
5/30/2014

1

Web Information Retrieval

Textbook by

Christopher D. Manning, Prabhakar Raghavan,

and Hinrich Schutze

Notes Revised by X. Meng for SEU

May 2014

Recap

• Index construction in memory

• Boolean query and retrieval

2

Creating an Inverted Index

Create an empty index term list I;

For each document, D, in the document set V

 For each (non-zero) token, T, in D:

 If T is not already in I

 Insert T into I;

 Find the location for T in I;

 If (T, D) is in the posting list for T

 increase its term frequency for T;

 Else

 Create (T, D);

 Add it to the posting list for T;
4

Optimized Intersection Algorithm for

Conjunctive Queries

4

Outlines

• We will discuss two topics.

– Index construction

– Index compression

5

Index Construction Review

• We’ve discussed the basic algorithm for

index construction:

6

Create an empty index term list I;

For each document, D, in the document set V

 For each (non-zero) token, T, in D:

 If T is not already in I

 Insert T into I;

 Find the location for T in I;

 If (T, D) is in the posting list for T

 increase its term frequency for T;

 Else

 Create (T, D);

 Add it to the posting list for T;

5/30/2014

2

Discuss the Simple Indexing Algorithm

• Everything in SIA is in memory while in

reality the data indexed by a commercial

search engine is much bigger that will not

fit in memory

– Solution: read and write information from and

to secondary storage (e.g., disks)

• Even with secondary storage, we still need

to consider the issue of index compression

7 8

Hardware Basics

• Many design decisions in information

retrieval are based on hardware constraints.

• We begin by reviewing hardware basics that

we’ll need in this course.

8

9

Hardware Basics

• Access to data is much faster in memory than

on disk. (roughly a factor of 1000)

• Disk seeks are “idle” time: No data is

transferred from disk while the disk head is

being positioned.

• To optimize transfer time from disk to

memory: one large chunk is faster than many

small chunks.

9 10

Hardware Basics

• Disk I/O is block-based: Reading and writing

of entire blocks (as opposed to smaller

chunks). Block sizes: 8KB to 256 KB

(Google file system blocks are 64 MB in size)

• Servers used in IR systems typically have

several GB of main memory, sometimes tens

of GB, and TBs or 100s of TB of disk space.

• Fault tolerance is expensive: It’s cheaper to

use many regular machines than one fault

tolerant machine.
10

11

Some Stats (ca. 2008)

11

symbol statistic value

s

b

P

average seek time

transfer time per byte

processor’s clock rate

Low level operation (e.g., compare & swap a

word)

size of main memory

size of disk space

5 ms = 5 × 10−3 s

0.02 μs = 2 × 10−8 s

109 s−1

0.01 μs = 10−8 s

several GB

1 TB or more

Some Definitions Used in the Textbook

• Token: a useful unit for processing, such as

“word,” “2013,” or “LLC”

• Type: a class of all tokens containing the same

character sequence

• Term: a type that is included in the IR system

• For example, “to be, or not to be: that is the

question.”

– 10 tokens

– 8 types (to, be, or, not, that, is, the, question)

– 1 term, if “to, be, or, not, that, is, the” are considered

stopwords

12

5/30/2014

3

13

RCV1 Collection

• RCV: Reuters (路透社) Corpus Volume,

English news article collections between 1995

and 1996

• Shakespeare’s collected works are not large

enough for demonstrating many of the points

in this course.

• As an example for applying scalable index

construction algorithms, we will use the

Reuters RCV1 collection.
13 14

A Reuters RCV1 Document

14

15

Reuters RCV1 statistics

Average frequency of a term (how many tokens)? 4.5 bytes per

word token vs. 7.5 bytes per word type: why the difference?

15

N

L

M

T

documents

tokens per document

terms (= word types)

bytes per token (incl. spaces/punct.)

bytes per token (without spaces/punct.)

bytes per term (= word type)

non-positional postings

800,000

200

400,000

 6

4.5

7.5

100,000,000

Outline

• Recap

• Introduction

• Blocked sort-based indexing (BSBI)

algorithm

• SPIMI algorithm

• Distributed indexing

• Dynamic indexing

16

17

Goal: Construct the Inverted Index

17

dictionary postings

18

Index Construction in IIR 1:

Sort Postings in Memory

18

5/30/2014

4

19

Sort-based Index Construction

• As we build index, we parse docs one at a

time.

