binary Codes

« Unary is very efficient for small numbers
such as 0 and 1, but quickly becomes very
expensive
— 1023 can be represented in 10 binary bits, but

requires 1024 bits in unary

« Binary is more efficient for large numbers,
but it may be ambiguous

Elias-y Code

+ To encode a number k, compute
o kq = |log, k]

o k, =k — 2llos2k]
* kq is number of binary digits, encoded in unary
E) | ke | ke | Cod(

Number (

10 0
101
110 10
1110 111
0 | 11110 0000
127 | 11111110 1111111
511 | 1111111110 111111111

=t O Ko
N = o olf

1

1

2

15| 3
1

255 | 7
1023 | 9

Elias-y Code and Decode

« For any number k, the Elias-y code requires
[log, k |+1 bits for ky in unary code and
llog, k| bits for k. in binary code. A total of
2[log, k]+1 bits are needed.
When decoding, k =2k + k,
+ For example, Elias-y code = 1110110, k;=111,
k,=110, thus k = 23+6 = 14

Compared to binary coding, the saving
comes from variable length coding.

Elias-6 Code

« Elias-y code uses no more bits than unary,
many fewer for k > 2

1023 takes 19 bits instead of 1024 bits using
unary

« In general, takes 2|log,k|+1 bits

» To improve coding of large numbers, use
Elias-5 code

Instead of encoding K, in unary, we encode ky +

1 using Elias-y
Takes approximately 2 log, log, k + log, k bits

Elias-6 Code

+ Split ky into:
Kgg = LIng(kd +1)J
Ky = (kg +1) — 2"

encode Ky in unary, kg, in binary, and k. in
binary

Number (k) | ka | ke | kaa | kar | Code

11 0 0 0 00

201 0 1 01000

3 1 1 1 01001

6 2 2 1 110110

15 3 7 2 0| 110 00 111

16 1 0 2 1| 110 01 0000
255 7127 3 0| 1110 000 1111111
1023 9 | 511 3 2 | 1110 010 111111111

Example of Elias-6 Code

Code = 11000111

From the code we know k4 =110, k4=00,
k=111

k = 24 + k, where kg = kg +24dd -1

o k=20+4147 =15

11

5/30/2014

iouary_sncods (s, Logi)

b.pou(2, Logloga))

Byte-Aligned Codes

Variable-length bit encodings can be a
problem on processors that process bytes

« v-byte is a popular byte-aligned code
Similar to Unicode UTF-8
Shortest v-byte code is 1 byte

* Numbers are 1 to 4 bytes, with high bit 1 in
the last byte, O otherwise

V-Byte Encoding

k | Number of bytes

k< 2f 1

7T < k<2 |2

M < k<2 |3

221 < k<2 |4
k| Binary Code | Hexadecimal
1 1 0000001 81
6 1 0000110 86
127 11111111 I
128 00000001 1 0000000 01 &0
130 00000001 1 0000010 0182
20000 | 0 0000001 0 0011100 1 0100000 01 1C A0

V-Byte Encoder

public void encode(int[] input, ByteBuffer output) {
for(int i : imput) {
while(i >= 128) {
output.put(i & Ox7F);
i >>>=7;
}
output.put(i | 0x80);

V-Byte Decoder

public void decode(byte[] input, IntBuffer output) {
for(int i=0; i < input.length; i++) {
int position = 0;
int result = ((int)input[i] & Ox7F);

while((input[i] & 0x80) == 0) {
i+=1;
position += 1;
int unsignedByte = ((int)input[i] & Ox7F);
result |= (unsignedByte << (7*position));

¥

output.put(result);

Compression Example

« Consider invert list with positions:

(1,2,1,7)(2,3,[6,17,197])(3,1, [1])
 Delta encode document numbers and
positions:
(1,2,]1,6])(1,3,[6,11,180))(1, 1, [1])
« Compress using v-byte:

81 82 81 86 81 82 86 8B 01 B4 81 81 81

12

5/30/2014

Recap Compression of Reuters
Index compressmn. data structure size in MB
— Delta coding dictionary, fixed-width 11.2
— Elias-gamma dictionary, term pointers into string 7.6
_ Elias-del ~, with blocking, k = 4 7.1
as d(_e a ~, with blocking & front coding 5.9
— Byte-aligned collection (text, xml markup etc) 3600.0
« \VV-Byte collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20-bits words) 250.0
postings, variable byte encoded 116.0
postings, y encoded 101.0
73
Skipping Skip Pointers

« Search involves comparison of inverted lists
of different lengths
— Can be very inefficient

“Skipping” ahead to check document numbers

is much better
— Compression makes this difficult

« Variable size, only d-gaps stored

Skip pointers are additional data structure to
support skipping

* A skip pointer (d, p) contains a document
number d and a byte (or bit) position p
— Means there is an inverted list posting that

starts at position p, and the posting before it
was for document d

COTTTT T T T ITITTITTTIITITITINT]

!

skip pointers

Inverted list

Skip Pointers

» Example
— Inverted list

5,11,17,21,26, 34, 36, 37, 45, 48, 51,52, 57, 80, 89, 91, 94, 101, 104, 119

— D-gaps

5,6,6,4,5,9,2,1,8,3,3,1,5,23,9,2.3,7,3,15
— Skip pointers

(17,3), (34,6), (45,9), (52,12), (89, 15), (101, 18)

Auxiliary Structures

Inverted lists usually stored together in a single
file for efficiency

Inverted file
Vocabulary or lexicon

— Contains a lookup table from index terms to the
byte offset of the inverted list in the inverted file

— Either hash table in memory or B-tree for larger
vocabularies

Term statistics stored at start of inverted lists
Collection statistics stored in separate file

13

