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Recap 

• Index construction in memory 

• Boolean query and retrieval 

2 

Creating an Inverted Index 

Create an empty index term list I; 

For each document, D, in the document set V 

    For each (non-zero) token, T, in D: 

            If T is not already in I 

                    Insert T into I;  

          Find the location for T in I; 

               If (T, D) is in the posting list for T 

                   increase its term frequency for T; 

               Else 

                   Create (T, D); 

                   Add it to the posting list for T; 
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Optimized Intersection Algorithm for 

Conjunctive Queries 
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Outlines 

• We will discuss two topics. 

– Index construction 

– Index compression  
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Index Construction Review 

• We’ve discussed the basic algorithm for 

index construction: 
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Create an empty index term list I; 

For each document, D, in the document set V 

    For each (non-zero) token, T, in D: 

            If T is not already in I 

                    Insert T into I;  

          Find the location for T in I; 

               If (T, D) is in the posting list for T 

                   increase its term frequency for T; 

               Else 

                   Create (T, D); 

                   Add it to the posting list for T; 
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Discuss the Simple Indexing Algorithm 

• Everything in SIA is in memory while in 

reality the data indexed by a commercial 

search engine is much bigger that will not 

fit in memory 

– Solution: read and write information from and 

to secondary storage (e.g., disks) 

• Even with secondary storage, we still need 

to consider the issue of index compression 

7 8 

Hardware Basics 

• Many design decisions in information 

retrieval are based on hardware constraints. 

• We begin by reviewing hardware basics that 

we’ll need in this course. 
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Hardware Basics 

• Access to data is much faster in memory than 

on disk. (roughly a factor of 1000) 

• Disk seeks are “idle” time: No data is 

transferred from disk while the disk head is 

being positioned. 

• To optimize transfer time from disk to 

memory: one large chunk is faster than many 

small chunks. 
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Hardware Basics 

• Disk I/O is block-based: Reading and writing 

of entire blocks (as opposed to smaller 

chunks). Block sizes: 8KB to 256 KB 

(Google file system blocks are 64 MB in size) 

• Servers used in IR systems typically have 

several GB of main memory, sometimes tens 

of GB, and TBs or 100s of TB of disk space. 

• Fault tolerance is expensive: It’s cheaper to 

use many regular machines than one fault 

tolerant machine. 
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Some Stats (ca. 2008) 

 

11 

symbol statistic value 

s 

b 

 

P 

 

average seek time 

transfer time per byte 

processor’s clock rate 

Low level operation (e.g., compare & swap a 

word) 

size of main memory 

size of disk space 

5 ms = 5 × 10−3 s 

0.02 μs = 2 × 10−8 s 

109 s−1 

0.01 μs = 10−8 s 

 

several GB 

1 TB or more 

Some Definitions Used in the Textbook 

• Token: a useful unit for processing, such as 

“word,” “2013,” or “LLC” 

• Type: a class of all tokens containing the same 

character sequence 

• Term:  a type that is included in the IR system 

• For example, “to be, or not to be: that is the 

question.” 

– 10 tokens 

– 8 types (to, be, or, not, that, is, the, question) 

– 1 term, if “to, be, or, not, that, is, the” are considered 

stopwords 
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RCV1 Collection 

• RCV: Reuters (路透社) Corpus Volume, 

English news article collections between 1995 

and 1996 

• Shakespeare’s collected works are not large 

enough for demonstrating many of the points 

in this course. 

• As an example for applying scalable index 

construction algorithms, we will use the 

Reuters RCV1 collection. 
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A Reuters RCV1 Document 
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Reuters RCV1 statistics 

Average frequency of a term (how many tokens)?  4.5 bytes per 

word token vs. 7.5 bytes per word type: why the difference? 
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N 

L  

M 

 

 

 

T 

documents 

tokens per document 

terms (= word types) 

bytes per token (incl. spaces/punct.) 

bytes per token (without spaces/punct.) 

bytes per term (= word type) 

non-positional postings 

800,000 

200 

400,000 

 6 

4.5 

7.5 

100,000,000 

Outline 

•  Recap  

•  Introduction 

•  Blocked sort-based indexing (BSBI) 

algorithm 

• SPIMI algorithm 

• Distributed indexing 

• Dynamic indexing 
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Goal: Construct the Inverted Index 

17 

dictionary      postings  

18 

Index Construction in IIR 1:  

Sort Postings in Memory 

 

18 
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Sort-based Index Construction 

• As we build index, we parse docs one at a 

time. 

• The final postings for any term are 

incomplete until the end of the entire 

document collection. 

• Can we keep all postings in memory and then 

do the sort in-memory at the end? 