• The final postings for any term are

incomplete until the end of the entire

document collection.

• Can we keep all postings in memory and then

do the sort in-memory at the end?

• No, not for large collections.

19 20

Why?

• At 10–12 bytes per postings entry, we need a

lot of space for large collections.

• T = 100,000,000 in the case of RCV1: we can

do this in memory on a typical machine in

2010.

• But in-memory index construction does not

scale for large collections.

• Thus: We need to store intermediate results

on disk.

20

21

Same Algorithm for Disk?

• Can we use the same index construction

algorithm for larger collections, but by using

disk instead of memory?

• No: Sorting T = 100,000,000 records on disk

is too slow – too many disk seeks.

• We need an external sorting algorithm.

21 22

“External” Sorting Algorithm

(Using Few Disk Seeks)

• We must sort T = 100,000,000 non-positional

postings.

– Each posting has size 12 bytes (4+4+4: termID,

docID, document frequency).

• Define a block to consist of 10,000,000 such

postings

– Assume we can fit that many postings into

memory.

– We will have 10 such blocks for RCV1.

22

23

“External” Sorting Algorithm

(Using Few Disk Seeks)

• Basic idea of algorithm:

– For each block:

• (i) accumulate postings,

• (ii) sort in memory,

• (iii) write to disk

– Then merge the blocks into one long sorted

order.

23 24

Merging Two Blocks

24

5/30/2014

5

25

Blocked Sort-Based Indexing (BSBI)

– Key decision: What is the size of one block?

25

Outline

• Recap

• Introduction

• BSBI algorithm

• Single Pass In-Memory Index (SPIMI)

algorithm

• Distributed indexing

• Dynamic indexing

26

27

Problem with Sort-Based Algorithm

• Our assumption was: we can keep the dictionary in

memory.

• We need the dictionary (which grows dynamically)

in order to implement a term to termID mapping.

• Actually, we could work with term, docID postings

instead of termID, docID postings . . .

• . . . but then intermediate files become very large.

(We would end up with a scalable, but very slow

index construction method.)

27 28

Single-Pass In-Memory Indexing

• Abbreviation: SPIMI

• Key idea 1: Generate separate dictionaries for each block –

no need to maintain term-termID mapping across blocks.

• Key idea 2: Don’t sort. Accumulate postings in postings lists

as they occur.

• With these two ideas we can generate a complete inverted

index for each block.

• These separate indexes can then be merged into one big

index.

28

29

SPIMI-Invert Algorithm

29 30

SPIMI: Compression

• Compression makes SPIMI even more

efficient.

– Compression of terms

– Compression of postings

– See next lecture

30

5/30/2014

6

Outline

• Recap

• Introduction

• BSBI algorithm

• SPIMI algorithm

• Distributed indexing

• Dynamic indexing

31 32

Distributed Indexing

• For web-scale indexing (don’t try this at

home!): must use a distributed computer

cluster

• Individual machines are fault-prone.

– Can unpredictably slow down or fail.

• How do we exploit such a pool of machines?

32

33

Search Engine Data Centers

• In order to handle such huge amount of

data, search engine companies establish a

number of data centers across the globe, see

a separate lecture on the subject of data

centers

33 34

Distributed Indexing

• Maintain a master machine directing the

indexing job – considered “safe”

• Break up indexing into sets of parallel tasks

• Master machine assigns each task to an idle

machine from a pool.

34

35

Parallel Tasks

• We will define two sets of parallel tasks and

deploy two types of machines to solve them:

– Parsers

– Inverters

• Break the input document collection into

splits (corresponding to blocks in

BSBI/SPIMI)

• Each split is a subset of documents.

35 36

Parsers

• Master assigns a split to an idle parser

machine.

• Parser reads a document at a time and emits

(term,docID)-pairs.

• Parser writes pairs into j term-partitions.

• Each for a range of terms’ first letters

– E.g., a-f, g-p, q-z (here: j = 3)

36

5/30/2014

7

37

Inverters

• An inverter collects all (term,docID) pairs (=

postings) for one term-partition (e.g., for a-f).

• Sorts and writes to postings lists

37 38

Data Flow

38

39

MapReduce

• The index construction algorithm we just

described is an instance of MapReduce.

• MapReduce is a robust and conceptually

simple framework for distributed computing .