• No, not for large collections. 

19 20 

Why? 

• At 10–12 bytes per postings entry, we need a 

lot of space for large collections. 

• T = 100,000,000 in the case of RCV1: we can 

do this in memory on a typical machine in 

2010. 

• But in-memory index construction does not 

scale for large collections. 

• Thus: We need to store intermediate results 

on disk. 

20 
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Same Algorithm for Disk? 

• Can we use the same index construction 

algorithm for larger collections, but by using 

disk instead of memory? 

• No: Sorting T = 100,000,000 records on disk 

is too slow – too many disk seeks. 

• We need an external sorting algorithm. 

21 22 

“External” Sorting Algorithm 

(Using Few Disk Seeks) 

• We must sort T = 100,000,000 non-positional 

postings. 

– Each posting has size 12 bytes (4+4+4: termID, 

docID, document frequency). 

• Define a block to consist of 10,000,000 such 

postings 

– Assume we can fit that many postings into 

memory. 

– We will have 10 such blocks for RCV1. 

22 
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“External” Sorting Algorithm 

(Using Few Disk Seeks) 

• Basic idea of algorithm: 

– For each block:  

• (i) accumulate postings,  

• (ii) sort in memory,  

• (iii) write to disk 

– Then merge the blocks into one long sorted 

order. 
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Merging Two Blocks 

 

24 
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Blocked Sort-Based Indexing (BSBI) 

– Key decision: What is the size of one block? 

25 

Outline 

•  Recap  

•  Introduction 

•  BSBI algorithm 

• Single Pass In-Memory Index (SPIMI) 

algorithm 

• Distributed indexing 

• Dynamic indexing 
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Problem with Sort-Based Algorithm 

• Our assumption was: we can keep the dictionary in 

memory. 

• We need the dictionary (which grows dynamically) 

in order to implement a term to termID mapping. 

• Actually, we could work with term, docID postings 

instead of termID, docID postings . . . 

• . . . but then intermediate files become very large. 

(We would end up with a scalable, but very slow 

index construction method.) 
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Single-Pass In-Memory Indexing 

• Abbreviation: SPIMI 

• Key idea 1: Generate separate dictionaries for each block – 

no need to maintain term-termID mapping across blocks. 

• Key idea 2: Don’t sort. Accumulate postings in postings lists 

as they occur. 

• With these two ideas we can generate a complete inverted 

index for each block. 

• These separate indexes can then be merged into one big 

index. 

28 
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SPIMI-Invert Algorithm 

 

29 30 

SPIMI: Compression 

• Compression makes SPIMI even more 

efficient. 

– Compression of terms 

– Compression of postings 

– See next lecture 

30 
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Outline 

•  Recap  

•  Introduction 

•  BSBI algorithm 

• SPIMI algorithm 

• Distributed indexing 

• Dynamic indexing 
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Distributed Indexing 

• For web-scale indexing (don’t try this at 

home!): must use a distributed computer 

cluster 

• Individual machines are fault-prone. 

– Can unpredictably slow down or fail. 

• How do we exploit such a pool of machines? 

32 

33 

Search Engine Data Centers 

• In order to handle such huge amount of 

data, search engine companies establish a 

number of data centers across the globe, see 

a separate lecture on the subject of data 

centers 
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Distributed Indexing 

• Maintain a master machine directing the 

indexing job – considered “safe” 

• Break up indexing into sets of parallel tasks 

• Master machine assigns each task to an idle 

machine from a pool. 

34 

35 

Parallel Tasks 

• We will define two sets of parallel tasks and 

deploy two types of machines to solve them: 

– Parsers 

– Inverters 

• Break the input document collection into 

splits (corresponding to blocks in 

BSBI/SPIMI) 

• Each split is a subset of documents. 

35 36 

Parsers 

• Master assigns a split to an idle parser 

machine. 

• Parser reads a document at a time and emits 

(term,docID)-pairs. 

• Parser writes pairs into j term-partitions. 

• Each for a range of terms’ first letters 

– E.g., a-f, g-p, q-z (here: j = 3) 

36 
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Inverters 

• An inverter collects all (term,docID) pairs (= 

postings) for one term-partition (e.g., for a-f). 

• Sorts and writes to postings lists 

37 38 

Data Flow 

 

38 

39 

MapReduce 

• The index construction algorithm we just 

described is an instance of MapReduce. 

• MapReduce is a robust and conceptually 

simple framework for distributed computing . 

. . 

• . . .without having to write code for the 

distribution part. 