. .

• . . .without having to write code for the

distribution part.

• Just like sorting, search algorithms,

MapReduce is becoming a critical

computation model for distributed computing 39

A Simple Map-Reduce Example

• Sum up a sequence of n numbers on k

processors

• The Map phase:

– Divide the n numbers into k sets

– Each processor adds up n/k numbers and store

the partial sum as sk

• The Reduce phase:

– Add up the partial sums sk to get the total sum s

40

41

MapReduce

• The Google indexing system (ca. 2002)

consisted of a number of phases, each

implemented in MapReduce.

• Index construction was just the first phase.

• The second phase: transform term-partitioned

into document-partitioned index.

41 42

Index Construction in MapReduce

42

5/30/2014

8

Outline

• Recap

• Introduction

• BSBI algorithm

• SPIMI algorithm

• Distributed indexing

• Dynamic indexing

43 44

Dynamic Indexing

• Up to now, we have assumed that collections

are static.

• They rarely are: Documents are inserted,

deleted and modified.

• This means that the dictionary and postings

lists have to be dynamically modified.

44

45

Dynamic Indexing: Simplest Approach

• Maintain big main index on disk

• New docs go into small auxiliary index in

memory.

• Search across both, merge results

• Periodically, merge auxiliary index into big

index

• Deletions:

– Invalidation bit-vector for deleted docs

– Filter docs returned by index using this bit-vector
45 46

Issue with Auxiliary and Main Index

• Frequent merges

• Poor search performance during index merge

• Actually:

– Merging of the auxiliary index into the main

index is not that costly if we keep a separate file

for each postings list.

– Merge is the same as a simple append.

– But then we would need a lot of files –

inefficient.

46

47

Issue with Auxiliary and Main Index

47

• Assumption for the rest of the lecture: The index is

one big file.

• In reality: Use a scheme somewhere in between

(e.g., split very large postings lists into several files,

collect small postings lists in one file etc.)

• Time complexity:

– index construction time is O(T2) as each posting is

touched in each merge.

– Suppose auxiliary index has size a

–

48

Logarithmic Merge

• Logarithmic merging amortizes the cost of merging

indexes over time.

– Users see smaller effect on response times.

• Maintain a series of indexes, each twice as large as

the previous one.

• Keep smallest (Z0) in memory

• Larger ones (I0, I1, . . .) on disk

• If Z0 gets too big (> n), write to disk as I0

• . . . or merge with I0 (if I0 already exists) and write

merger to I1 etc.
48

5/30/2014

9

49

The Algorithm

50

Logarithmic Merge

• Number of indexes bounded by O(log T) (T is total number

of postings read so far)

• So query processing requires the merging of O(log T)

indexes

• Time complexity of index construction is O(T log T).

• . . . because each of T postings is merged O(log T) times.

• So logarithmic merging is an order of magnitude more

efficient than the simple merge seen earlier.

• The price we pay is a bit slower in search operations

50

51

Dynamic Indexing at Large Search Engines

• Often a combination of

– Frequent incremental changes

– Rotation of large parts of the index that can then

be swapped in

– Occasional complete rebuild (becomes harder

with increasing size – not clear if Google can do a

complete rebuild)

51 52

Building Positional Indexes

• Basically the same problem except that the

intermediate data structures are much larger.

52

Compression

Index compression and posting lists

compression

53

Compression

• Inverted lists are very large

– e.g., index lists occupy 25-50% of the collection
for TREC collections using Indri search engine

– Much higher if n-grams are indexed

• Compression of indexes saves disk and/or
memory space

– Typically have to decompress lists to use them

– Best compression techniques have good
compression ratios and are easy to decompress

• Lossless compression – no information lost

5/30/2014

10

Compression

• Basic idea: Common data elements use short
codes while uncommon data elements use
longer codes

– Example: coding numbers

• number sequence:

• possible encoding (14 bits):

• encode 0 using a single 0:

• only 10 (ten) bits, but...