• Just like sorting, search algorithms, 

MapReduce is becoming a critical 

computation model for distributed computing 39 

A Simple Map-Reduce Example 

• Sum up a sequence of n numbers on k 

processors 

• The Map phase: 

– Divide the n numbers into k sets 

– Each processor adds up n/k numbers and store 

the partial sum as sk 

• The Reduce phase: 

– Add up the partial sums sk to get the total sum s 

40 

41 

MapReduce 

• The Google indexing system (ca. 2002) 

consisted of a number of phases, each 

implemented in MapReduce. 

• Index construction was just the first phase. 

• The second phase: transform term-partitioned 

into document-partitioned index. 

41 42 

Index Construction in MapReduce 

 

42 
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Outline 

•  Recap  

•  Introduction 

•  BSBI algorithm 

• SPIMI algorithm 

• Distributed indexing 

• Dynamic indexing 

 

 

43 44 

Dynamic Indexing 

• Up to now, we have assumed that collections 

are static. 

• They rarely are: Documents are inserted, 

deleted and modified. 

• This means that the dictionary and postings 

lists have to be dynamically modified. 

44 
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Dynamic Indexing: Simplest Approach 

• Maintain big main index on disk 

• New docs go into small auxiliary index in 

memory. 

• Search across both, merge results 

• Periodically, merge auxiliary index into big 

index 

• Deletions: 

– Invalidation bit-vector for deleted docs 

– Filter docs returned by index using this bit-vector 
45 46 

Issue with Auxiliary and Main Index 

• Frequent merges 

• Poor search performance during index merge 

• Actually: 

– Merging of the auxiliary index into the main 

index is not that costly if we keep a separate file 

for each postings list. 

– Merge is the same as a simple append. 

– But then we would need a lot of files – 

inefficient. 

46 

47 

Issue with Auxiliary and Main Index 

47 

• Assumption for the rest of the lecture: The index is 

one big file. 

• In reality: Use a scheme somewhere in between 

(e.g., split very large postings lists into several files, 

collect small postings lists in one file etc.) 

• Time complexity:  

– index construction time is O(T2) as each posting is 

touched in each merge. 

– Suppose auxiliary index has size a 

–   

48 

Logarithmic Merge 

• Logarithmic merging amortizes the cost of merging 

indexes over time. 

– Users see smaller effect on response times. 

• Maintain a series of indexes, each twice as large as 

the previous one. 

• Keep smallest (Z0) in memory 

• Larger ones (I0, I1, . . . ) on disk 

• If Z0 gets too big (> n), write to disk as I0 

• . . . or merge with I0 (if I0 already exists) and write 

merger to I1 etc. 
48 
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The Algorithm 

50 

Logarithmic Merge 

• Number of indexes bounded by O(log T) (T is total number 

of postings read so far) 

• So query processing requires the merging of O(log T) 

indexes 

• Time complexity of index construction is O(T log T). 

• . . . because each of T postings is merged O(log T) times. 

 

• So logarithmic merging is an order of magnitude more 

efficient than the simple merge seen earlier. 

• The price we pay is a bit slower in search operations 

50 

51 

Dynamic Indexing at Large Search Engines 

• Often a combination of 

– Frequent incremental changes 

– Rotation of large parts of the index that can then 

be swapped in 

– Occasional complete rebuild (becomes harder 

with increasing size – not clear if Google can do a 

complete rebuild) 

51 52 

Building Positional Indexes 

• Basically the same problem except that the 

intermediate data structures are much larger. 

52 

Compression 

Index compression and posting lists 

compression 

53 

Compression 

• Inverted lists are very large 

– e.g., index lists occupy 25-50% of the collection 
for TREC collections using Indri search engine 

– Much higher if n-grams are indexed 

• Compression of indexes saves disk and/or 
memory space 

– Typically have to decompress lists to use them 

– Best compression techniques have good 
compression ratios and are easy to decompress 

• Lossless compression – no information lost 
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Compression 

• Basic idea: Common data elements use short 
codes while uncommon data elements use 
longer codes 

– Example: coding numbers 
 

• number sequence: 

 

• possible encoding (14 bits): 

 

• encode 0 using a single 0: 

 

• only 10 (ten) bits, but... 