Compression Example

• Ambiguous encoding – not clear how to

decode

• the same coding:

• which represents:

• use unambiguous code:

– example: prefix codes

• which gives: (13 bits)

Recap

• Introduction

• BSBI algorithm

• SPIMI algorithm

• Distributed indexing (MapReduce)

• Dynamic indexing

57

Delta Encoding

• Word count data is good candidate for
compression
– many small numbers and few larger numbers

– encode small numbers with small codes

• Document numbers (docID) are less
predictable
– but differences between numbers in an ordered list

are smaller and more predictable

• Delta encoding:
– encoding differences between document numbers

(d-gaps)

Delta Encoding

• Inverted list

• Differences between adjacent numbers

• Differences for a high-frequency word (thus

appearing in consecutive documents) are easier to

compress, e.g.,

• Differences for a low-frequency word are large,

e.g.,

Bit-Aligned Codes

• Breaks between encoded numbers can occur

after any bit position

• Unary code

– Encode k by k 1s followed by 0

– 0 at end makes code unambiguous

5/30/2014

11

Unary and Binary Codes

• Unary is very efficient for small numbers

such as 0 and 1, but quickly becomes very

expensive

– 1023 can be represented in 10 binary bits, but

requires 1024 bits in unary

• Binary is more efficient for large numbers,

but it may be ambiguous

Elias-γ Code

• To encode a number k, compute

• kd is number of binary digits, encoded in unary

Elias-γ Code and Decode

• For any number k, the Elias-γ code requires

• When decoding, k = 2kd + kr

• For example, Elias-γ code = 1110110, kd=111,

kr=110, thus k = 23+6 = 14

• Compared to binary coding, the saving

comes from variable length coding.
63

  1log2 k bits for kd in unary code and

 k2log bits for kr in binary code. A total of

  1log2 2 k bits are needed.

Elias-δ Code

• Elias-γ code uses no more bits than unary,
many fewer for k > 2

– 1023 takes 19 bits instead of 1024 bits using
unary

• In general, takes 2⌊log2k⌋+1 bits

• To improve coding of large numbers, use
Elias-δ code

– Instead of encoding kd in unary, we encode kd +
1 using Elias-γ

– Takes approximately 2 log2 log2 k + log2 k bits

Elias-δ Code

• Split kd into:

– encode kdd in unary, kdr in binary, and kr in

binary

 
ddk

ddr

ddd

kk

kk

2)1(

)1(log2





Example of Elias-δ Code

• Code = 11000111

• From the code we know kdd =110, kdr=00,

kr=111

• k = 2kd + kr where kd = kdr+2kdd -1

• k = 20+4-1+7 = 15

5/30/2014

12

Byte-Aligned Codes

• Variable-length bit encodings can be a

problem on processors that process bytes

• v-byte is a popular byte-aligned code

– Similar to Unicode UTF-8

• Shortest v-byte code is 1 byte

• Numbers are 1 to 4 bytes, with high bit 1 in

the last byte, 0 otherwise

V-Byte Encoding

V-Byte Encoder

V-Byte Decoder

Compression Example

• Consider invert list with positions:

• Delta encode document numbers and

positions:

• Compress using v-byte:

5/30/2014

13

Recap

• Index compression:

– Delta coding

– Elias-gamma

– Elias-delta

– Byte-aligned

• V-Byte

73 74

Compression of Reuters

74

data structure size in MB

dictionary, fixed-width

dictionary, term pointers into string

∼, with blocking, k = 4

∼, with blocking & front coding

collection (text, xml markup etc)

collection (text)

T/D incidence matrix

postings, uncompressed (32-bit words)

postings, uncompressed (20-bits words)

postings, variable byte encoded

postings, γ encoded

11.2

7.6

7.1

5.9

3600.0

960.0

40,000.0

400.0

250.0

116.0

101.0

Skipping

• Search involves comparison of inverted lists

of different lengths

– Can be very inefficient

– “Skipping” ahead to check document numbers

is much better

– Compression makes this difficult

• Variable size, only d-gaps stored

• Skip pointers are additional data structure to

support skipping

Skip Pointers

• A skip pointer (d, p) contains a document

number d and a byte (or bit) position p

– Means there is an inverted list posting that

starts at position p, and the posting before it

was for document d

skip pointers
Inverted list

Skip Pointers

• Example

– Inverted list

– D-gaps

– Skip pointers

Auxiliary Structures

• Inverted lists usually stored together in a single
file for efficiency

– Inverted file

• Vocabulary or lexicon

– Contains a lookup table from index terms to the
byte offset of the inverted list in the inverted file

– Either hash table in memory or B-tree for larger
vocabularies

• Term statistics stored at start of inverted lists

• Collection statistics stored in separate file