Compression Example 

• Ambiguous encoding – not clear how to 

decode 

• the same coding: 

 

• which represents: 

 

• use unambiguous code: 

– example: prefix codes 

• which gives: (13 bits) 

 

 

Recap 

•  Introduction 

•  BSBI algorithm 

• SPIMI algorithm 

• Distributed indexing (MapReduce) 

• Dynamic indexing 
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Delta Encoding 

• Word count data is good candidate for 
compression 
– many small numbers and few larger numbers 

– encode small numbers with small codes 

• Document numbers (docID) are less 
predictable 
– but differences between numbers in an ordered list 

are smaller and more predictable 

• Delta encoding: 
– encoding differences between document numbers 

(d-gaps) 

Delta Encoding 

• Inverted list 

 

• Differences between adjacent numbers 

 

• Differences for a high-frequency word  (thus 

appearing in consecutive documents) are easier to 

compress, e.g., 

 

• Differences for a low-frequency word are large, 

e.g., 

 

 

Bit-Aligned Codes 

• Breaks between encoded numbers can occur 

after any bit position 

• Unary code 

– Encode k by k 1s followed by 0 

– 0 at end makes code unambiguous 
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Unary and Binary Codes 

• Unary is very efficient for small numbers 

such as 0 and 1, but quickly becomes very 

expensive 

– 1023 can be represented in 10 binary bits, but 

requires 1024 bits in unary 

• Binary is more efficient for large numbers, 

but it may be ambiguous 

Elias-γ Code 

• To encode a number k, compute 

 

 

• kd is number of binary digits, encoded in unary 

Elias-γ Code and Decode 

• For any number k, the Elias-γ code requires 

 

 

 

• When decoding, k = 2kd + kr   

• For example, Elias-γ code = 1110110, kd=111, 

kr=110, thus k = 23+6 = 14 

• Compared to binary coding, the saving 

comes from variable length coding. 
63 

  1log2 k bits for kd in unary code and  

 k2log bits for kr in binary code. A total of 

  1log2 2 k bits are needed. 

Elias-δ Code 

• Elias-γ code uses no more bits than unary, 
many fewer for k > 2 

– 1023 takes 19 bits instead of 1024 bits using 
unary 

• In general, takes 2⌊log2k⌋+1 bits 

• To improve coding of large numbers, use 
Elias-δ code 

– Instead of encoding kd in unary, we encode kd + 
1 using Elias-γ 

– Takes approximately 2 log2 log2 k + log2 k bits 

 

Elias-δ Code 

• Split kd into: 

 

 

– encode kdd in unary, kdr in binary, and kr in 

binary 

 
ddk

ddr

ddd

kk

kk

2)1(

)1(log2





Example of Elias-δ Code 

• Code = 11000111 

• From the code we know kdd =110, kdr=00, 

kr=111 

• k = 2kd + kr  where kd = kdr+2kdd -1 

•  k = 20+4-1+7 = 15 
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Byte-Aligned Codes 

• Variable-length bit encodings can be a 

problem on processors that process bytes 

• v-byte is a popular byte-aligned code 

– Similar to Unicode UTF-8 

• Shortest v-byte code is 1 byte 

• Numbers are 1 to 4 bytes, with high bit 1 in 

the last byte, 0 otherwise 

V-Byte Encoding 

 

V-Byte Encoder  

 

V-Byte Decoder 

 

Compression Example 

• Consider invert list with positions: 

 

• Delta encode document numbers and 

positions: 

 

• Compress using v-byte: 
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Recap 

• Index compression: 

– Delta coding 

– Elias-gamma 

– Elias-delta 

– Byte-aligned 

• V-Byte 
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Compression of Reuters 

74 

data structure size in MB 

dictionary, fixed-width  

dictionary, term pointers into string  

∼, with blocking, k = 4  

∼, with blocking & front coding  

collection (text, xml markup etc)  

collection (text)  

T/D incidence matrix  

postings, uncompressed (32-bit words)  

postings, uncompressed (20-bits words)  

postings, variable byte encoded  

postings, γ encoded  

 

11.2 

7.6 

7.1 

5.9 

3600.0 

960.0 

40,000.0 

400.0 

250.0 

116.0 

101.0 

Skipping  

• Search involves comparison of inverted lists 

of different lengths 

– Can be very inefficient 

– “Skipping” ahead to check document numbers 

is much better 

– Compression makes this difficult 

• Variable size, only d-gaps stored 

• Skip pointers are additional data structure to 

support skipping 

 

Skip Pointers 

• A skip pointer (d, p) contains a document 

number d and a byte (or bit) position p 

– Means there is an inverted list posting that 

starts at position p, and the posting before it 

was for document d 

skip pointers 
Inverted list 

Skip Pointers 

• Example 

– Inverted list 

 
– D-gaps 

 
– Skip pointers 

 

Auxiliary Structures 

• Inverted lists usually stored together in a single 
file for efficiency 

– Inverted file 

• Vocabulary or lexicon 

– Contains a lookup table from index terms to the 
byte offset of the inverted list in the inverted file 

– Either hash table in memory or B-tree for larger 
vocabularies 

• Term statistics stored at start of inverted lists 

• Collection statistics stored in separate file 


